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Abstract 

   In this study, we analyzed the influence of liquid sloshing on the pitching dynamics of flexible space 

structure with liquid on board; the analysis considers the main body of a spacecraft as a rigid tank, the flexible 

appendages as two elastically supported elastic beams, and on-board liquid as an ideal liquid. The meniscus of 

the free surface of the liquid due to surface tension was considered. The Lagrangians of the main body of the 

spacecraft (rigid tank), liquid, and two beams (flexible appendages) were used in addition to assuming 

antisymmetric motion of the system; the frequency equations of the coupled system were obtained by applying 

the Rayleigh–Ritz method. Influence of moment of inertia of the main body on coupled motions of the flexible 

spacecraft was investigated. 
 

Keywords: pitching dynamics, flexible space structures, coupled system, Rayleigh-Ritz method 
 

1. Introduction 

   Large space structures vibrate easily at low frequencies because they possess low structural rigidity, given 

their requirement to be lightweight. Attitude control or orbit modification through thruster injection could 

cause flexible appendages such as antennae and solar arrays, as well as the liquid fuel or wastewater on the 

spacecraft, to vibrate and develop strong coupled vibrations that exert a complex effect on the dynamic 

behavior of the main body. This poses a serious problem for high-attitude-accuracy satellites such as those 

used for precise astronomical photography. Therefore, it is essential to clarify the dynamic interaction behavior 

of a flexible space structure with on-board liquid, in advance of its deployment, to improve the stability and 

reliability of space structures. 

   Several researchers have examined the sloshing of liquids in containers in low-gravity environments 

theoretically. For example, Abramson [1] conducted a review of studies up until 1966. Bauer et al. [2, 3] studied  

free vibration analyses of a liquid in a cylindrical or rectangular vessel taking into consideration the liquid  
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meniscus due to surface tension. Agrawal [4] analyzed the dynamic behavior of liquid in a rotating space 

vehicle using a boundary-layer model. Komatsu [5] theoretically investigated the sloshing frequency in a space 

vehicle tank using a mechanical model and used potential flow models to obtain natural frequencies via a semi-

empirical formula. Chiba et al. [6] investigated the coupled natural vibration of an elastic membrane bottom 

and liquid in a cylindrical container with a rigid wall. Utsumi [7] proposed mechanical models for sloshing in 

a tear-shaped axisymmetric tank. Yuajun [8] carried out a nonlinear analysis of liquid sloshing in a cylindrical 

container considering the static meniscus shape in low-gravity environments using an energy method under 

pitching excitation around the center of gravity of the cylinder. Berglund [9] controlled the sloshing of liquid 

propellant in a Delta IV rocket using a pulse-suppression approach. Cui et al. [10] studied parametric instability 

of liquid sloshing in a spacecraft model during launch. Noorian et al. [11] studied coupled dynamics of fuel 

contained elastic launch vehicles using a BEM-FEM model. 

   However, few experimental studies have focused on resolving the sloshing that occurs in low-gravity 

environments. The Netherlands Agency for Aerospace (NIVR) launched a 130 kg miniature satellite called 

“Sloshsat Flevo” with an 87 l tank, which contained 33.5 l of water, to investigate the effect of sloshing 

behavior on the motion of the satellite, see Vreeburg [12]. Lazzarin et al. [13] estimated the impact of propellant 

sloshing on the pointing stability of the EUCLID satellite by CFD simulation. 

   Additionally, with respect to the effects of sloshing on spacecraft motion, the relationship between the 

balance and stability of a flat, rotating spacecraft with liquid fuel on-board was revealed by McIntyre et al. 

[14]. Santini et al. [15, 16] derived equations of motion of orbiting spacecraft with a sloshing liquid in a plane 

rigid tank and discussed its stability. Lü et al. [17] studied pitching motion of a two-dimensional rectangular 

tank with elastic appendages under gravity. From the numerical simulations, they found that the coupling of 

elastic appendages with rigid tanks are effective in high-gravity conditions, while the coupling of liquid fuel 

and rigid tanks are effective in low-gravity conditions. Recently, Farhat et al. [18] investigated the effect of 

fuel sloshing on a spacecraft and its flutter characteristics. Gasbarri et al. [19] presented a dynamic model of 

spacecraft with a solar panel and considered fuel sloshing using a multibody approach. They employed a 

pendulum model for the fuel sloshing and clarified the interaction among the control, the attitude dynamics, 

the flexibility of the solar array, and the sloshing motion of the spacecraft. For spacecraft with multiple 

propellant tanks, Baozeng et al. [20] presented a coupled dynamic model using Lagrange’s equation, and Zhou 

and Huang [21] presented a constrained surface model in which they clarified the coupling dynamics between 

the spacecraft and the propellant sloshing in tanks. 
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   A recent study constituted the initial step in clarifying the fundamental vibration characteristics of flexible 

space structures with on-board liquid, by proposing a mechanical model, and theoretically analyzing the 

axisymmetric coupled vibrations of a flexible structure with on-board liquid in zero-gravity environments 

(Chiba et al. [22]). The proposed model involved modelling the main body as a rigid mass, flexible appendages 

as two elastic beams, and on-board liquid as a "spring-mass" system (mechanical model). A single liquid 

sloshing mode (i.e. fundamental sloshing mode) was adopted in the mechanical model, and this helped in 

determining the fundamental vibration characteristics of the coupled system, i.e. the main body–flexible 

appendages–liquid system. As the second step, the on-board liquid was modelled as a potential fluid 

considering a static meniscus of the free surface due to surface tension by Chiba et al. [23]. In addition, the 

effect of spring rigidity of the flexible appendages was analyzed for the same model by Chiba et al. [24]. 

   The present study follows on from the aforementioned study as the fourth step, additionally analyzing the 

pitching motion of the spacecraft. 

 

2. Basic equations and boundary conditions 

2.1. Analytical model 

In the study, free pitching vibrations of a spacecraft in space are considered, as shown in Fig. 1. The 

spacecraft included flexible appendages, such as solar arrays on both sides of the main body Fig. 1(a) and the 

liquid fuel on-board (Fig. 1(b)). The main body of the spacecraft is modelled as a rigid tank, flexible 

appendages as two elastic beams, and on-board liquid as an ideal liquid. 

A rigid cylindrical tank with radius R  and length H  has a mass tm  and moment of inertia tJ ; the 

tank harmonically rotates with a small angle   around the Y axis in the inertia coordinate O XYZ−  (Fig. 

1(a)). While two beams are modelled as uniform Euler–Bernoulli beams with length l , cross-sectional area 

A  , density b  , mass bm  , Young’s modulus E  , and second moment of area I  , with displacements 

corresponding to ( , ), 1, 2i iW x t i = . They are fixed on the tank wall at height e  from the tank bottom. 

On-board liquid fuel is treated as an inviscid ideal fluid with density f  and mass 2
f fm R h = , where 

h   denotes liquid height when the meniscus of the liquid is ignored. The velocity potential of the liquid 

( , , , )r z t  is introduced into the coordinate system O r z− , in which the origin is considered to be 

located on a flat liquid surface, and the moment of inertia of the liquid is fJ . In a zero-gravity condition, the 

surface tension   is predominant on the liquid, which produces an axisymmetric meniscus 0 ( )z r , as shown  
 



4 

 

Nomenclature 

A  Cross-sectional area of beam R  Radius of rigid tank 

E  Young’s modulus of beam ( , , ): ( )S r t   
Amplitude of liquid surface 
:( / )S R =  

: ( )e e  Distance between tank bottom 
and center of gravity 

t  Time ( ): bt =  

: ( )H H  Height of tank : ( )i iW w  
Displacements of beams 
: ( / )i iw W l=  

0: ( )h h  Equivalent liquid height 

( )0: /h h R=  0 0( ) : ( )z r   
Static liquid free surface

0 0: ( / )z R =  

I  
Moment of inertia of area of 
beam   Rotation angle 

: ( )f fJ J  Moment of inertia of liquid 0  Static contact angle of liquid 

: ( )t tJ J  Moment of inertia of tank i  
Non-dimensional coordinate

: ( / )ix l=  

l  Length of beam ( )l R =  b  Density of beam 

: ( )t tm m  Mass of rigid tank : ( )f   Density of liquid 

bm  Mass of beam : ( )   
Coefficient of free surface 
tension 

O XYZ−  
Inertial coordinate system for 
spacecraft 

( , , , ) : ( )r z t   
Liquid velocity potential 

2: ( / )bR =  

O xyz−  Coordinate system for tank :( )   
Coupled natural circular 
frequency ( )b  =  

i i i io x y z−  Coordinate system for beam i b  
Natural circular frequency of 

beam 4( )bEI Al=  

O r z−  Coordinate system for liquid   

 

in Fig. 1(b), with contact angle 0  with respect to a side wall. Therefore, the free surface of the liquid vibrates 

with amplitude ( , , )S r t  around the meniscus. 

It is assumed that the two beams are arranged symmetrically with respect to the rigid tank, and that the mass 

center of the rigid tank is located on the mid-surface of the beams. This enabled antisymmetric in-plane motion, 

i.e., movement along only the clockwise and counterclockwise directions in the plane of the figure. 

2.2. Basic equations and boundary conditions 

2.2.1. Basic equations and boundary conditions for liquid 

It is assumed that the liquid is incompressible, inviscid, and exhibits irrotational motion, based on which 

there exists a velocity potential of the liquid ( ), , ,      in non-dimensional form that satisfies the Laplace 

equation as follows: 
2 2 2

2 2 2 2
1 1 0   

    

   
+ + + =

  
 (1) 

Velocity components of velocity cv  , v  , v  , v   induced by pitching motion of the rigid tank are 

represented as: see Kimura et al. [25]. 
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/ cos
/ sin
/ cos

c

v d d
v v v v d d

v d d



      



   

   

   

 = −
= + + =
 =

v e e e  (2) 

where e , e , e  are basic vectors for  ,  ,   directions, respectively. The dynamic condition on the 

free surface is as follows (Bauer et al. [2]): 

( ) ( )

( ) ( )

33 2
2 22

0 02 2

0 0

1 11 cos 1 cos 0

, ,at h e

   
    

      

      

        − − + − =        

= − + +

 (3) 

The kinematic condition must be satisfied on the free surface as follows (see Kimura et al. [25]): 
( ) ( ) ( )0

0 0 , ,v v at h e 

   
      

   

    
= − − + − = − + + 

    
 (4) 

  At the side wall and the bottom surface of the tank, the following velocity-matching conditions must be 

satisfied. 

 
1

v




 =


=


 (5) 

 
e

v




 =−


=


 (6) 

The conservation of liquid volume is represented as follows: 

 ( )
2 1

0 0
, , 0d d



       =   (7) 

The meniscus of the free surface of the liquid, caused by surface tension, is represented by Bauer et al. [2] 

as a function of the contact angle 0  with respect to the side walls of the tank using the following expression: 

 ( )
( )

( )
3

0 2
0 0 03

00

2 1 sin 1 1 cos
cos3cos

h e


   


−
= − − + −  (8) 

Here we assume that the contact angle 0  does not change during vibrations. 

 
1

0




 =


=


 (9) 

 

2.2.2. Basic equations and boundary conditions of the rigid tank and elastic beams 

  Considering reaction forces and moments from the elastic beams, the moment equilibrium equation in the 
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rigid tank is given as (see Appendix A): 

 
( )2

1 12
12 0t

d
J M R

d
 



 − + + = 
 

 (10) 

  Next, the equation of motion of the beam is given as: 

 
( ) ( )2 4

1 1 1 1
2 4

1

, ,
0

w w   

 

 
+ =

 
 (11) 

  Assuming the rotation angle   is small, the boundary conditions are given as:  

at 1 0 =  Deflection ( )1
10,w  


=  (12) 

 Slope 
( )

1

1 1

1 0

,w



 



=


=


 (13) 

 Bending moment 
( )

1

2
1 1

12
1 0

,w
M



 


=


=


 (14) 

 Shearing force 
( )

1

3
1 1

13
1 0

,w
R



 


=


− =


 (15) 

at 1 1 =  Bending moment 
( )

1

2
1 1

2
1 1

,
0

w



 


=


=


 (16) 

 Searing force 
( )

1

3
1 1

3
1 1

,
0

w



 


=


− =


 (17) 

 

2.3. Lagrangian 

In this section, we consider the Lagrangian of the liquid, beams, and the main body (tank). 

2.3.1. Lagrangian of liquid 

The Lagrangian of the liquid fL  is represented as a summation of the kinetic energy of the liquid due to 

rigid tank motions and the dynamic term that was introduced by Luke [26], as follows: 
 

( )

( )

3
2 2

02 2 1

3 30 0 2
2

02 2

1 1 cos
2

1 1 cos
f f

dL J d d
d




  

      
   

    
 

 

        −          = + −   
    

+ −  
   

   (18) 
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where fJ  is the moment of inertia of the liquid in the tank and details are shown in Appendix C. 

2.3.2. Lagrangian of the beams and the main body (tank) 

The Lagrangian of the beams and the main body (tank) comprise kinetic energy T  and potential energy 

U ; it is expressed as follows: 

22 2 21 1
1 1

1 120 0
1

1
2

tb

t

L T U

w wdd J d
d


 
  

= −

     = + −    
     

 
 (19) 

where two beams are assumed to be identical. 

In the above equations, we introduced the following non-dimensional parameters as given below: 

0
04 2

2

0 5 3

1 1
1 12 2 3 2

, , , , , , , , ,

, , , , , , , , ,
2

, , , , , cos ,
2

,

b b
bb b

f f i t i
f i t i

b f b

t r
t

b bb b b b

b

zEI r z S Alt
R R R R EIAl R

J x J Wh l R eh J e J w
R R A R l lR Al

m R M VHH m R M v
R m RAl Al
V

v
R

 





 
        

 

 
   

   

  
   





= =  = = = = = = =

= = = = = = = = =

= = = = = = −

= = 2 3 2 3sin , , cos , , t bfz
f t b

b b b b b

LLVv L L
R Al Al      

    
= = = =

 (20) 

In the above parameters, the moment of inertia of the tank tJ , ratio of length of the elastic beam and tank 

radius   are important parameters, and there is a relation between derivatives with time t and with non-

dimensional time  , as: 

 ( )/ b
b

dk dk dk
dt d d


  

= =  (21) 
 

 

3. Method of solution 

3.1. Elimination of temporal terms 

It is assumed that the system undergoes small-amplitude harmonic motion with the circular frequency   

as follows: 

  

( )
( ) ( )
( ) ( )
( ) ( )
( )
( )

1 1

1 1

cos

, , , , , sin

, , , cos

, cos

cos

cos

i i i iw w

R R

M M

   

         

       

   

 

 

= 

= − 

= 

= 

= 

= 

  (22) 
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3.1.1. Equations and boundary conditions for liquid 

  Substituting the above equation into Eq. (1) to Eq. (9), we obtain as: In the following equations, non-

dimensional velocities v , v , v  are represented in terms of pitching angle  : 
2 2 2

2 2 2 2
1 1 0   

    

   
+ + + =

  
 (1)’ 

( ) ( ) ( ) ( ) ( )

( )

3 23
2 22 2

0 02 2

0 0

, ,1 1, , 1 cos 1 cos 0

at h e

     
        

     

  

        + − + − =       

= − +

 (3)’ 

( ) ( ) ( ) ( )0 0
0 0, cos cos 0 at h e

    
          

   

  
+ + − + = = − +

   
 (4)’ 

( )
1

, ,
cos



   
 


=


= −


 (5)’ 

( ), ,
cos

e

   
 


=−


=


 (6)’ 

( )
2 1

0 0
, 0d d



      =   (7)’ 

1

0





=


=


 (9)’ 

 

3.1.2. Equations and boundary condition for rigid tank and elastic beams 

 
2

1 1
12 0tJ M R


 
 + + = 

 
 (10)’ 

 ( ) ( )4
1 12

4
1

0i i
w

w






 − =


 (11)’ 

at 1 0 =  Deflection ( ) 10iw 


=  (12)’ 

 Slope 
( )

1
1 0

i iw







=


=


 (13)’ 

 Bending moment 
( )

1

2
1 1

12
1 0

w
M






=


=


 (14)’ 
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 Shearing force 
( )

1

3

13
1 0

i iw
R






=


− =


 (15)’ 

at 1 1 =  Bending moment 
( )

1

2
1 1

2
1 1

0
w






=


=


 (16)’ 

 Searing force 
( )

1

3
1 1

3
1 1

0
w






=


− =


 (17)’ 

 

3.1.3. Lagrangian for liquid 

( )

( )

3
2 2

0
2 12 2 2

3 30 0 2
2

02 2

1 1 cos
2

1 1 cos
f fL J d d




  

    
      

  
 

 

        −        =  −  +  
  

+ −  
   

   (18)’ 

where we used the relations: 
2

0f fL L d






=   (23) 

2 22 2

0 0
sin cosd d

  
   

 

 =  =
   (24) 

 

3.1.4. Lagrangian for rigid tank and elastic beams 

( )
2221 12 2 2 1

1 1 1 120 0
12tb t
w

L w d J d   


 
= + −    

   (19)’ 

where we used the following equation and Eq. (24): 
2

0tb tbL L d






=   (25) 

 

3.2. Velocity potential of liquid 

The liquid velocity potential that satisfies the Laplace equation (1)’ and the boundary conditions in Eq. (5)’ 

to Eq. (7)’, and Eq. (9)’, and the displacement of a free surface are assumed in the following form: 

( ) ( ) 
( )

( ) ( )
( ) ( ) ( )

1 1 1
2

0 1 1 1 1 1

cosh sinh
( , , ) cos 4 cos

cosh 1 cosh

cos

mn i i
mn m mn

mnn i i i i i

e J
A J m

h J e

     
        

    

 

+
= +

−

−

 
 (26) 
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 ( ) ( ), cosmn m mn
n

a J m     =  (27) 

where mnA  and mna  are unknown constants. Substituting these equations into Eq. (4)’, we obtain: 

( ) ( ) ( ) ( ) 
( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) 
( )

( ) ( )
( ) ( )

0

0

1 1 10
2

1 1 1 1 1

1 1 1
1 2

0 1 1 1 1

cosh
cos cos

cosh

4 cos sinh
2 cos

1 cosh

sinh cosh
cos 4 cos

cosh 1

mnm mn
mn m mn mn

mnn n

i i

i i i i i

mn i i
mn m mn mn i

mnn i i i

edJ
a J m A m

d h

dJ
d J e

e J
A J m

h J

   
   

  

      
 

     

     
     

   

+
+




+ +

 −

+
− −

−

 



 ( )
( )

1

0 0

0
coshi ie

at h e



  

=

= − +



 (28) 

Multiplying cos  to the above equation, and integrating over from 0 to 2 , and multiplying 1 1( )qJ     

and integrating from 0 to 1, we obtain: 

( ) ( )1 1 3 1 4 2q n nq nq iq iq q
n i

a A C C C C X = − + − −   (29) 

where coefficients in Eq. (29) are: 

( ) ( ) ( ) 
( ) ( )

( ) ( ) ( ) 

( ) ( ) ( )
( )

( ) 
( ) ( ) ( )

1 1 0 01 10
1 1 101 1 0

1 1 0 01 10
2 1 1201 1 1 1 1 1

1 1 1 0 0
3 1 1 1 101 1 0

4

cosh1
cosh

4sinh1
1 cosh

sinh1
cosh

nn
nq q

q n

ii
iq q

q i i i i

n n
nq n q

q n

iq

hdJ
C J d

d h

h edJ
C J d

d J e

h
C J J d

h

C

    
   

   

    
   

      

   
     

 

 +  =


 − +  =
 −

 + =







( ) 

( ) ( ) ( )
( ) ( )

( ) ( )

1 1 0 0
1 1 1 1201 1 1 1 1

2
1 1 1

4cosh1
1 cosh

4
1

i
i q

q i i i

q
q q

h e
J J d

J e

X
J

  
     

   

 

 − + =
−

=
−



 (30) 

In the calculation, the orthogonality of the Bessel function is used as follows: 

( ) ( ) ( )1 2
1 1 1 1 1 1 120

1

1 11
2n q q nq q

q

J J d J        


 
= − = 

 
 

  (31) 

where nq  denotes the Kronecker delta. 

Substituting liquid velocity Eq. (26) and liquid displacement Eq. (27) into Lagrangian of the liquid, we 

obtain the following, in which 1m=  in Eq. (26) and Eq. (27): 
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( )

2 2 2
1 1 5 6 73 3

1 1 9 8

2

2

f f j n nj ij j
j n i

n j nj nj
n j

L J a A C C C

a a C C

 
 

 



   =  − + −  
   

+ −

  

 
 (32) 

where coefficients in Eq. (32) are: 

 

( ) 
( ) ( ) ( )

( ) ( ) 

( ) ( ) ( )
( )

( )  ( )

( ) ( ) ( )

( )

1 1 0 0
5 1 1 1 10 1 0

1 1 1 1 0 0
6 1 120

1 1 1 1 1

1 2
7 0 0 1 10

3
1 1 12 1 12

8 00

2
9 0

cosh

cosh

4 sinh

1 cosh

1 cos

1 1 cos

n
nj n j

n

i i
ij j

i i i i

j j

jn
nj

nj

h
C J J d

h

J h e
C J d

J e

C h e J d

JJ
C d

C

  
     



    
   

   

     

  
   

 

 


 + =

 − + =
−

= − +


 = − −
   

= −









( ) ( )1

1 1 1 10 n jJ J d    

 
(33) 

  Substituting Eq. (29) into the second and third terms of the right-hand side of Eq. (32), we obtain: 

( ) ( )

( ) ( )

( )

2
1 1 5 3 1 4 2 6 7

2 2 2
3 3

1 3 1 6 7 5 4 2

1 1 3

9 8

2

2

k s sj kj kj qj qj j ij j
k s q i

f f
j

k kj kj ij j kj qj qj j
k i q

k s sn
k

nj nj

A A C C C C C X C C

L J

A C C C C C C C X

A A C

C C



 


 




    
 − + − − −  
    

=  −  
     + − − + − −     

      

+ −

   


  

 ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 3 1

3 1 4 2

1

3 1 4 2

2
4 2 4 2

sn kj kj
s

kn kn qj qj j
q

k
n j k

kj kj pn pn n
p

pn pn n qj qj j
p q

C C C

C C C C X

A

C C C C X

C C X C C X





 
 − −
 
 

   
 − − −  

      +   
   

+ − − −    
    

 
     + − − − −   
     




 



 

 (34) 

 

3.3. Displacement function for beam 

Here, the beam displacements are assumed to be in the following form: 

 ( ) ( )1 1 1 1u u
u

w B w =  (35) 

where uB  denotes the unknown constant, and ( ) : 1, 2iu iw i =  denotes the eigenfunction of the beam that 

satisfies the boundary conditions in Eq. (10)’ – Eq. (17)’, and whose derivation is in Appendix B. 
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( )  

 

 

sin cosh cos sinh cos cosh sin sinh cosh

sin cosh cos sinh cos cosh sin sinh cos

cos cosh sin sinh cos sinh sin cosh sinh

iu i u u u u u u u u u u u u i

u u u u u u u u u u u u i

u u u u u u u u u u u i

w                

              

              

= − + + +

+ − + + + −

+ − + − −

 cos cosh sin sinh cos sinh sin cosh sinu u u u u u u u u u u i              + + + + +

 (36) 

The parameter u  satisfies the frequency equation below: 

( ) ( )2 2

2 3 2 3

2 cosh sin sinh cos 2 cosh sin sinh cos

4 sinh sin cosh cos 0
u u u u u u u u u

u u u t u u u t uJ J

         

        

− + +

+ + + =
 (37) 

which is a function of aspect ratio   and inertia moment tJ . 

Substituting Eq. (35) into the Lagrangian, we obtain the following expression: 

( ) ( ) ( ) ( )2 221 1 1 1 1 12 2
1 1 1 1 1 12 20 0

1 12
u v

tb u v u v t u v
u v u v

w w
L B B w w d J B B d

 
    

 

   
= + −   

     
    (38) 

 

3.4. Lagrangian for the entire system 

Finally, the Lagrangian for the entire system is obtained as follows: 

f tbL L L= +  (39) 

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

2

1 1 5 3 1

2 2
4 2 6 73

1 3 1 6 7 5 4 2

0 0

2 0 0

0

f u v u v
u v

k s sj kj kj
k s

u v u v qj qj j ij j
u v q i

u u k kj kj ij j kj qj qj j
u k i q

L J B B w w

A A C C C

B B w w C C X C C

B w A C C C C C C C X












= 


 −


    − + − − −   

   

    + − − + − −    
    



 

  

   

( )

( )( )

( )
( ) ( )

( ) ( )

( ) ( ) ( )

1 1 3 1 3 1

3 1 4 2

9 8 1

3 1 4 2

2
4 2

2 0

0 0

j

k s sn sn kj kj
k s

kn kn qj qj j
q

nj nj u u k
u k

kj kj pn pn n
p

u v u v pn pn n
u v p

A A C C C C

C C C C X

C C B w A

C C C C X

B B w w C C X C

 










 
 
 
 
 

− −

  
 − − − 

     + − +  
  

+ − − −   
   

  + − − 
  



 


 



  ( )4 2

n j

qj qj j
q

C X

 
 
 
 
 
 
 
 
 
 
 
 

   − −  
   





 

(40) 
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( ) ( ) ( ) ( )

( ) ( )

212 2
1 1 1 1 10

2 21 1 1 1 1
12 20

1 1

0 0
2u v u v t u v u v

u v u v

u v
u v

u v

B B w w d J B B w w

w w
B B d

   

 


 


+ +

   
−   

     

 

 

  

  In the above, pitching angle   can be represented using the boundary condition Eq. (12)’ at 0i = . 

( )0u u
u

B w =   (41) 

 

3.5. Rayleigh–Ritz method 

The Rayleigh–Ritz method is applied here to obtain the following minimalized condition for: 

1
0 , 0

k u

L L
A B
 

= =
 

 (42) 

 

( )

( ) ( ) ( ) ( ) 

( )
( ) ( )

( ) ( )

1 3 1 3 1 3 1 3 1

3 1 4 2
9 8

1

3 1 4 2

1 5 3

2
3

2
0

2

s kj kj sn sn sj sj kn kn
s

kn kn qj qj j
nj nj q

k n j
u u

u
kj kj pn pn n

p

s sj kj
s

A C C C C C C C C

L C C C C XC C
A B w

C C C C X

A C C









 − − + − −
 
 

   
  − − −  = −        +   

   
+ − − −    
     

− 








 ( ) ( )

( )
( )

( )

1 1 5 3 1

3 1 6 7

5 4 2

0
0

kj s kj sj sj
s

kj kj ij j
i

j
u u

u
kj qj qj j

q

C A C C C

C C C C

B w

C C C X



 − + −
 
 

   
− −    =

   +      + − −    
   








 (43) 
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( ) ( )

( )
( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2

3 1 4 2

1

9 8 3 1 4 2

2
4 2 4 2

2 0 0

0

2

2 0 0

f v u v
u v

kn kn qj qj j
q

u k
k

nj nj kj kj pn pn n
p

v u v pn pn n qj qj j
v p q

L J B w w
B

C C C C X

w A

C C C C C C X

B w w C C X C C X












= 



   
  − − − 

      
  

  
+ − + − − −   

   

    + − − − −  
    








  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
4 2 6 7

2
3

1 3 1 6 7 5 4 2

2
1 1 1 1 1

2 0 0
2

0

2

n j

v u v qj qj j ij j
v q i

j
u k kj kj ij j kj qj qj j

k i q

v u v
v

B w w C C X C C

w A C C C C C C C X

B w w d








  






 
 
 
 
 
 
 

    
 − − −  
    

−  
     + − − + − −     

      

+ 



  


  

 ( ) ( )

( ) ( )

1 2 2

0

2 21 1 1 1 1
12 20

1 1

0 0

2 0

t v u v
v

u v
v

v

J B w w

w w
B d



 


 

+

   
− =  

     



 

 

(44) 

 

  The above equations can be represented in the following matrix form as coupled equations in terms of 1sA  

and B : 

1 2 1 2 12

3 4 3 4

s

v

K K M M A
K K M M B

      
− =     

      
0  (45) 

where: 
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( ) ( ) ( ) ( ) ( ) 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

1 9 8 3 1 3 1 3 1 3 1

3 1 4 2

2 9 8

3 1 4 2

3 1 4 2

3 9 8

0

0

nj nj kj kj sn sn sj sj kn kn
n j

kn kn qj qj j
q

u nj nj
n j

kj kj pn pn n
p
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(46) 

 

Thus, the problem can be reduced to an eigenvalue problem, from which the coupled natural circular 

frequencies   can be obtained as eigenvalues and the vibration modes as eigenvectors. 
 



16 

 

4. Numerical results 

The goals of this study included clarifying the influence of liquid sloshing on the coupled hydroelastic 

pitching vibration characteristics of the flexible space structure. This involved a systematic procedure 

beginning with a rigid cylindrical tank with beams and without liquid, followed by treating the sloshing 

characteristics in a rigid cylindrical tank. 

In the numerical calculations, the unknown parameters 1sA  and vB  in Eq. (45) included 10 terms for each 

parameter to satisfy the requirements for engineering data. The liquid height parameter was 0 / 1.0h h R= =  

and, as mentioned above, the positions of the roots of the two beams e  from the tank bottom were taken as 

equal to that of the center of gravity G, i.e., 0/ / 2e e R h= = . 

 

4.1. Vibration characteristics of “rigid cylindrical tank–two beams” system 

First, the vibration characteristics of a “rigid cylindrical tank–two beams” system are considered, which 

corresponds to a scenario in which the spacecraft runs out of fuel. In this case, the liquid displacement vector 

1sA  is omitted from Eq. (45). 

4.1.1. Influence of inertia moment of tank tJ  

Variations of the natural circular frequency   with inertia moment tJ  up to the third mode are shown in 

Fig. 2(a), when 10,100 =  . In the figure, results for 10 =   are shown as dashed lines, while those for 

100 =   are shown as solid lines. In Fig. 2(b) and 2(c), vibration modes when 210tJ −=  , 210tJ =   are 

presented. 

  Here, we shall consider the frequency equation when the moment of inertia tJ  tends toward zero or  . 

In these cases, Eq. (37) renders: 
 

( ) ( )
22

2 3 2 3

22 cosh sin sinh cos cosh sin sinh cos

4
sinh sin cosh cos 0

u
u u u u u u u u

t t

u
u u u u u u

t

J J

J


       

 
       

− + +

+ + + =

 (47) 

or 

( ) ( )
2

2

3 3

2
2 cosh sin sinh cos cosh sin sinh cos

4
sinh sin cosh cos 0

u
u u u u u u u u

u
u u t u u u t uJ J


       




     



− + +

+ + + =

 (48) 

First, when ( )t tJ m→ → , Eq. (47) renders: 
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 cosh cos 1 0u u  + =  (49) 

which is the frequency equation for a clamped–free beam. 

  Next, when ( )0 0t tJ m→ → , Eq. (48) renders: 

( ) ( )
2

2

2 4
2 cosh sin sinh cos cosh sin sinh cos sinh sin 0u u

u u u u u u u u u u
 

         


− + + + =  (50) 

In addition, letting → , we obtain: 
tan tanh 0u u − =  (51) 

This is the natural frequency equation for a simply supported–free beam. 

  For a free–free beam with length 2l  we obtain: 
cosh 2 cos 2 1 0u u  − =  (52) 

 

One finds from Fig. 2(a) that, as tJ  increases, coupled natural circular frequencies   decrease. When 

( )t tJ m→ → , as anticipated from Eq. (49), coupled natural frequencies tend toward those of the beam 

with a clamped–free boundary condition, i.e., blue circles in the figure as   = 3.52, 22.03, 61.70, and there 

seems to be no rotational motion of the main body of the satellite, as shown in Fig. 2(c), because the moment 

of inertia of the tank is large. In Fig. 2(c), maximum amplitude of the beam is normalized as unity. 

When ( )0 0t tJ m→ → , coupled natural circular frequencies tend toward those of a free–free beam with 

length 2l  of the even–order modes, which are shown in Fig. 2(a) with red circles as   = 15.42, 49.97, 

104.25; when 100 = , or those of a simply supported–free beam, they are shown with green   as   = 

15.42, 49.97, 104.25. In addition, the influence of aspect ratio   on the natural frequency is significant for a 

smaller tJ , as shown in Fig. 2(b), and with an increase in the inertia moment, rotatory motion of the main 

body becomes large. 

 

4.1.2. Variation of vibration modes 

  We next examine the influence of the moment of inertia of the rigid tank tJ  on the vibration modes of the 

system, as shown in Fig. 3, in which two beams behave with antisymmetric motion. In the figure, red dash-

dotted lines are the first mode, blue solid lines are the second mode, and black dashed lines are the third mode. 

  In the odd order vibration modes, the roots of beams rotate in the clockwise direction, while in the even 

order vibration modes they rotate in the counterclockwise direction, and the rotation amplitude becomes large 

for lower vibration mode. Comparing Fig. 4(a) to(c), one can find that the rotation angle becomes gradually 

small with an increase in tJ . 
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4.1.3. Influence of aspect ratio   

  Next, variations of the natural circular frequencies   with aspect ratio l R =  are shown in Fig. 4 when 

4 210 ,10tJ − −= . In the figure, natural circular frequencies of a simply supported–free beam are presented with 

green triangles   as   = 15.42, 49.97, 104.25, while those of a free–free beam with length 2l  of the 

even order modes are presented with red circles  as   = 15.42, 49.97, 104.25. 

  In addition, in Fig. 4(b) and 4(c), vibration modes when 1 =  and 100 are presented. When   is large, 

natural circular frequencies tend toward those of a simply supported–free beam or of a free–free beam with 

length 2l   of the even order modes when 410tJ −=  , and the displacement of the beam becomes more 

significant than that of rotation of the tank, as shown in Fig. 4(c). Contrary to this, when   is small, rotation 

of the tank becomes large. Influence of the moment of inertia tJ  on the natural frequency becomes significant 

for larger aspect ratio  . 

 

4.2. Sloshing in a rigid tank without beams 

Next, we consider liquid in a rigid cylindrical tank in space, neglecting two beams as appendages. In this 

case, the beam displacement vB  is omitted in Eq. (45). 

In the present study, as we consider the pitching vibration of the space model, the vibration mode of the 

liquid in the tank is that with the nodal diameter 1N = . Hereafter, we express the number of nodal circle as 

m . 

 

4.2.1. Variation of natural circular frequency with contact angle 0  

Variations of the natural circular frequencies up to the third mode with contact angle 0  are shown in Fig. 

5. In the figure, solid lines are the results of the present study with N = 1 mode, while dashed lines are those 

of the former study of the axisymmetric mode with N = 0 (see Chiba et al. [23]). In the present results with N 

= 1 mode, natural circular frequencies of the second and third mode are maximum at 0 90 =  except the first 

mode, while in the N = 0 mode natural frequencies are higher than those of the N = 1 mode and are maximum 

at 0 90 = , independent of the vibration order.  
 

4.2.2. Variation of vibration mode 

The liquid’s free surface axis symmetrically deforms as meniscus due to surface tension, and a small 

amplitude vibration occurs around it (see Chiba et.al. [23]). Variations of the vibration mode with contact angle 
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0  are shown in Fig. 6. In the figure, the black dotted line is the result when 0 70 = , the blue solid line is 

that when 0  = 90 , and the red dash-dotted line is that when 0  = 110 . One can see the nodal diameter 

at 0 = . Additionally, the influence of the contact angle 0  can be seen in the neighborhood of the tank 

wall. 

 

4.3. Coupled system 

  Finally, we proceed to the coupled case when a liquid is in the tank. In this section, the results when 0 70 =  

are presented as a representative case. 

  First, we consider the influence of the moment of inertia of the tank tJ   on the natural frequency and 

vibration mode. Variations of coupled natural frequencies up to the fourth mode with tJ  are shown in Fig. 

7(a). In the figure, the dashed pink line represents the frequency curve in which displacement of beams is 

predominant, while the other curves are those in which liquid motion is predominant. The former curve 

corresponds to that of the tank–beam system without liquid, as presented in Fig. 3. In addition, the crossing 

region between frequency curves of the 3rd and 4th modes is enlarged in Fig. 7(b). 

  As shown in Fig. 7(a), the frequency curve with the dashed pink line, in which beam displacement is 

predominant, decreases as tJ  increases, while that in which liquid motion is predominant does not change 

with tJ . Strong coupling between bending motion of the beams and liquid sloshing motions in the tank is 

expected in the crossing region of the frequency curves, as shown in Fig. 7(b). The vibration modes with the 

higher frequency of the two frequency curves, when 0.03,1.0tJ = , are shown in Fig. 8. In Fig. 8(a) bending 

motion of the beam and pitching motion of the tank are predominant and a small amount of sloshing can be 

seen, while in Fig. 9(b) sloshing motion is predominant and there seems to be no coupling with beam motion. 

Vibration mode exchange is recognized before and after the crossing. 

 

5. Conclusions 

This study involved the analysis of the influence of liquid sloshing on the pitching dynamics of flexible 

space structures with on-board liquid in zero-gravity conditions. The main body of the spacecraft was modeled 

as a rigid tank, flexible appendages as two elastic beams, and on-board liquid as an ideal liquid. The obtained 

results are summarized as follows: 

 

i) Coupled system without liquid 
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・ When the moment of inertia of the tank tJ  was large, the main body did not show any motion, and the 

natural frequency of the system tended to correspond to that of a clamped–free beam; simultaneously, the 

rotation angle of the root of the beam became small. 

・ While the moment of inertia of the tank tJ  was small, the natural frequency tended toward that of a free–

free beam with length 2 ,l  of the even order mode, or that of a simply supported–free beam, in which the 

vibration mode’s (as the main body was located at the middle of the free–free beam) rotation amplitude at 

the root increased. 

・ Influence of the aspect ratio on the natural frequency was larger for a smaller tJ . 

 

ii) Sloshing characteristics in a tank floating in space 

・ Natural frequencies with N = 1 were lower than those with N = 0 (Chiba et al., 2017). 

・ Concerning the variations of the natural frequencies with contact angle 0 , natural frequencies of the 

second and third mode took maximum at 0 90 =  except the first mode, while in the N = 0 mode they 

were maximum at 0 90 = , independent of the vibration order.  

 

iii) Coupled system 

・ Depending on the magnitude of the inertia moment of the system, i.e., the sum of that of tank and that of 

liquid in the tank, coupled vibration occurred at the crossing region of two frequency curves in which 

liquid motion or beam motion were predominant.  

・ During the operation of satellites, decreases in fuel may lead to the crossing of two natural frequency 

curves, that would introduce strong coupling of the two motions, i.e., liquid sloshing and beam vibration. 

 
 



21 

 

References 

 

[1] H.N. Abramson, The dynamic behavior of liquids in moving containers, chapter 11, NASA 

SP-106 (1966). 

[2] H.F. Bauer, W. Eidel, Linear liquid oscillations in cylindrical container under zero gravity, 

Appl. Microgravity Tech 2 (1990a) 212-220. 

[3] H.F. Bauer, W. Eidel, Small amplitude liquid oscillations in a rectangular container under 

zero gravity, Zeitsschrift fur Flugwissenschaften und Weltraumforschung 14 (1990b) 1-8. 

[4] B.N. Agrawal, Dynamic characteristics of liquid motion in partially filled tanks of a spinning 

spacecraft, J. Guid. Contr. Dyn. 16(4) (1993) 636-640. 

[5] K. Komatsu, Modeling of the dynamic behavior of liquids in spacecraft, Int. J. Microgravity 

Science and Application 16(3) (1999) 182-190. 

[6] M. Chiba, H. Watanabe, H.F. Bauer, Hydroelastic coupled vibrations in a cylindrical 

container with a membrane bottom, containing liquid with surface tension, J. Sound Vibr. 

251(4) (2002) 717-740. 

[7] M. Utsumi, A mechanical model for low-gravity sloshing in an axisymmetric tank, Trans. 

ASME, J. Applied Mechanics 71 (2004) 724-730. 

[8] H. Yuanjun, M. Xingrui, W. Pigping, W. Benli, Low-gravity liquid nonlinear sloshing analysis 

in a tank under pitching excitation, J. Sound Vibr. 299 (2007) 164-177. 

[9] M.D. Berglund, C.E. Bassett, J.M. Kelso, J. Mishic, D. Schrange, The Boeing Delta IV launch 

vehicle–Pulse-settling approach for second-stage hydrogen propellant management, Acta 

Astronautica 61 (2007) 416-424. 

[10] D-L. Cui, S-Z. Yan, X-S. Guo, R. X. Gao, Parametric resonance of liquid sloshing in partially 

filled spacecrafts during the powered-flight phase of rocket, Aer. Sci. Tech., 35 (2014) 93-105. 

[11] M.A. Noorian, H. Haddadpour, M. Ebrahimian, Stability analysis of elastic launch vehicles 

with fuel sloshing in planar flight using a BEM-FEM model, Aero. Sci. Tech., 53 (2016) 74-

84. 

[12] J.P.B. Vreeburg, Sloshsat spacecraft calibration at stationary spin rates, J. Space. Rockets 

45(1) (2008) 65-75. 

[13] M. Lazzarin, M. Biolo, A. Bettella, M. Manente, R.D. Forno, D. Pavarin, EUCLID satellite: 

Sloshing model development through computational fluid dynamics, Aero. Sci. Tech., 36 (2014) 

44-54. 

[14] J.E. McIntyre, J.M. McIntyre, Some effects of propellant motion on the performance of 

spinning satellites, Acta Astronaut. 9(12) (1982) 645-661. 

[15] P. Santini, R. Barboni, Motion of orbiting spacecrafts with a sloshing fluid, Acta Astronaut. 

5(7-8) (1978) 467-490. 

[16] P. Santini, R. Barboni, A minicomputer finite elements program for microgravity 

hydroelastic analysis, Acta Astronaut. 10(2) (1983) 81-90. 
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Appendix A.  Force and moment relation between rigid tank and elastic beams 

 

Force and moment balances between the rigid tank and the elastic beam of the right-hand side with No. 1 

are shown in Fig. A1. In the figure, reaction force and reaction moment are represented as iR   and iM  , 

1, 2i = , respectively. Two elastic beams each exhibit asymmetric motion each; only the right-hand side beam 

with 1i =  is presented.  
 

 

 

Appendix B  Derivation of Eigenfunction Eq. (38) 

 

  Eigenfunction of the elastic beams which satisfies the non-dimensional equations of motion Eq. (11)” is 

assumed as: 

( ) 1 2 3 4cosh cos sinh siniu i u i u i u i u iw C C C C        = + + +  (B-1) 

where i  = 1, 2, 1 4~C C  are unknown constants, and parameters u  satisfy frequency equation (37). 

2
u =   (B-2) 

  Substituting Eq. (B-1) into the boundary conditions Eq. (12)” to Eq. (17)”, 

at 0i = ： 1 2
1C C 


+ =  (12)’’’ 

 3 4u uC C  + =  (13)’’’ 

 2 2
1 2u u iC C M − =  (14)’’’ 

 3 3
3 4u u iC C R − + =  (15)’’’ 

at 1i = ： 2 2 2 2
1 2 3 4cosh cos sinh sin 0u u u u u u u uC C C C       − + − =  (16)’’’ 

 3 3 3 3
1 2 3 4sinh sin cosh sin 0u u u u u u u uC C C C       − − − + =  (17)’’’ 

 Eliminating   from Eq. (12)’’ and Eq. (13)’’, one obtains: 
 1 2 3 4 0u uC C C C   + − − =  (B-3) 

  Then substituting Eq. (B-2), Eq. (12)’’’, Eq. (14)’’, and Eq. (15)’’’, into Eq. (10)’’ one obtains Eq. (B-4): 

2 12 0t i iJ M R


 
 + + = 

 
 (10)’’ 
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( ) ( )4 2 2 2 2 3 3
1 2 1 2 3 42 0t u u u u uJ C C C C C C      + + − − + =  (B-4) 

Rearranging Eq. (16)’’’, Eq. (17)’’, Eq. (B-3), Eq. (B-4) into a matrix form, 

1

2

3
2 2 2 2

4

cosh cos sinh sin
sinh sin cosh cos

0

2 2 2 2

u u u u

u u u u

u u

t u t u u u

C
C
C
CJ J

   

   

   

       

− −  
  −    =  − −

  
  + − −   

 (B-5) 

  As the condition to obtain non-trivial solutions 1 4toC C , 

2 2 2 2

cosh cos sinh sin
sinh sin cosh cos

0

2 2 2 2

u u u u

u u u u

u u

t u t u u uJ J

   

   

   

       

− −
−

=
− −

+ − −

 (B-6) 

one obtains frequency equation (37): 

( ) ( )2 2

2 3 2 3

2 cosh sin sinh cos 2 cosh sin sinh cos

4 sinh sin cosh cos 0
u u u u u u u u u

u u u t u u u t uJ J

         

        

− + +

+ + + =
 (37) 

  Finally, one obtains the eigenfunction from 1 4~C C  relations, as: 

( )  

 

 

sin cosh cos sinh cos cosh sin sinh cosh

sin cosh cos sinh cos cosh sin sinh cos

cos cosh sin sinh cos sinh sin cosh sinh

iu i u u u u u u u u u u u u i

u u u u u u u u u u u u i

u u u u u u u u u u u i

w                

              

              

= − + + +

+ − + + + −

+ − + − −

 cos cosh sin sinh cos sinh sin cosh sinu u u u u u u u u u u i              + + + + +

 (36) 

 

Appendix C  Moment of inertia of liquid in a cylindrical tank fJ  

We shall derive the moment of inertia of liquid in a cylindrical tank under the assumption that the liquid 

free-surface does not vibrate, maintaining the meniscus shape with surface tension. 

Assuming a pitching angle of ( )   and a liquid potential of ( ), , ,      in the form of Eq. (C-1), and 

a velocity potential that satisfies Laplace equation (1)’ and the boundary conditions at the side wall and the 

bottom of the tank, Eq. (C-2) and Eq. (C-3), is assumed to be in the form as Eq. (C-4).  

 
( )
( ) ( )

cos

, , , , , sin

   

         

= 

= − 
 (C-1) 

At the side wall: 
( )

1

, ,
cos



   
 


=


= −


 (C-2) 
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At the bottom: 
( ), ,

cos
e

   
 


=−


=


 (C-3) 

 

 ( ) ( ) ( )
( ) ( ) ( )

1 1 1
2

1 1 1 1 1

sinh
, , 4 cos cos

1 cosh
i i

i i i i i

J
J e

   
       

   
= −

−
  (C-4) 

  Moment of inertia about an axis which passes through the center of gravity and is parallel to the liquid 

surface is given by Komatsu (2015)as: 

 
2

2 2
f f

f V S
J dV dS

n n
 

 

  = =  
  

   (C-5) 

In the non-dimensional form, 

 

2

2 2

1 1 1 1
f V S

J dV dS
n nd d

d d

 


  

 

  = = 
     

   
   

   
(C-5)’ 

 

Substituting Eq. (C-1) into the above equation: 

 
2

2 2

1 1 1 1
f V S

J dV dS
n n
 


  

  
= = 

  
   (C-5)’’ 

Here for convenience, we assume Eq. (C-4) is in the form of: 

 ( ) ( ), , , ,x         = − +   (C-4)’ 

and by substituting this equation into Eq. (C-5)’’ and rearranging it as: 

 

 

1 2 3

2 2
1

2 22

2

3

1

1

2

f

V

V

V

J J J J

J x dV

J dV
x y

J x dV
x




 


 

= + +

= +

        = + +     
        

  
= − + 

  







 (C-6) 

  In the above, 1J  is subdivided into two cases depending on the contact angle 
0 90   and 

090  , see 

Fig. A2. 
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0 90   
( )( )

( )( )( )

( )

0 0

0 0

0 0

1 2 0 2 2 2
1 0 0

1 2 1 2 2 2
010 0 0

1 cos

1 cos

h e

e

h e

h e

J d d d

d d d

 

 



      


       


− +

−

− +

− +

= +

+ +

  

  

 (C-7(a)) 

090   
( )( )

( )( )( )

( )

0 0

0 0

0 0

1 2 1 2 2 2
1 0 0

1 2 0 2 2 2
020 0 1

1 cos

1 cos

h e

e

h e

h e

J d d d

d d d

 

 



      


       


− +

−

− +

− +

= +

+ +

  

  

 (C-7(b)) 

where 

( )
( )

( )
3

0 2
0 03

00

2 1 sin 1 1 cos
cos3cos


   



−
= − −  (C-8) 

( )
( )

( ) ( ) ( ) 
3

0 2 2
01 0 0 03

0 00

2 1 sin 1 11 cos 0 1 1 cos
cos cos3cos


      

 

−
= − − − = − −  (C-9) 

( )
( )

( ) ( )
( ) ( )2 23

0 2 0 0
02 0 03

0 00

2 1 sin 1 cos 1 cos1 1 cos 1
cos cos3cos

   
    

 

− − − −
= − − − =  (C-10) 

    As the results, we obtain: 

 

  ( ) ( )  ( ) ( )

  ( ) ( )  ( ) ( )

( ) ( )

( ) ( ) ( ) 

1 2 3

13 2 2 2 3
1 1 1 1 1 0 0 01 00

13 2 2 2 3
1 2 2 2 2 0 0 02 00

2 13 2
1 1

1 1 1 1 1 0 0 1

1 1 23 3 1 0 90
4 3 3
1 1 23 3 0 1 90
4 3 3

18 tanh
1

sinh cosh
16

f

i
i i i

i k i k

J J J J

J A A A e A e d

J A A A e A e d

J e

J J h e h

      

      


 

       

= + +

 = + − + + − +  
 

 = + − + + − +  
 

=
−

 − + 

+







( ) 
( )

( )( ) ( ) ( ) ( ) ( )

( ) 
( ) ( ) 

( ) ( ) ( )
( )

2
1 0

0 00

2 2
1 1 1 1 1 1 1 1 1

2
1 1 1 1 0 0 02

3 0 0 20
1 1 1 1 0

1

1 1 cosh cosh

cosh
8 1

1 cosh

i k i i k i k i k

i i

i i i i

e d

J J e e

J h e
J e h e d

J h

 
   



      

      
   

  

 
 − + +     

− −

 − +   = − − − + +  
−  






 
(C-11) 

Here, putting contact angle 
0 90 =  and 0 2e h= , we obtain: 
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( )

1 2 3

3
0

1 0

0
2 13 2

1 1

3 0

1
4 12

116 tanh
21

f

i
i i i

J J J J

hJ h

hJ

J h


 

= + +

= +

 =  −  

= −


 (C-12) 

 
( )

( )

3
0 0

0 1 03 2
1 1

3
0 1 0 0

0 0 13 2
1 1

1 116 tanh
4 12 21

1 2 /1 8 tanh
4 12 21

f i
i i i

i
i

i i i

h hJ h h

h h hh h


 




 

 = + + − −  

−  = + −  −  





 (C-13) 

Here, we used the following relation, see Komatsu [27]: 

 ( )2 2
1 1

1 1
81i i i 

=
−

  (C-14) 

Expressing Eq. (C-13) in a dimensional form, we obtain the moment of inertia that is consistent with the 

results of Bauer [28] and Komatsu [27]: 

 ( )
2 2

2 1 1
2 2
1 1

1 2 /8 tanh
4 12 21

i i
f f f

i i i

R h hR hJ m m R
R

 

 

  −  = + −   −   
  (C-15) 
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(a) Spacecraft with two appendages. 

 

 

(b) Cylindrical tank. 

 

Fig. 1. Flexible spacecraft model with liquid tank; (a) Spacecraft with two appendages.;  

(b) Cylindrical tank. 
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(a) Rigid cylindrical tank. (b) Elastic beam No. 1. 

Fig. 2. Force and moment diagram for rigid cylindrical tank and elastic beam 1.; (a) Rigid 

cylindrical tank.; (b) Elastic beam No. 1. 
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(b) 210tJ −= . (a) Natural frequency with tJ . (c) 210tJ = . 

Fig. 3. Variations of natural frequency   and vibration mode with inertia moment tJ , 10, 100 = .; (a) Natural 

frequency. ; (b) 210tJ −= .; (c) 210tJ = . 
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(a) 0.1tJ = . 

 

  

(b) 1tJ = . 

 

  

(c) 10tJ = . 

 

Fig. 4. Variations of vibration mode of elastic beams with inertia moment tJ , 10 = .; (a) 

0.1tJ = .; (b) 1tJ = .; (c) 10tJ = . 
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(b) 41, 10tJ −= = . (a) Natural frequency with  . (c) 4100, 10tJ −= = . 

Fig. 5. Variations of natural frequency   and vibration mode with aspect ratio  , 2 410 , 10tJ − −= .; (a) Natural 

frequency.; (b) 41, 10tJ −= = .; (c) 4100, 10tJ −= = . 
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Fig. 6. Variations of natural frequency   with contact angle 0 , N=0, 1,

0 1, 1, 1, 1, 1h    = = = = = . 
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(a) 1st mode ( 0m = ). (b) 2nd mode ( 1m= ). (c) 3rd mode ( 2m = ). 

 

Fig. 7. Variations of free liquid free surface mode with contact angle 0 , 0 1, 1, 1, 1, 1, 1h N   = = = = = = .; 

(a) 1st mode ( 0m = ).; (b) 2nd mode ( 1m= ).; (c) 3rd mode ( 2m = ). 
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(a) Up to the 4th mode. 
(b) Interaction between the 3rd and 4th 

frequency curves. 

 

Fig. 8. Variations of natural frequency   with inertia moment tJ ,
4

0 070 , 10, 1, 10, 1, 10 , 1h N     −= = = = = = = .; (a) Up to the 4th mode.; (b) Interaction between 

the 3rd and 4th frequency curves. 
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 (a) 0.03tJ = .  

   

 

 

 

 (b) 1.00tJ = .  

 

Fig. 9. Variations of vibration mode with inertia moment tJ , 
4

0 070 , 10, 1, 10, 1, 10 , 1h N     −= = = = = = = .; (a) 0.03tJ = .; (b) 1.00tJ = . 
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(a) 0 90   (b) 090   

Fig. A1. Integration region depending contact angle 0 .;(a) 0 90  ;(b) 090  . 

 


