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Effect of Member Length Uncertainty and Backlash on Deformation Accuracy
for a High-Precision Space Truss Structure*

Yoya GON† and Nozomu KOGISO

Department of Aerospace Engineering, Osaka Prefecture University, Sakai, Osaka 599–8531, Japan

This study proposes an uncertainty estimation method for the nodal displacement of a truss structure. The truss struc-
ture has been used for space structures that require high accuracy, so it is necessary to consider the effects of minute phys-
ical uncertainties of the structures. This study considers two types of physical uncertainties: member length uncertainty and
position uncertainty due to backlash at the connecting nodes. A structure model is created using a space deployable struc-
ture as an example of a truss structure that requires high shape accuracy. Shape accuracy is evaluated using the distortion
angle, which is defined as the error with respect to the ideal truss deployment direction. In the first part of the study, the
distortion angle due to member length uncertainty is estimated by analyzing the equilibrium of the truss structure model
with an uncertain member length. The confidence interval of the distortion angle is then clarified to be linearly related to
the magnitude of the uncertainty by applying Monte Carlo simulation, where the uncertainty follows an independent nor-
mal distribution. An efficient estimation method for the distortion angle is then established followed by the theoretical
derivation of the probabilistic distribution of the distortion angle as a Rayleigh distribution. In the second part of the study,
the effect of backlash uncertainty at the connecting nodes is investigated. The backlash is modeled using a virtual cable
element having a natural length equal to the backlash size. Finally, the allowable uncertainty range to satisfy a required
accuracy is estimated by analyzing the proposed distortion angle while considering both types of uncertainty.
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Nomenclature

A: numerator of tan �x
B: denominator of tan �x
de: nodal displacement vector
fe: initial nodal force vector
Fe: nodal force vector

fð�PÞ: probability distribution function of distortion angle
�P

Ke: element stiffness matrix
l: nominal length of triangular batten
N: sample size of Monte Carlo simulation
nb: normal vector of the bottom surface
nt: normal vector of the top surface
ntx: x-coordinates of nt

nty: y-coordinates of nt

ntz: z-coordinates of nt

X: random variable follows a chi-square distribution
with two degrees of freedom

xi : x-coordinates of the top surface node
yi: y-coordinates of the top surface node
zi: z-coordinates of the top surface node
¡: lower cumulative probability of the Rayleigh distri-

bution
�P : distortion angle

��P : 100�-percentile of the Rayleigh distribution
�x: angle between the top surface plane and x axes
�y: angle between the top surface plane and y axes
·: standard deviation of member length uncertainty
�t: standard deviation of tan �x and tan �y
�z: standard deviation of zi

Subscripts
i: ith node of the top surface of truss

1. Introduction

Truss structures consist of linear members that sustain
only an axial force and are structural systems that can be used
to construct economical frames with high stiffness and
strength, and are used for various structures around us. Re-
cently, truss structures are being used for space structures
that require high accuracy, such as the deployable back-truss
structure of the large paraboloid antenna on ASTRO-G,1) and
the deployable optical bench2) of a space X-ray telescope on
HITOMI (ASTRO-H).3) In future space astronomy missions,
accuracy requirements for these truss structures will be strict
in order to achieve better results.

As a future mission, a small satellite for X-ray astronomy
observation named “FOcusing Relative universe and Cosmic
Evolution (FORCE)” is planned. This satellite will require
more precise shape accuracy than that of HITOMI. The pri-
mary mission of FORCE is to explore each stratum of an un-
explored black hole to elucidate the early history of the uni-
verse. For this purpose, the mission will observe an active
galactic nucleus via hard X-ray imaging spectroscopy with
more than 10 keV power and more than 10 times the spatial
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resolution of conventional observation.4,5) The pointing ac-
curacy requirement for its X-ray telescope, which will have
a length of more than 10 m and include an optical bench built
using a truss structure, will be extremely high: 5 arcsec for
the attitude determination requirement. In order to achieve
the required high accuracy, it is necessary to consider the ef-
fects of uncertainty that do not need to be considered on the
ground, such as the manufacturing error of the member
length and the backlash at the connecting node of the truss
structure.

Studies on the uncertainty of member length and backlash
have mainly been conducted in the field of dynamic link
mechanisms. Several attempts have been made to analyze
and synthesize the mechanical uncertainty of function gener-
ating linkages. Hartenberg and Denavit6) estimated the max-
imum output error based on the maximum allowable uncer-
tainty of the member lengths. Kolhatker and Yajnik7)

evaluated the maximum output error due to the backlash
based on the worst-case analysis of individual backlash.
Garrett et al.8) and Dhande et al.9) offered a statistical
approach to mechanical uncertainty analysis suitable for
both analyzing and synthesizing mechanical uncertainty.
Dubowsky and Gardner10) observed that backlash in the
joints results in amplification of the internal dynamic sys-
tem’s forces. Du et al.11) developed methods to quantify ro-
bustness considering the member length uncertainty.

Regarding truss structures, research on these uncertainties
has recently been conducted in the field of space structures
that require high shape accuracy. Bauer and Latalski12) for-
mulated an optimal design problem for truss structures con-
sidering the member length tolerance. Tzou and Rong13) de-
veloped a mathematical model for a three-dimensional
spherical joint based on contact force analysis, which in-
cludes the effects of normal contact and friction contact.
Akita et al.14) proposed a high-precision finite element model
and investigated the shape repeatability of pin-jointed bars
with frictional contact conditions. Some other studies have
been conducted to apply experimental hysteresis to mathe-
matical models in order to establish a nonlinear finite element
model of a truss with backlashes.15–19) However, few studies
have investigated how these uncertainties propagate to the
shape accuracy of a truss structure.

In addition, as a study to reduce the structural error due to
these uncertainties, kinematic coupling is utilized at the con-
nection point between the optical bench and the satellite
body to release the distortion generated due to thermal defor-
mation,20) or attitude control system of the entire optical
bench using actuators is utilized.21,22) However, the amount
of the released error is limited. Therefore, it is necessary to
clarify the effect of each uncertainty on the shape accuracy
of the entire truss structure.

In this study, the effect of these uncertainties on the nodal
displacement of a 5-stage truss structure is investigated using
numerical simulation. A structure model is created while
referencing the deployable optical bench as an example of
a truss structure that requires high shape accuracy. The shape
accuracy is evaluated by applying the distortion angle, which

is defined as the error with respect to the ideal truss deploy-
ment direction.

The variation in the distortion angle due to the member
length uncertainty is first investigated using a truss structure
model, which is created while giving consideration to a space
deployable structure, with a member length uncertainty that
is assumed to follow an independent normal distribution or
an independent uniform distribution. The distortion angle
is evaluated by applying Monte Carlo simulation, where
the variation in it due to the member length uncertainty is
evaluated using the non-linear finite element method.

At first, the effect of the stage size on the distortion angle is
investigated, and a 5-stage truss is clarified to be sufficient for
investigation. Then, the confidence interval of the distortion
angle is obtained and found to be linearly related to the mem-
ber length uncertainty. In addition, the probabilistic distribu-
tion of the distortion angle is theoretically derived to follow
the Rayleigh distribution.

Second, the effect of the uncertainty due to the backlash at
the connecting nodes is investigated. The backlash is mod-
eled using a virtual cable element having a natural length
equal to the backlash size. Then, the allowable initial imper-
fection size to satisfy the required accuracy is estimated by
analyzing the proposed distortion angle considering both
the member length uncertainty and the backlash at the con-
necting nodes.

This paper is organized as follows. In Section 2, details of
the truss structure model are described using the structural
analysis conditions. Section 3 presents the investigation re-
sults focusing on the member length uncertainty. Section 4
discusses the results obtained when modeling the backlash
at the connecting nodes and investigating the effects of back-
lash on the distortion angle. Finally, Section 5 presents our
conclusions.

2. Analysis Truss Structure Model

2.1. Analysis model
The 5-stage truss structure model is shown in Fig. 1; it

consists of 63 members and 18 nodes. Each stage is com-
posed of three main components: triangular battens, longer-
ons, and diagonal rods; the latter are tension members with
variable lengths that cannot support a compression load, such
as a cable. The material properties of the members are listed
in Table 1. The longerons and battens are made of aluminum
cylinders 10-mm in diameter and 1-mm thick. Their nominal
lengths are defined as 380mm, obtained by referencing the
experimental model of previous research.21) The diagonal
rods are composed of aluminum cables with a diameter of
2mm, and are assumed to support only the tension force.
Thus, the stiffness is set as zero for the compression load.
2.2. Shape accuracy analysis

Even if there is no external force several uncertainties
exist, such as member length and the backlash at the nodes
generating nodal displacement, which can reduce the shape
accuracy of the truss structure. A distorted state can be ob-
tained as a result of the equilibrium conditions. Therefore,
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the node coordinates of the truss structure model, as shown in
Fig. 1, considering the member length uncertainty are calcu-
lated using the non-linear finite element method. The mem-
ber length imperfection imposes an internal force on the truss
member. The equilibrium equation is described as follows:23)

Fe þ fe ¼ Kede ð1Þ
where Fe is the nodal force vector, Ke is the element stiffness
matrix, de is the nodal displacement vector, and fe is the ini-
tial nodal force vector. The initial nodal force is evaluated as
the resultant force of all of the initial axial forces resulting
from the length imperfection. This equation is solved using
Newton’s method.24) Then, the shape accuracy is evaluated
using the distortion angle, �P , defined as the angle formed
by nb, the normal vector of the bottom surface of the truss,
and nt, the normal vector of the top surface, as shown in

Fig. 2. This distortion angle is evaluated applying the fol-
lowing equation:

�P ¼ cos�1 nt � nb

jntjjnbj
ð2Þ

In this study, the target shape accuracy is assumed as
�P � 9:69� 10�5 rad (20 arcsec).

3. Deformation Analysis Based on Member Length
Uncertainty

3.1. Estimation of allowable interval of uncertainty
The effect of member length uncertainty on the distortion

angle is estimated by applying Monte Carlo simulation under
the assumption that the member length uncertainty follows a
normal distribution with a zero mean and a standard deviation
·. The following five patterns of member length uncertainty
are considered for the longeron and batten: � ¼ 0:0033mm,
0.0067mm, 0.017mm, 0.033mm, and 0.067mm. The values
are set such that the 3· values correspond to member length
tolerances of 0.01mm, 0.02mm, 0.05mm, 0.1mm, and
0.2mm, respectively.25) The probability distribution of the
distortion angle, �P , is estimated by applying Monte Carlo
simulation with 50,000 samples. Then, the 95-percentile
value of �P is evaluated as the confidence interval.26)

The relationship of the estimated 95-percentile values of
�P in terms of the member length standard deviation is plot-
ted in Fig. 3. As indicated by the straight line passing
through all points, the 95-percentile value represents the liner
function in terms of the standard deviation of the member
length uncertainty. It is found that the allowable standard de-
viation for the 95-percentile value is � ¼ 6:30� 10�3mm
for the required precision of 9:69� 10�5 rad (20 arcsec).
To confirm the linearity, the 95-percentile value is evaluated
by applying Monte Carlo simulation with 50,000 samples for
setting the standard deviation of the member length uncer-
tainty as this value. The obtained histogram of �P is shown
in Fig. 4, where the 95-percentile value of the distortion an-
gle is equal to the estimated value shown above.
3.2. Estimation of probabilistic distribution of distor-

tion angle
In the above section, the numerical evaluation of the 95-

percentile value of the distortion angle is discussed. In this

Fig. 1. The analysis truss structure model.

Table 1. Member specifications of the truss structure model for deforma-
tion analysis, where all members are made of Al alloy.

Triangular Diagonal rod
batten

Longeron
Tension Compression

Natural length [mm] 380 380 537.4 537.4
Cross-sectional area [mm2] 14.9 14.9 3.1 3.1
Young’s modulus [GPa] 70 70 70 0

Fig. 2. Definition of the distortion angle, �P .

Fig. 3. Relationship of the 95-percentile values of the distortion angle in
terms of the standard deviation of member length.
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section, the probabilistic distribution of �P is theoretically
derived. Initially, the normal vector of the top surface of
the truss, nt, is defined as follows:

nt ¼ ðntx; nty; ntzÞ ð3Þ
In comparison, the normal vector of the bottom surface is
nb ¼ ð0; 0; 1Þ. Substituting these components into Eq. (2),
the distortion angle is obtained as follows:

�P ¼ cos�1 nt � nb

jntjjnbj
¼ cos�1 ntzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2tx þ n2ty þ n2tz

q
0
B@

1
CA ð4Þ

Then, the plane of the top surface is described as follows:

ntxxþ ntyyþ ntzz ¼ 0 ð5Þ
The angles between the top surface plane and x and y axes
denoted as �x and �y, respectively, are described as follows:

tan �x ¼ �ntx

ntz
; tan �y ¼ �nty

ntz
ð6Þ

Substituting this equation into Eq. (4), �P is described using
�x and �y as follows:

�P ¼ cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 �x þ tan2 �y þ 1

p
 !

ð7Þ

Then, the probabilistic distributions of tan �x and tan �y are
derived. The nodes of the top surface form an equilateral tri-
angle with length l and are tentatively named 1, 2 and, 3, as
shown in Fig. 5. The coordinates of each node are described
as ðxi; yi; ziÞ; ði ¼ 1; 2; 3Þ. Both points 1 and 2 are ideally on
the x-axis.

The values of tan �x and tan �y can be represented as fol-
lows:

tan �x ¼
ðy3 � y1Þðz2 � z1Þ � ðy2 � y1Þðz3 � z1Þ
ðx2 � x1Þðy3 � y1Þ � ðx3 � x1Þðy2 � y1Þ

ð8Þ

tan �y ¼
ðz3 � z1Þðx2 � x1Þ � ðz2 � z1Þðx3 � x1Þ
ðx2 � x1Þðy3 � y1Þ � ðx3 � x1Þðy2 � y1Þ

ð9Þ

In this model, the following relationships are satisfied:

y1 ’ y2; x2 � x1 ’ l; x3 � x1 ’
l

2
; y3 � y1 ’

ffiffiffi
3

p

2
l

ð10Þ

The reason to hold Eq. (10) is shown below. For example,
the sensitivities of tan �x with respect to xi; yi, and
zi ði ¼ 2; 3Þ can be represented as follows:

@

@x2
tan �x ¼ �ðy3 � y1Þ

B

A2
ð11Þ

@

@y2
tan �x ¼ ðx3 � x1Þ

B

A2
� ðz3 � z1Þ

1

A
ð12Þ

@

@z2
tan �x ¼ ðy3 � y1Þ

1

A
ð13Þ

@

@x3
tan �x ¼ ðy2 � y1Þ

B

A2
ð14Þ

@

@y3
tan �x ¼ �ðx2 � x1Þ

B

A2
þ ðz2 � z1Þ

1

A
ð15Þ

@

@z3
tan �x ¼ �ðy2 � y1Þ

1

A
ð16Þ

where A and B denote the numerator and denominator in
Eq. (8), respectively. When �x is small, A � B holds. In
addition, if there is no uncertainty on the member length,
the following equations, y1 ¼ y2; y3 � y1 ¼

ffiffiffi
3

p
=2

� �
l, and

z1 ¼ z2 ¼ z3 hold. Even if uncertainty of the member length
is considered, the following equations, y3 � y1 � y2 � y1;

y3 � y1 � z2 � z1, and y3 � y1 � z3 � z1 hold, because var-
iations of x, y and z-coordinate values are much smaller than
the nominal member length l. Therefore, the sensitivity of
tan �x with respect to z2 is larger than the other terms. Simi-
larly, the sensitivities of tan �y with respect to z2 and z3 are
larger than the other terms.

Substituting Eq. (10) into Eqs. (8) and (9), the following
equations are obtained:

tan �x ¼
1

l
ðz2 � z1Þ ð17Þ

tan �y ¼
1ffiffiffi
3

p
l
ðz1 þ z2 � 2z3Þ ð18Þ

The variation in the z-coordinate value of each node on the
top surface is nearly equal to the summation of the member
length uncertainties of the longerons under the nodes. When
the member length uncertainty follows an independent nor-
mal distribution, the variation in the z-coordinate of each
node on the top surface can be modeled to follow a normal
distribution as Nð�zi ; �

2
zi
Þ; ði ¼ 1; 2; 3Þ. Because tan �x and

tan �y are described as linear functions of the z-coordinates,
as described in Eqs. (17) and (18), they also follow a normal
distribution as follows:

Fig. 4. Histogram of the distortion angle obtained by applying Monte
Carlo simulation with 50,000 samples (� ¼ 6:30� 10�3 mm).

Fig. 5. Node ID of the top surface of the three nodes as vertices of an equi-
lateral triangle.
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tan �x ¼
1

l
ðz2 � z1Þ � N 0;

2�2
z

l2

 !
ð19Þ

tan �y ¼
1ffiffiffi
3

p
l
ðz1 þ z2 � 2z3Þ � N 0;

2�2
z

l2

 !
ð20Þ

It should be noted that tan �x and tan �y follow an identical
normal distribution. The standard deviation of tan �x and
tan �y is denoted as �t.

For example, consider the case of � ¼ 6:30� 10�3mm as
the allowable standard deviation, as described in Section 3.1.
In this case, �t yields 3:96� 10�5. For confirmation, distri-
butions of tan �x and tan �y are evaluated by applying Monte
Carlo simulation using 50,000 samples. The histograms ob-
tained for tan �x and tan �y are shown in Fig. 6. The red curve
indicates the probabilistic density of Nð0; �2

t Þ. This suggests
that tan �x and tan �y follow the same normal distribution.

Here, the following random variable is introduced:

X ¼ ðtan �xÞ2 þ ðtan �yÞ2
�2
t

ð21Þ

where X follows a chi-square distribution with two degrees of
freedom.27) From Eqs. (7) and (21), the following equation is
obtained:

�P ¼ cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 �x þ tan2 �y þ 1

p
 !

¼ cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
t Xþ 1

p
 !

ð22Þ

Then, X and dX=d�P are evaluated as follows:

X ¼ 1

�2
t

1

cos2 �P
� 1

 !
¼ tan2 �P

�2
t

ð23Þ

dX
d�P

¼ 1

�2
t

2 tan �P

cos2 �P

 !
¼ 2 tan �Pð1þ tan2 �PÞ

�2
t

ð24Þ

Using these equations, the probabilistic density function of
�P can be described as follows:28)

fð�PÞ ¼ fXðxÞ
dx
d�P

�����
�����

¼ tan �Pð1þ tan2 �PÞ
�2
t

exp �tan2 �P

2�2
t

" #

* 0 � �P � �

2

 !
ð25Þ

When �P is small, the following equations for tan �P � �P
and 1þ �2P � 1 hold. Then, the probabilistic density function
can be approximated as follows:

fð�PÞ ¼
�P

�2
t

exp � �2P
2�2

t

" #
ð26Þ

Thus, �P follows a Rayleigh distribution with parameter �t.
The histogram of �P , as shown in Fig. 4, and Rayleigh dis-

tribution with parameter �t ¼ 3:96� 10�5 are compared in

Fig. 7. It is found that the distribution of the distortion angle
agrees with the probability density function of the Rayleigh
distribution illustrated as a red solid curve. In addition, the
lower cumulative probability, 100�%, of the Rayleigh distri-
bution at �P ¼ ��P and the 100�-percentile value, ��P , of the
Rayleigh distribution are obtained as follows:29)

� ¼
Z ��P

0

fð�PÞd�P ¼ 1� exp ���P
2

2�2
t

" #
ð27Þ

��P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�2

t lnð1� �Þ
q

ð28Þ
When �t ¼ 3:96� 10�5 and � ¼ 0:95 are substituted into
Eqs. (27) and (28), ��P ¼ 9:69� 10�5 rad is obtained. This
value is the same as that obtained through Monte Carlo sim-
ulation, as shown in Fig. 4. Specifically, the uncertainty of
the distortion angle follows a Rayleigh distribution when
the member length uncertainty follows a normal distribution.
3.3. Effect of probabilistic distribution

The above results, including those of the distortion angle,
follow the Rayleigh distribution obtained under the assump-
tion that the member length follows a normal distribution. In
this section, the effect of other probabilistic distributions is
investigated by considering a uniform distribution with
[¹0.2, 0.2]mm. The histograms obtained by applying Monte
Carlo simulation performed with 5,000 samples are com-
pared in Fig. 8, where 1-stage models with normal and uni-
form distributions and a 30-stage model are compared. On
each graph, the Rayleigh distributions estimated for each
case are overlapped as a red curve. As a result of the good-
ness-of-fit test27) for each model, it was concluded that the
1-stage model with uniform distribution does not follow
the Rayleigh distribution, which is in contrast to the 30-stage
model. It is assumed that the distribution type effect becomes

(a) Histogram of tan qx

(b) Histogram of tan qy

Fig. 6. Comparison of the estimated normal distribution (� ¼ 0; �t¼
3:96� 10�5) and histograms of tan �x and tan �y (� ¼ 6:30� 10�3 mm).
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negligible as the number of stages increases as a result of the
central limit theorem.
3.4. Effect of the number of stages

As the next step, the effect of the number of stages in a
truss structure model has on the distortion angle is investi-
gated. The 95-percentile values of the distortion angle for
several numbers of stages are evaluated by applying Monte
Carlo simulation with 5,000 samples for 3� ¼ 0:2mm.

The 95-percentile values of the distortion angle, �P , for

each number of stages are shown in Fig. 9, and then the val-
ues are normalized to those of the 1-stage model. The error
bars of the red line indicate 95% confidence intervals of
the 95-percentile value of �P . It is found that the 95% confi-
dence level for the different number of stages in the models
does not change very much for a constant sample size. There-
fore, the sample size is sufficient to evaluate the 95-percentile
value of �P . The value peaks for the 4-stage model and then
decreases as the number of stages increases. However, the
value is practically converged to a constant value. For exam-
ple, the probability density functions of Rayleigh distribution
corresponding to the histograms of �P in the 4, 10, 20, and
30-stage models in the case of 3� ¼ 0:2mm are compared
in Fig. 10. The variance of the 30-stage model is smaller than
that of the 4-stage model, and the fð�PÞ converges to a con-
stant as the number of the stages increases. It is assumed that
the member length uncertainty will cancel out the effect on
�P from each other and will converge to some constant value
when the number of stages increases. It is found that the 5-
stage truss is clarified to be sufficient for investigation, even
if the results for a structure with more stages is desired.

4. Deformation Analysis considering Backlash Uncer-
tainty

4.1. Backlash model
A truss structure has a pin joint, and there is backlash be-

tween the hole and the shaft. This causes uncertainty in the
node position. For this study, the magnitude of the backlash
uncertainty is assumed to be about 0.01mm in each node.30)

Fig. 7. Comparison of the estimated Rayleigh distribution (�t ¼
3:96� 10�5) and histogram of the �P uncertainty (� ¼ 6:30� 10�3 mm).

(a) 1-stage model under a normal distribution

(b) 1-stage model under a uniform distribution

(c) 30-stage model under a uniform distribution

Fig. 8. Comparison of the histograms obtained by applying Monte Carlo
simulation with 5,000 samples and derived Rayleigh distribution.

Fig. 9. Relationship of the normalized 95-percentile value of �P in terms
of number of stages and 95% confidence interval.

Fig. 10. The probability density functions of Rayleigh distribution corre-
sponding to the histograms of �P in the 4, 10, 20, and 30-stage models in
the case of 3� ¼ 0:2mm.
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In comparison to the allowable member length uncertainty of
� ¼ 6:30� 10�3mm, the backlash uncertainty cannot be
ignored.

It is assumed that a batten is connected to a longeron at the
node by fitting a shaft of the batten into a hole of the longeron
as shown in Fig. 11(a). The backlash is modeled by introduc-
ing a virtual cable element connecting the ends of the batten
and longeron, as shown in Fig. 11(b), where both of the end
nodes are located at the centers of the shaft and hole, respec-
tively. The length of the cable element is equal to the differ-
ence in the diameters of the hole and shaft. To model the
backlash, the stiffness of the cable element is set as infinite
on the tensile side and zero on the compression side. The
backlash model in this study considers only backlash in the
direction perpendicular to the shaft.
4.2. Shape accuracy considering the backlash
4.2.1. Analysis of two-dimensional model with backlash

The structural analysis of a simple two-dimensional truss
model with backlash, as shown in Fig. 12, is performed to
confirm the validity of the backlash model with virtual cable
elements. The truss is composed of four truss members on
each side 380-mm long and two diagonal rods. The four cor-
ners are assumed to have backlash as large as 30mm, which
is extremely large to illustrate the validity when backlash is
modeled using virtual cable elements.

To eliminate the backlash by applying some tension force
to the diagonal rod, the diagonal rods are shortened from
537.4mm to 445.1mm. Then, the equilibrium state is eval-
uated applying structural analysis with the two lower batten
nodes fixed. The tension stiffness of the virtual cable element
is set to 105 times that of the truss members, and the com-
pression is fixed as 10�5 times that of the tension stiffness.

The equilibrium state is shown in Fig. 13(a), and the en-
larged view at the upper left node is shown in Fig. 13(b).
It is found that the total height of the truss is shortened by
changing the length of the diagonal rod. Then, the shaft at
the end of the batten contacts the edge of the hole that is lo-
cated in the axial direction of the longeron. That is, modeling
backlash using virtual cable elements is reasonable.
4.2.2. Analysis of three-dimensional model with back-

lash
The structural analysis of a three-dimensional 1-stage

model with backlash, as shown in Fig. 14, is performed to
confirm the validity of modeling the backlash with virtual ca-
ble elements. The six corners are assumed to have backlash
as large as 30mm, similar to the previous example. To elim-
inate the backlash by applying some tension force to the di-
agonal rod, the diagonal rods are shortened from 537.4mm
to 428.1mm. Then, the equilibrium state is evaluated by per-
forming a structural analysis in which the three lower batten
nodes are fixed and the other analysis conditions are the same
as those described in the previous section. In the three-
dimensional model shown in Fig. 15, the longeron is not
tilted when the backlash is considered. The equilibrium state
is shown in Fig. 15(a), and an enlarged view of the upper left
node is shown in Fig. 15(b).

(a) Backlash caused by a hole of the longeron and the shaft of the 
batten at the connecting node

(b) Virtual cable clement describing the backlash uncertainty for the 
structural analysis

Fig. 11. Backlash uncertainty at a connecting node.

Fig. 12. Two-dimensional truss structure model.

(a) Equilibrium state

(b) Enlarged view around the upper left node

Fig. 13. Two-dimensional truss structure model with backlash (i.e., diag-
onal rod length shortened to 445.1mm).
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As in the case of the two-dimensional model, modeling
backlash using a virtual cable element is also found to be rea-
sonable for the three-dimensional model.
4.2.3. Analysis of 5-stage truss model considering both

member length uncertainty and backlash
The distortion angle, �P , of the 5-stage truss structure

model with backlash at the connecting node between the lon-
geron and batten and the member length imperfection are
evaluated. The backlash is modeled by a virtual cable ele-
ment, and it is assumed that the size of the backlash follows
a uniform distribution with [0.004, 0.017]mm as an actual
size.30) Six patterns of the member length uncertainty are
considered for the longeron and batten: � ¼ 0:0067mm,
0.013mm, 0.017mm, 0.033mm, 0.05mm, and 0.067mm.
The values are set such that the 3· values correspond to a
member length tolerance of 0.02mm, 0.04mm, 0.05mm,
0.1mm, 0.15mm, and 0.2mm, respectively. To facilitate
the diagonal rods under tensile loads, it is assumed that the
length uncertainty of the diagonal rods follows a uniform
distribution between 0mm and six values as ¹0.02mm,
¹0.04mm, ¹0.05mm, ¹0.1mm, ¹0.15mm, and ¹0.2mm.
The negative values are selected to stabilize the node position
by applying tensile loads to the diagonal rods. The distortion
angle, �P , is then estimated by a Monte Carlo simulation with

1,000 samples, and the 95-percentile value of the distortion
angle is evaluated.

The relationships of the 95-percentile values of the distor-
tion angle with and without backlash based on the standard
deviation of member length are plotted as red and black lines
in Fig. 16, respectively. The black line is the same as shown
in Fig. 3. The error bars of the red line indicate 95% confi-
dence intervals of the 95-percentile value of �P . They indi-
cate the estimation accuracy related to the sample size, and
can be obtained in the same way as described in Section
3.4. It is found that the sample size is sufficient to evaluate
the 95-percentile value of �P . The 95% confidence intervals
of �t while considering the sample size can be obtained using
the chi-square distribution.

It is found that the 95-percentile values of �P with the back-
lash become smaller than those without the backlash when
member length uncertainty is large. That is, the backlash is
believed to partially alleviate the effect of member length un-
certainty because the position of the shaft with respect to the
hole can move freely as the result of backlash. Even if the
member length changes, the node position can be moved
by the width of the backlash without generating internal force
on members.

The allowable standard deviation for the 95-percentile
value with backlash is � ¼ 7:18� 10�3mm for the required
precision of 9:69� 10�5 rad (20 arcs). This value is allevi-
ated from 6:30� 10�3 mm, the estimated allowable standard
deviation without backlash.

On the other hand, the difference of the 95-percentile val-
ues becomes smaller as the member length uncertainty is re-
duced. This indicates that backlash uncertainty has a domi-
nant effect on the 95-percentile value of �P when the member
length uncertainty is smaller than the backlash uncertainty.

5. Conclusion

This study investigates the effect of uncertainties in the
member length and backlash on the nodal displacement at
the connecting rods of a truss structure by developing numer-
ical evaluation methods. A truss structure model is created
referencing the space deployable structure, and the equilib-
rium state under the uncertainties is evaluated using the non-

Fig. 14. Three-dimensional 1-stage truss structure model.

(a) Equilibrium state

(b) Enlarged view of the region around the upper left node

Fig. 15. Three-dimensional 1-stage truss structure model with backlash
(i.e., diagonal rod length shortened to 428.1mm).

Fig. 16. Relationships of the 95-percentile values of the distortion angle
with and without the backlash based on the standard deviation of member
length.
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linear finite element method. From the numerical calcula-
tions, the following conclusions are drawn:
1. First, uncertainty in the distortion angle is determined by

clarifying that the shape accuracy is linearly related to the
member length uncertainty, which is assumed to follow in-
dependent normal distribution. We then propose a method
to estimate the tolerance value of the member length
uncertainty that satisfies the required distortion angle.

2. It is found that the distortion angle follows a Rayleigh dis-
tribution when member length uncertainty follows a nor-
mal distribution. In addition, even when member length
uncertainty follows a uniform distribution, the probabilistic
distribution of the distortion angle is shown to converge to
a Rayleigh distribution using the central limit theorem.

3. A new modeling method is proposed to model the back-
lash uncertainty at a connecting node by introducing a vir-
tual cable element. The efficiency of the proposed method
is demonstrated through numerical examples.

4. Even when both the member length uncertainty and back-
lash uncertainty are considered, the tolerance value of the
member length uncertainty under an appropriate value of
the backlash uncertainty can be evaluated. This is because
the non-linearity due to the backlash uncertainty in the
distortion angle uncertainty is weak.
A future problem is to consider the effect of the friction

uncertainty at the connecting nodes on the nodal displace-
ment of a truss structure.
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