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Abstract—We give a conjecture on the achievement of the
Griesmer bound for ternary linear codes. We prove that our
conjecture is valid for at most 7 dimensions.
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I. INTRODUCTION

Let Fq denote the finite field of order q. For a vector a =
(a1, a2, . . . , an) ∈ Fn

q , the weight of a, denoted by wt(a),
is the number of ai’s with ai ̸= 0. An [n, k, d]q code C is
a subspace of Fn

q with dimension k and minimum weight d,
which is the minimum non-zero weight of codewords in C. Let
Ai be the number of codewords of C with weight i. The list
of non-zero Ai’s is called the weight distribution of C. The
weight distribution “A0 = 1, Ad = wd, ...” is expressed as
01dwd · · · in this paper. A fundamental and classical problem
in Coding Theory is to determine the exact values of nq(k, d)
for all positive integer d for fixed q and k, where nq(k, d) is
the smallest length n such that an [n, k, d]q code exists [8]. The
Griesmer bound gives a lower bound on the function nq(k, d):

nq(k, d) ≥ gq(k, d) :=
k−1∑
i=0

⌈
d

qi

⌉
,

where ⌈z⌉ stands for the minimum integer ≥ z, see [8]. It
is known for k = 1, 2 that the Griesmer bound is achieved
for all d. So, we assume k ≥ 3. For fixed q and k, it is also
known that Griesmer codes with minimum weight d exist for
all sufficiently large d [8]. A natural question is the following.

Problem 1. For fixed q and k, find the integer Dq,k satisfying
that nq(k, d) = gq(k, d) for all d > Dq,k and that nq(k, d) >
gq(k, d) for d = Dq,k. Then, determine nq(k,Dq,k).

The above problem is partially solved as follows.

Theorem 1 ([11], [15]). For q ≥ k with k = 3, 4, 5 and for
q ≥ 2k − 3 with k ≥ 6, it holds that Dq,k = (k − 2)qk−1 −
(k − 1)qk−2 and that nq(k,Dq,k) = gq(k,Dq,k) + 1.

We tackle Problem 1 for q = 3 (ternary linear codes) in
this paper. We know D3,3 = 3 from Theorem 1. Hence, we
assume q = 3 and k ≥ 4 in what follows.

We define Tk as
• Tk = 3k−2−l(2(l − 1) · 3l+1 + 3k−l2−l−1 + 2)

for l2 + l + 2 ≤ k ≤ l2 + 2l + 1;
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• Tk = 3k−2−l((2l − 1) · 3l+1 + 3k−l2−2l−2 + 1)
for l2 + 2l + 2 ≤ k ≤ l2 + 3l + 2;

• Tk = 3k−2−l(2l · 3l+1 + 1) for k = l2 + 3l + 3,
where l is a positive integer, see Table 1. Then, we can prove
the following.

Theorem 2. A [g3(k, d), k, d]3 code exists for all d > Tk.

Our conjecture is the following.

Conjecture. D3,k = Tk and n3(k, Tk) = g3(k, Tk)+ 1 for all
k ≥ 4.

To prove our conjecture, it suffices to show the following
by Theorem 2:

(A) There exists no [g3(k, Tk), k, Tk]3 code;
(B) There exists a [g3(k, Tk) + 1, k, Tk]3 code.
It is known that D3,4 = 15, D3,5 = 99, D3,6 = 351 and that

n3(k, d) = g3(k, d) + 1 for (k, d) = (4, 15), (5, 99), (6, 351),
see [18]. Hence, our conjecture is valid for k ≤ 6. In this
paper, we show that our conjecture is valid for k = 7 also.

Theorem 3. D3,7 = T7 and n3(7, T7) = g3(7, T7) + 1.

We prove Theorem 2 in Section II. We give the geometric
methods through projective geometry and preliminary results
in Section III, which are needed to prove Theorem 3 in Section
IV.

TABLE I

k g3(k, Tk) Tk

4 23 15
5 149 99
6 527 351
7 2309 1539
8 7169 4779
9 23693 15795

10 90761 60507
11 278843 185895
12 895577 597051
13 3218171 2145447
14 9713561 6475707
15 29672123 19781415
16 93799337 62532891
17 324444731 216296487
18 978117161 652078107
19 2977398203 1984932135
20 9319615097 6213076731
21 31445629691 20963753127
22 94466029235 62977352823



II. PROOF OF THEOREM 2

We first recall the well-known conditions such that q-ary
Griesmer codes with dimension k and minimum weight d
exist. Let σ = ⌈d/qk−1⌉. Since Griesmer codes (called σ-
fold simplex codes) with d = σqk−1 exist, we assume d ̸≡ 0
(mod qk−1). Then, d is uniquely expressed as

d = σqk−1 −
r∑

j=1

quj−1, (1)

where r and uj’s are integers satisfying

k − 1 ≥ u1 ≥ u2 ≥ · · · ≥ ur ≥ 1

and uj > uj+q−1 for 1 ≤ j ≤ r − q + 1. (2)

From the latter condition of (2), at most q−1 of u1, . . . , ur can
take any given value. It is well-known that there exist Griesmer
codes if r ≤ σ. Assume r ≥ σ+1 and let u =

∑σ+1
i=1 ui. The

following theorem was originally found by Belov et al. [1]
for binary linear codes, and by Hill [8] and Dodunekov [6]
for q-ary linear codes.

Theorem 4 ([8]). A [gq(k, d), k, d]q code exists if u ≤ σk.

We prove Theorem 2 applying Theorem 4.

Lemma 5. For l2+ l+2 ≤ k ≤ (l+1)2 with positive integer
l, a [g3(k, d), k, d]3 code exists if

d > Tk = 3k−2−l(2(l − 1) · 3l+1 + 3k−l2−l−1 + 2).

Proof. When d > Tk, we get the following for σ in (1):

σ = ⌈d/3k−1⌉ ≥ ⌈Tk/3
k−1⌉ ≥ 2l − 1.

We first assume that σ ≥ 2l. Denote by umax the maximum
value of u =

∑σ+1
i=1 ui. For even σ = 2m (m ≥ l), we get

umax = 2
m∑
j=1

(k − j) + (k −m− 1)

= 2mk + k − (m+ 1)2

≤ σk + (l + 1)2 − (m+ 1)2

≤ σk.

For odd σ = 2m+ 1 (m ≥ l), we have

umax = 2
m+1∑
j=1

(k − j)

= (2m+ 1)k + k − (m+ 1)2 − (m+ 1)

≤ σk + (l + 1)2 − (m+ 1)2 − (m+ 1)

< σk.

Hence, a [g3(k, d), k, d]3 code exists by Theorem 4.
Next, assume that σ = 2l−1. Let α be the integer satisfying

α = l2 + 2l + 2− k (1 ≤ α ≤ l). Then, we obtain

Tk = (2l − 1)3k−1 −
l∑

j=1

3k−1−j −
l∑

j=1,j ̸=α

3k−1−j − 3k−2−l.

We denote by uTk
the value of u for d = Tk. Then,

uTk
=

l∑
j=1

(k − j) +
l∑

j=1,j ̸=α

(k − j) + (k − 1− l)

= (2l − 1)k + 1

= σk + 1.

It follows that the value u for d > Tk satisfies u < uTk
, i.e.,

u ≤ σk. Therefore, a [g3(k, d), k, d]3 code exists if d > Tk

when σ = 2l − 1 by Theorem 4.

The following two lemmas can be proved similarly.

Lemma 6. For (l + 1)2 + 1 ≤ k ≤ l2 + 3l + 2 with positive
integer l, a [g3(k, d), k, d]3 code exists if

d > Tk = 3k−2−l((2l − 1) · 3l+1 + 3k−l2−2l−2 + 1).

Lemma 7. For k = l2 + 3l + 3 with positive integer l, a
[g3(k, d), k, d]3 code exists if

d > Tk = 3k−2−l(2l · 3l+1 + 1).

Since l2 +3l+4 = (l+1)2 + (l+1)+ 2, every dimension
k ≥ 4 satisfies either l2+ l+2 ≤ k ≤ (l+1)2, (l+1)2+1 ≤
k ≤ l2 + 3l + 2 or k = l2 + 3l + 3 with positive integer l.
Hence Theorem 2 follows from Lemmas 5-7.

III. GEOMETRIC METHODS

In this section, we give some geometric methods which are
needed to prove Theorem 3. As usual, PG(r, q) denotes the
projective geometry of dimension r over Fq . The projective
subspaces of dimension j in PG(r, q) are called j-spaces.
The j-spaces for j = 0, 1, 2, 3, r − 2, r − 1 are usually
called points, lines, planes, solids, secundums, hyperplanes,
respectively [10].

Let C be an [n, k, d]q code with generator matrix G having
no all-zero column. Then, the columns of G can be considered
as a multiset of n points, denoted by MC , in the projective
space Σ = PG(k− 1, q). We denote by Sj the set of j-spaces
in Σ and by θj the number of points contained in a j-space,
which can be calculated as θj = (qj+1 − 1)/(q − 1). An m-
point is a point in Σ which appears exactly m times as columns
of G. Let γ0 be the maximum integer i such that an i-point of
Σ exists. Let Λi be the set of i-points in Σ and let λi = |Λi|,
0 ≤ i ≤ γ0, where |T | stands for the number of elements in
a set T . For any set S in Σ, the multiplicity of S, denoted by
mMC (S), is naturally defined as mMC (S) =

∑γ0

i=1 i·|S∩Λi|.
This yields the partition

∪γ0

i=0 Λi of Σ such that n = mMC (Σ)
and that the maximum multiplicity of a hyperplane of Σ is
equal to n−d [8], and vice versa. A line ℓ is called an m-line
if m = mMC (ℓ). An m-plane and so on are similarly defined.
For a t-space T in Σ, let

γj(T ) = max{mMC (∆) | ∆ ⊂ T, ∆ ∈ Sj}, 0 ≤ j ≤ t.

Let λm(T ) be the number of m-points in T . We simply denote
by γj for γj(Σ) and by λs for λs(Σ). We already know that
γk−2 = n− d and γk−1 = n.



Lemma 8 ([14]). Let S be an (s−1)-space (2 ≤ s ≤ k−1) in
Σ with mMC (S) = w. Then an (s− 2)-space δ in S satisfies

mMC (δ) ≤ γs−1 −
n− w

θk−s − 1
.

And γt for 0 ≤ t ≤ k − 3 satisfies

γt ≤ γt+1 −
n− γt+1

θk−2−t − 1
.

When C is a Griesmer code, the values γ0, γ1, ..., γk−3 are
uniquely determined in [16] as follows:

γt =
t∑

v=0

⌈ d

qk−1−v

⌉
for 0 ≤ t ≤ k − 1. (3)

When γ0 = 2, we obtain

λ2 = λ0 + n− θk−1 (4)

from λ0 + λ1 + λ2 = θk−1 and λ1 + 2λ2 = n. Let ai be
the number of i-hyperplanes in Σ. The list of non-zero ai’s
is called the spectrum of C. The spectrum can be obtained
from the weight distribution as an−w = Aw/(q − 1) for d ≤
w ≤ n. To distinguish from the spectrum of C, we use τi’s
for the spectrum of a hyperplane containing i-secundums. The
following equalities for the spectrum are well-known [13]:

γk−2∑
i=0

ai = θk−1, (5)

γk−2∑
i=1

iai = nθk−2, (6)

γk−2∑
i=2

(
i

2

)
ai =

(
n

2

)
θk−3 + qk−2

γ0∑
s=2

(
s

2

)
λs. (7)

When γ0 ≤ 2, we get the following equality from (5)-(7):
γk−2−2∑

i=0

(
γk−2 − i

2

)
ai =

(
γk−2

2

)
θk−1

−n(γk−2 − 1)θk−2 +

(
n

2

)
θk−3 + qk−2λ2. (8)

Lemma 9 ([12], [21]). Put ϵ = qγk−2 − n and t0 =
⌊(w + ϵ)/q⌋, where ⌊x⌋ stands for the largest integer ≤ x.
Let H be a w-hyperplane containing a t-secundum T . Then
t ≤ (w + ϵ)/q and the following hold.

(i) aw = 0 if no [w, k − 1, d0]q code satisfying d0 ≥
w − t0 exists.

(ii) γk−3(H) = t0 if no [w, k − 1, d1]q code satisfying
d1 ≥ w − t0 + 1 exists.

(iii) Let cm be the number of m-hyperplanes containing
T except H . Then

∑
m cm = q and∑

m

(γk−2 −m)cm = w + ϵ− qt. (9)

(iv) A γk−2-hyperplane with spectrum (τ0, . . . , τγk−3
)

satisfies τt > 0 if w + ϵ− qt < q.

(v) If any γk−2-hyperplane has no t0-secundum, then
mMC (H) ≤ t0 − 1.

An [n, k, d]q code C is called Γ-divisible (or Γ-div for short)
if the weight of every codeword of C is divisible by an integer
Γ ≥ 2.

Lemma 10 ([21]). For q = ph with p prime, let C be an m-
div [n, k, d]q code with m = pr for some 1 ≤ r < h(k − 2)
satisfying λ0 > 0 and ∩

H∈Sk−2, mMC (H)<γk−2

H = ∅.

Then, there exists a t-div [n∗, k, d∗]q code C∗ such that

t =
qk−2

m
, n∗ = ntq − d

m
θk−1, d∗ = (qγk−2 − n)t

whose spectrum satisfies an∗−d∗−it = λi for 0 ≤ i ≤ γ0.

A generator matrix of C∗ can be obtained by taking the
(γk−2 − im)-hyperplanes for C as the i-points in the dual
space of Σ for any non-negative integers i [21]. C∗ is called
a projective dual of C, see [3] and [5].

Lemma 11 ([19]). Let G be a generator matrix of an [n, k, d]q
code C giving the multiset MC of n points in PG(k−1, q). If
MC contains a u-space and if d > qu, then an [n−θu, k, d

′]q
code C′ with d′ ≥ d− qu exists.

One can get a multiset MC′ for the code C′ in Lemma 11 from
MC by removing the u-space U , that is, by deleting the θu
columns of G corresponding to U . This construction method
is called geometric puncturing [17].

Lemma 12 ([22]). Let C be a Griesmer code with minimum
weight d over the prime field Fp. If pϵ divides d for some
positive integer ϵ, then C is pϵ-divisible.

Lemma 13 ([20]). Let C be a pr-divisible [n, k, d]q code
with q = ph, p prime, r > h. Then, any residual code of
C corresponding to a hyperplane in Σ is pr−h-divisible.

Lemma 14. If C satisfies γ0 = 1 and γ1 ≤ 2, it holds that
γk−2∑
i=3

(
i

3

)
ai =

(
n

3

)
θk−4.

Proof. Counting the number of all possible ({P1, P2, P3},H),
where P1, P2, P3 are distinct points in the n-set MC in Σ and
H is a hyperplane containing the three points, one can get the
required equality.

IV. DIVISIBLE CODES OF DIMENSION k ≤ 6

In this section, we give the results on some divisible ternary
linear codes, which we employ to prove Theorem 3.

Lemma 15. No 3-div [n, 6, 3]3 code exists for 8 ≤ n ≤ 11.

Proof. There exists no [8, 6, 3]3 code since n3(6, 3) = 9. We
get the nonexistence of a 3-div [9, 6, 3]3 code by the exhaustive
computer search (we used the package Q-EXTENSION [2]).



Suppose a 3-div [10, 6, 3]3 code exists. Then, its projective
dual is a 27-div [446, 6, 297]3 code, which does not exist since
n3(6, 297) = 447 or 448 [18]. Hence, there exists no 3-div
[10, 6, 3]3 code. One can prove the nonexistence of a 3-div
[11, 6, 3]3 code similarly.

We denote by M1 +M2 the multiset M consisting of the
multisets M1 and M2 in Σ. In this case, we also write M2 =
M−M1. We write 2M1 for M1 +M2 when M1 = M2.

Lemma 16. The spectrum of a 27-div [770, 6, 513]3 code is
one of the following:
(a) (a176, a230, a257) = (a, 14− 3a, 350 + 2a), a ∈ {1, 2},
(b) (a203, a230, a257) = (b, 14− 2b, 350 + b), b ∈ {0, 1, 2},
(c) (a176, a203, a230, a257) = (1, 1, 9, 353).

Proof. Let C be a 27-div [770, 6, 513]3 code. We first assume
that C has a 0-point in Σ = PG(5, 3), i.e., λ0 > 0. Then,
A projective dual of C is a 3-div [14, 6, 3]3 code C∗. By
the exhaustive computer search, we get 25 inequivalent 3-div
[14, 6, 3]3 codes. Let λ∗

w be the number of w-points for C∗.
Since a257−27w = λ∗

w, we get the possible spectra for C.
Next, assume that λ0 = 0 in Σ. If λ1 = 0, then the multiset

MC −2Σ gives a [42, 6, 27]3 code, which does not exist [18],
a contradiction. Hence λ1 > 0, and the multiset MC−Σ gives
a 27-div [406(= 770− θ5), 6, 270(= 513− 35)]3 code, say D,
by Lemma 11. A projective dual of D is a 3-div [14, 6, 6]3
code. We get four inequivalent 3-div [14, 6, 6]3 codes by the
exhaustive computer search, and our assertion follows.

The following five lemmas can be proved similarly.

Lemma 17. The spectrum of a 27-div [689, 6, 459]3 code is
(a203, a230) = (13, 351).

Lemma 18. The spectrum of a 27-div [608, 6, 405]3 code is
(a176, a203) = (12, 352).

Lemma 19. The spectrum of a 9-div [257, 5, 171]3 code
satisfies ai = 0 for any i /∈ {32, 41, 50, 59, 68, 77, 86}.

Lemma 20. The spectrum of a 9-div [230, 5, 153]3 code
satisfies ai = 0 for any i /∈ {50, 59, 68, 77}.

Lemma 21. The spectrum of a 9-div [203, 5, 135]3 code
satisfies ai = 0 for any i /∈ {41, 50, 59, 68}.

Lemma 22. Let C be a 3-div [86, 4, 57]3 code with λ0 = 4.
Then, the four 0-points for C form a 0-line.

Proof. A projective dual of C, say C∗, is a 3-div [14, 4, 3]3
code. The value λ0 for C is equal to the value a11, the number
of 11-planes for C∗. By the exhaustive computer search, we
confirmed that there exists only one 3-div [14, 4, 3]3 code with
a11 = 4 up to equivalence. For example, take a generator
matrix of C∗ as

G =


1 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 2 2 2 2 2 2 2 2 0 1 0 0
0 0 1 1 1 1 2 2 2 2 0 0 1 0
1 2 0 0 0 0 0 0 0 0 0 0 0 1

.

From the above G, the 11-planes for C∗ are [1000], [0001],
[1001], [1002], which are collinear 0-points of C in the dual
space of PG(3, 3), where [abcd] stands for the hyperplane
V (aX0 + bX1 + cX2 + dX3).

Lemma 23. Every 27-div [689, 6, 459]3 code with λ0 > 0
satisfies (λ0, λ1, λ2, λ3) = (1, 75, 250, 38), (3, 69, 256, 36) or
(7, 57, 268, 32).

Proof. Let C be a 27-div [689, 6, 459]3 code with λ0 > 0.
A projective dual C∗ of C is a 3-div [13, 6, 3]3 code. By the
exhaustive computer search, we get three inequivalent 3-div
[13, 6, 3]3 codes. Let a∗w be the number of w-hyperplanes for
C∗. Since λ(10−w)/3 = a∗w, we get the possible λi’s for C as
stated.

V. PROOF OF THEOREM 3

Lemma 24. There exists no [2309, 7, 1539]3 code.

Proof. Let C be a [2309, 7, 1539]3 code. Then C is a 81-div
code by Lemma 12. We first assume that λ0 = 0. If also
λ1 = 0, then the multiset MC −2Σ gives a [123, 7, 81]3 code,
which does not exist [7], a contradiction. Hence λ1 > 0,
and the multiset MC − Σ gives a Griesmer [1216, 7, 810]3
code D with a 0-point. Since D is 81-div by Lemma 12,
a projective dual of D is a 3-div [14, 7, 6]3 code D∗ from
Lemma 10. Suppose that D∗ contains a 2-point Q. Then,
the projection of MD∗ from Q to some hyperplane of Σ∗

not containing Q gives a 3-div [12, 6, 6]3 code, which is
well known to be equivalent to the extended ternary Golay
code. But it can be confirmed by the exhaustive computer
search that it is impossible to construct a 3-div [14, 7, 6]3
code from the extended Golay code. Hence, D∗ has no 2-
point and the shortening of D∗ gives a 3-div [13, 6, 6]3 code,
which is also unique up to equivalence (cf. [4]). Constructing
a 3-div [14, 7, 6]3 code from the 3-div [13, 6, 6]3 code is also
impossible by the exhaustive computer search. Thus, a 3-div
[14, 7, 6]3 code does not exist.

Now, C has a 0-point, and a projective dual of C is a 3-div
[14, 7, 3]3 code C∗ from Lemma 10. We denote by a∗j for the
spectrum of C∗ and use λ∗

i and γ∗
s to stand for λi and γs for

C∗ to distinguish from aj , λi and γs for C. Then the spectrum
of C∗ satisfies a∗i = 0 for any i ̸∈ {2, 5, 8, 11}, and γ∗

0 ≤ 6
by Lemma 8. If 3 ≤ γ∗

0 ≤ 6, one can get a 3-div [n, 6, 3]3
code with 8 ≤ n ≤ 11 from C∗ by shortening, which does not
exist by Lemma 15. Hence γ∗

0 ≤ 2. From the three equalities
(5)-(7), we get

3a∗2 + a∗5 = 1471 + 27λ∗
2. (10)

Since γ∗
0 ≤ 2, the spectrum of C satisfies ai = 0 for any

i ̸∈ {770, 689, 608}, and (9) in Lemma 9 gives

162c608 + 81c689 = w + 1− 3t. (11)

Setting (w, t) = (608, 176) from Lemma 18, the solution of
(11) is (c608, c689, c770) = (0, 1, 2), which contradicts that a
689-hyperplane has no 176-secundum by Lemma 17. Hence
a608 = λ∗

2 = 0, and γ∗
0 = 1.



Setting (w, t) = (689, 203) from Lemma 17, the solution of
(11) is

(c689, c770) = (1, 2). (12)

Setting (w, t) = (689, 230), the solution of (11) is

(c689, c770) = (0, 3). (13)

Since a 689-hyperplane for C is considered as a 1-point for
C∗, we have mMC∗ (ℓ) ≤ 2 for all line ℓ from (12) and (13).
Hence it follows from Lemma 14 and (10) with λ∗

2 = 0 that

(a∗2, a
∗
5, a

∗
8, a

∗
11) = (251, 718, 120, 4). (14)

Then C satisfies λ0 = a∗11 = 4 from (14). Let ∆ be an x-solid
containing all the 0-points of C. Since a 689-hyperplane has
at most three 0-points by Lemma 23, ∆ is not contained in
a 689-hyperplane. Hence ∆ is contained in a 257-secundum
in some 770-hyperplane Π by Lemmas 16 and 17. Since Π
corresponds to a 27-div [770, 6, 513]3 code by Lemma 13, (9)
in Lemma 9 gives

54c203 + 27c230 = w′ + 1− 3t′ (15)

for a w′-secundum through a t′-solid in Π from Lemma 16.
Setting w′ = 257, c203 = c230 = 0 and t′ = x in (15), one
can deduce that x = 86. Then, ∆ gives a 3-div [86, 4, 57]3
code by Lemmas 13 and 19. And the four 0-points in ∆ form
a 0-line, say ℓ0, by Lemma 22. Let δ be a y-plane through ℓ0
in ∆. Since the number of solids through δ is θ3, we have

y + (86− y)θ3 = 2309,

i.e., y = 29. Hence

mMC (∆) = 4 · 29 = 116,

a contradiction. Thus, a [2309, 7, 1539]3 code does not exist.

Lemma 25. There exists a [2310, 7, 1539]3 code.

Proof. Let C be a [23, 7, 9]3 code with generator matrix

11100000012211111221100
00001000002120001202011
00000100000222000220211
00000010000012220021011
00000001020001202001111
00000000121000110100111
00010000011100011010011


.

The weight distribution of C is 019641243815954186462184 and
is 3-divisible. Hence, we get a 81-div [2310, 7, 1539]3 code as
a projective dual of C.

There exists no [g3(7, T7), 7, T7]3 code by Lemma 24 and
there exists a [g3(7, T7)+1, 7, T7]3 code by Lemma 25. Hence
Theorem 3 follows.
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