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Abstract

We introduce a new concept “geometric extending” for linear codes over finite
fields and consider the extendability of divisible codes. As an application, we
construct new Griesmer [n, 5, d]q codes for 3q4 − 5q3 + 1 ≤ d ≤ 3q4 − 5q3 + q2

with q ≥ 3, combining the known geometric methods such as projective dual,
geometric extending and geometric puncturing.

MSC: 94B27; 51E20

Keywords: linear codes, divisible codes, projective dual, geometric method

1. Introduction

An [n, k, d]q code C is a k dimensional subspace of Fn
q with minimum Ham-

ming weight d = min{wt(c) > 0 | c ∈ C} over Fq, the field of q elements.
The weight distribution of C is the list of numbers Ai which is the number of
codewords of C with weight i. A fundamental problem in coding theory is to
find nq(k, d), the minimum length n for which an [n, k, d]q code exists for given
q, k, d [5, 6]. The Griesmer bound is a best known lower bound on the length n:

n ≥ gq(k, d) =
k−1∑
i=0

⌈
d/qi

⌉
,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. Linear codes
of length n = gq(k, d) are called Griesmer codes. The values of nq(k, d) are
determined for all d only for some small values of q and k [4, 13]. For the case
k = 5, it is well-known that [gq(5, d), 5, d]q codes exist for q4− 2q2+1 ≤ d ≤ q4,
2q4 − 2q3 − q2 + 1 ≤ d ≤ 2q4 + q2 − q and d ≥ 3q4 − 4q3 + 1 for all q [10, 11],
see also [3]. Recently, we have proved the following.
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Theorem 1.1 ([9]). There exist [gq(5, d), 5, d]q codes for 2q4 − 3q3 + 1 ≤ d ≤
2q4 − 3q3 + q2, 3q4 − 5q3 + q2 + 1 ≤ d ≤ 3q4 − 5q3 + 2q2 for all q.

The Griesmer codes of dimension 5 in Theorem 1.1 whose minimum weights are
divisible by q are constructed by the following algorithm:

Step 1. Construct a q-divisible code C with smaller length.
Step 2. Construct a q2-divisible Griesmer code C∗ as a projective dual of C.
Step 3. Find skew lines in the multiset consisting of the columns of a gene-

rator matrix of C∗ and apply geometric puncturing.

Our aim of this paper is to construct new Griesmer codes of dimension 5, by
adding the following new step between Steps 1 and 2.

⋄ Construct a q-divisible code C̄ from C by geometric extending.

Our main theorem is the following:

Theorem 1.2. There exist [gq(5, d), 5, d]q codes for 3q4 − 5q3 + 1 ≤ d ≤ 3q4 −
5q3 + q2 for all q.

Corollary 1.3. nq(5, d) = gq(5, d) for 3q4 − 5q3 + 1 ≤ d ≤ 3q4 − 5q3 + 2q2 for
all q.

We give the geometric methods such as projective dual, geometric puncturing
and geometric extending in Section 2. We prove Theorem 1.2 in Section 3.

Remark 1. We apologize that there are some typos in [9]:

• in Abstract, “3q4+5q3+1 ≤ d ≤ 3q4+5q3+q2” must be “3q4−5q3+q2+1 ≤
d ≤ 3q4 − 5q3 + 2q2”,

• in Theorem 1.2 and Corollary 1.4, the same as in Abstract,

• in Lemma 3.10, “3q4 + 5q3 + 2q2 − sq” must be “3q4 − 5q3 + 2q2 − sq”.

2. Geometric methods to construct optimal linear codes

We denote by PG(r, q) the projective geometry of dimension r over Fq. A t-
flat is a t dimensional projective subspace of PG(r, q). The 0-flats, 1-flats, 2-flats,
3-flats and (r − 1)-flats are called points, lines, planes, solids and hyperplanes,
respectively. We denote by Fj the set of j-flats of PG(r, q) and by θj the number
of points in a j-flat, i.e., θj = (qj+1 − 1)/(q − 1). A hyperplane of PG(r, q)
is defined as the set of points with homogeneous coordinates (x0, x1, . . . , xr)
satisfying a linear equation a0x0 + a1x1 + · · · + arxr = 0 with non-zero vector
(a0, a1, . . . , ar) over Fq. We denote such a hyperplane by [a0, a1, . . . , ar].

Let C be an [n, k, d]q code having no coordinate which is identically zero.
Then, the columns of a generator matrix G of C can be considered as a multiset
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of n points in Σ = PG(k−1, q) denoted by MC . An s-point is a point of Σ which
has multiplicity s in MC . Denote by γ0 the maximum multiplicity of a point
from Σ in MC . Let Λs be the set of s-points in Σ, 0 ≤ s ≤ γ0, and let λs = |Λs|,
where |Λs| denotes the number of elements in a set Λs. For any subset S of Σ, the
multiplicity of S, denoted by mC(S), is defined as mC(S) =

∑γ0

i=1 i·|S∩Λi|. For
(λ1, λ2, . . . , λk) ∈ Fk

q \ {(0, 0, . . . , 0)}, take the hyperplane H = [λ1, λ2, . . . , λk]
in Σ and let c = λ1g1 + λ2g2 + · · ·+ λkgk ∈ C, where gj is the j-th row of G.
Then, it is well known (see [1, 6]) that

n− wt(c) = mC(H). (2.1)

Hence, we obtain the partition Σ =
∪γ0

i=0 Λi such that n = mC(Σ) and the
maximum multiplicity of hyperplanes is exactly n− d, i.e.,

n− d = max{mC(H) | H ∈ Fk−2}, (2.2)

see Theorem 2.3 in [6]. Conversely such a partition Σ =
∪γ0

i=0 Λi as above gives
an [n, k, d]q code in the natural manner. A hyperplane H with t = mC(H)
is called a t-hyperplane. A t-line, a t-plane and t-solid are defined similarly.
Denote by ai the number of i-hyperplanes in Σ. The list of the values ai is
called the spectrum of C. It follows from (2.1) that the spectrum of C can be
calculated from the weight distribution by ai = An−i/(q − 1) for 0 ≤ i ≤ n− d.

The method for constructing new codes from a given [n, k, d]q code by delet-
ing the coordinates corresponding to some geometric object in PG(k − 1, q) is
called geometric puncturing [12]. An instant geometric puncturing is to remove
some flat from the multiset MC if possible.

Lemma 2.1 ([12, 14]). Let C be an [n, k, d]q code. If the multiset MC contains
a t-flat ∆ and if d > qt, then the multiset MC −∆ gives an [n− θt, k, d

′]q code
C′ with d′ ≥ d− qt.

We note that the equality d′ = d − qt in Lemma 2.1 holds if an (n − d)-
hyperplane not containing ∆ exists. We consider the converse of the above
lemma, namely geometric extending. We get the following from (2.2).

Lemma 2.2. Let C be an [n, k, d]q code. If there exists a t-flat ∆ such that
every hyperplane of Σ through ∆ has multiplicity at most n − d − qt, then the
multiset MC +∆ gives an [n+ θt, k, d̄]q code with d̄ ≥ d+ qt.

When can we find a t-flat ∆ to construct an [n+ θt, k, d+ qt]q code C̄ with
multiset MC +∆ for a given [n, k, d]q code C? In general, it is not easy to find
a t-flat ∆ satisfying the condition in Lemma 2.2 even when t = 1. We consider
the possibility of geometric extending for divisible codes. An [n, k, d]q code is
called m-divisible if all codewords have weights divisible by an integer m > 1.

Lemma 2.3. Let C be a qs-divisible [n, k, d]q code with positive integer s. If
there exists a t-flat ∆ which is not contained in an (n−d)-hyperplane of Σ with
t ≤ s, then the multiset MC +∆ gives a qt-divisible [n+ θt, k, d+ qt]q code.
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Proof. Let C̄ be an [n + θt, k, d̄]q code given by the multiset MC + ∆. For a
hyperplane H in Σ, it follows from (2.1) that mC(H) = n− d− jqs with some
non-negative integer j since C is qs-divisible. For j = 0, mC̄(H) = n− d+ θt−1

since H meets ∆ in a (t− 1)-flat. For j ≥ 1, we have

mC̄(H) = n− d− jqs + θt ≤ n− d+ θt−1

if H contains ∆ and mC̄(H) = n−d−jqs+θt−1 < n−d+θt−1 otherwise. From
the condition t ≤ s, C̄ is qt-divisible from (2.1) and the maximum multiplicity
of hyperplanes for C̄ is n− d+ θt−1. Hence, from (2.2), we obtain

d̄ = n+ θt − (n− d+ θt−1) = d+ qt.

Finally, we recall the projective dual for divisible codes.

Lemma 2.4 ([15]). Let C be an m-divisible [n, k, d]q code with q = ph, p prime,
whose spectrum is

(an−d−(w−1)m, an−d−(w−2)m, · · · , an−d−m, an−d) = (αw−1, αw−2, · · · , α1, α0),

where m = pr for some 1 ≤ r < h(k − 2) satisfying λ0 > 0 and∩
H∈Fk−2, mC(H)<n−d

H = ∅.

Then there exists a t-divisible [n∗, k, d∗]q code C∗ with t = qk−2/m, n∗ =∑w−1
j=0 jαj = ntq − d

mθk−1, d
∗ = ((n− d)q − n)t whose spectrum is

(an∗−d∗−γ0t, an∗−d∗−(γ0−1)t, · · · , an∗−d∗−t, an∗−d∗) = (λγ0
, λγ0−1, · · · , λ1, λ0).

Note that a generator matrix for C∗ is given by considering (n − d − jm)-
hyperplanes as j-points in the dual space Σ∗ of Σ for 0 ≤ j ≤ w − 1 [15]. C∗ is
called a projective dual of C, see also [2] and [6].

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 for q ≥ 5 using projective dual, geo-
metric extending and geometric puncturing. Note that Theorem 1.2 is known
for q ≤ 5, see [13]. A set S of s points in PG(r, q), r ≥ 2, is called an s-arc if no
r + 1 points are on the same hyperplane, see [7] and [8] for arcs. When q ≥ r,
one can take a normal rational curve as a (q+1)-arc, see Theorem 27.5.1 in [8].

In PG(4, q), q ≥ 5, take a normal rational curve K = {P0, P1, . . . , Pq} in the
hyperplane H = [0, 0, 0, 0, 1] as

P0(1, 0, 0, 0, 0), Pi(1, α
i, α2i, α3i, 0), Pq(0, 0, 0, 1, 0),
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Table 1: (4q − 2)-solids for C.

type number
A1

(
q
2

)
A2 q
A3 q − 1
A4 q
A5 q

where α is a primitive element of Fq. Take a line l0 = {P0, Q1, . . . , Qq} as

Qi(1, 0, 0, 0, α
i) with 1 ≤ i ≤ q − 1, Qq(0, 0, 0, 0, 1),

and a point Q, lines l1, . . . , lq and a plane δ as

Q(0, 1, 0, 0, 1), li = ⟨Pi, Qi⟩ with 1 ≤ i ≤ q, δ = ⟨l0, Q⟩,

where ⟨χ1, χ2, · · · ⟩ denotes the smallest flat containing χ1, χ2, · · · . Setting the
set of s-points Λs as

Λ1 = (

q−1∪
i=1

li) \ l0, Λq−1 = {P0, Qq}, Λq = {Pq, Q}, Λ0 = Σ \ (Λ1 ∪ Λq−1 ∪ Λq),

we get the following q-divisible code, which was called C2 in [9].

Lemma 3.1 ([9]). There exists a q-divisible [q2 +3q− 2, 5, q2 − q]q code C with
spectrum

(aq−2, a2q−2, a3q−2, a4q−2) = (q4 − 4q3 + 6q2 − 4q + 1,

5q3 − 12q2 + 10q − 3−
(
q

2

)
, 7q2 − 9q + 4,

(
q

2

)
+ 4q − 1)

which has five types of (4q − 2)-solids:

(A1) Hij = ⟨li, lj⟩ for 1 ≤ i < j ≤ q;

(A2) ⟨δ, li⟩ for 1 ≤ i ≤ q;

(A3) ⟨Q,Pq, li⟩ for 1 ≤ i ≤ q − 1;

(A4) the solids through the plane ⟨Q, lq⟩ not containing l0;

(A5) the solids through the plane ⟨Q,P0, Pq⟩ not containing l0

and nine types of (3q − 2)-solids:

(B1) the solids containing l0 and only one of l1, . . . , lq and not containing Q;

(B2) the solid through δ containing none of l1, . . . , lq;

(B3) the solids through the line ⟨P0, Pq⟩ not containing Q, l0;

(B4) the solids through the line ⟨P0, Q⟩ not containing Pq, l0;
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Table 2: (3q − 2)-solids for C.

type number
B1 q
B2 1
B3 q2 − q
B4 q2 − q
B5 q2 − q
B6 q2 − q
B7 q2 − 2q + 1
B8 q2 − 2q + 1
B9 q2 − 2q + 1

(B5) the solids through lq not containing Q, l0;

(B6) the solids through the line ⟨Q,Qq⟩ not containing Pq, l0;

(B7) the solids through the plane ⟨li, Pq⟩ with 1 ≤ i ≤ q − 1 not containing Q,
l0;

(B8) the solids through the plane ⟨li, Q⟩ with 1 ≤ i ≤ q − 1 not containing Pq,
l0;

(B9) the solids through the plane ⟨Q,Pq, Qi⟩ with 1 ≤ i ≤ q − 1 not containing
li, l0,

see Tables 1 and 2 for the number of solids of each type.

Now, we shall construct a q-divisible [q2 + 4q − 1, 5, q2]q code C̄ from C by
geometric extending. Take two points R1, R2 and the line L as follows:

R1(1, 1, 0, 0, 0), R2(0, 0, 1, 0, 1), L = ⟨R1, R2⟩.

Let C̄ be the code with MC̄ = MC + L.

Lemma 3.2. C̄ is a q-divisible [q2 + 4q − 1, 5, q2]q code.

Proof. By Lemma 2.3, it suffices to prove that L is not contained in a (4q− 2)-
solid for C. There are five types of (4q−2)-solids for C as in Lemma 3.1. The solid
Hij = ⟨li, lj⟩ of type A1 does not contain L since Hij = [0, αiαj ,−αi − αj , 1, 0]
with 1 ≤ i < j ≤ q − 1 and Hiq = [0,−αi, 1, 0, 0] with 1 ≤ i ≤ q − 1 do not
contain the point R1. The solid ⟨δ, li⟩ with 1 ≤ i ≤ q of type A2 does not contain
L since ⟨δ, li⟩ = [0, 0,−αi, 1, 0] with 1 ≤ i ≤ q−1 and ⟨δ, lq⟩ = [0, 0, 1, 0, 0] do not

contain the point R2. Assume that the solid H
(i)
1 = ⟨Q,Pq, li⟩ with 1 ≤ i ≤ q−1

of type A3 contains R1. Then αi = −1, and H
(i)
1 = [1,−1,−2, 0, 1] does not

contain R2. Hence H
(i)
1 does not contain L. Suppose that a solid H2 of type

A4 containing Q, lq = ⟨Pq, Qq⟩ and not containing l0 contains the point R1.
Then the solid ⟨Q, lq, R1⟩ = [0, 0, 1, 0, 0] contains P0, and H2 contains l0, giving
a contradiction. Hence H2 does not contain L. Finally, suppose a solid H3 of
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type A5 containing Q,P0, Pq and not containing l0 contains R1. Then the solid
⟨Q,P0, Pq, R1⟩ = [0, 0, 1, 0, 0] contains l0, a contradiction. Hence H3 does not
contain L. Thus, no (4q − 2)-solid for C contains the line L, and our assertion
follows from Lemma 2.3.

As a projective dual of C̄, we get the following.

Lemma 3.3. There exists a q2-divisible [3q4 − 2q3 − q2 − q, 5, 3q4 − 5q3 + q2]q
code C̄∗.

Lemma 3.4. The multiset MC̄∗ contains q − 1 skew lines.

Proof. Note that the 0-points for C̄∗ are the (4q−1)-solids for C̄. There are nine
types of (3q − 2)-solids for C as in Lemma 3.1. Note that the solids of type B1
or B2 contain the line l0 and the others do not.

Suppose the solid H ′
1 of type B1 containing l0 and li with 1 ≤ i ≤ q

and not containing Q contains L. Then, H ′
1 contains the plane ⟨l0, R1⟩ con-

taining Q, a contradiction. Hence H ′
1 does not contain L. The solid H ′

2

of type B2 through δ containing none of l1, . . . , lq contains L since the solid
⟨δ, L⟩ = [0, 0, 0, 1, 0] does not contain l1, . . . , lq. There is only one solid of type
B3 containing the lines L and ⟨P0, Pq⟩ and not containing Q since the solid
⟨P0, Pq, L⟩ = [0, 0, 1, 0,−1] does not contain Q. Suppose a solid H ′

4 of type B4
containing the line ⟨P0, Q⟩ and not containing Pq contains L. Then, H

′
4 contains

δ, and H ′
4 contains l0, a contradiction. Hence H ′

4 does not contain L. Since the
solid ⟨lq, L⟩ = [1,−1, 0, 0, 0] does not contain Q, there is only one solid of type
B5 containing the lines L, lq and not containing Q.

Suppose a solid H ′
6 of type B6 containing the line ⟨Q,Qq⟩ and not containing

Pq contains L. Then, H ′
6 contains δ, and H ′

6 contains l0, a contradiction. Hence
H ′

6 does not contain L. A solid of type B7 containing the plane ⟨li, Pq⟩ and not
containing Q does not contain L since the solid ⟨L, li⟩ = [−α3i, α3i,−α2i, 1, α2i]
does not contain Pq. LetH

′
8 be a solid of type B8 containing the plane ⟨li, Q⟩ and

not containing Pq. Note that ⟨L, li⟩ contains Q if and only if αi = −1. Hence
⟨L, li⟩ = [1,−1,−1, 1, 1] does not contain Pq, and there is only one solid of type
B8 containing L. Finally, let H ′

9 be a solid of type B9 containing the plane
⟨Q,Pq, Qi⟩ and not containing li. Since the solid ⟨Q,Pq, L⟩ = [1,−1,−1, 0, 1]
contains Qi if and only if αi = −1, ⟨Q,Pq, L⟩ does not contain Pi, and there is
only one solid of this type containing L.

Thus there are five (3q − 2)-solids for C containing L. Then the (4q − 1)-
solids for C̄ consist of the (4q− 2)-solids for C and the above five (3q− 2)-solids
for C containing L. Recall that the 0-points for C∗ are the (4q − 2)-solids
for C. Since l0 is contained in Hij and δ in Σ, the plane l∗0 contains exactly(
q
2

)
+ q + 1 0-points in Σ∗ corresponding to the solids Hij (1 ≤ i < j ≤ q),

⟨δ, li⟩ (1 ≤ i ≤ q) and ⟨δ, L⟩. The number of s-points with s ≥ 1 on l∗0 is
θ2 −

(
q
2

)
− q − 1 ≥ q − 1. Recall that the plane l∗0 is contained in the solids

Q∗
1, . . . , Q

∗
q in Σ∗. We set αρ = −1, i.e., ρ = (q − 1)/2 if q is odd and ρ = q − 1

if q is even. Then the solid Q∗
ρ contains the plane l∗0, the points ⟨Q,Pq, lρ⟩∗,

⟨L, lρ, Q⟩∗ and ⟨Q,Pq, L⟩∗. The 0-points contained in Q∗
ρ out of the plane l∗0 are
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only these three points. Hence, the number of s-points in Q∗
ρ out of the plane

l∗0 with s ≥ 1 is θ3 − (θ2 +1+1+1) = q2 − 3, and we can take q− 1 lines in the
solid Q∗

ρ containing no 0-point in Σ∗, meeting l0 in a point.

Applying Lemma 2.1 (geometric puncturing) by deleting j skew lines con-
tained in the multisetMC̄∗ , we get an [nj = 3q4−2q3−q2−q−j(q+1), 5, dj ]q code
with dj ≥ 3q4−5q3+q2−jq for 1 ≤ j ≤ q−1. Since gq(5, 3q

4−5q3+q2−jq) = nj

for q ≥ 5, we obtain the following.

Lemma 3.5. There exist [3q4 − 2q3 − q2 − q− j(q+ 1), 5, 3q4 − 5q3 + q2 − jq]q
codes for 1 ≤ j ≤ q − 1.

Proof of Theorem 1.2. Lemma 3.5 provides the codes needed in Theorem
1.2, when d is divisible by q. The rest of the codes required for the theorem can
be obtained by the normal puncturing of these divisible codes.
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