

学術情報リポジトリ

Carboxylated polyamidoamine dendron-bearing lipid-based assemblies for precise control of intracellular fate of cargo and induction of antigen-specific immune responses

メタデータ	言語: eng
	出版者:
	公開日: 2021-04-23
	キーワード (Ja):
	キーワード (En):
	作成者: Yuba, Eiji, Sugahara, Yoshikatsu, Yoshizaki,
	Yuta, Shimizu, Takeyuki, Kasai, Michiyuki, Udaka,
	Keiko, Kono, Kenji
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/00017382

Carboxylated polyamidoamine dendron-bearing lipid-based assemblies for precise
 control of intracellular fate of cargo and induction of antigen-specific immune
 responses

4

5	Eiji Yuba ^{1, *} , Yoshikatsu Sugahara ¹ , Yuta Yoshizaki ¹ , Takeyuki Shimizu ² ,
6	Michiyuki Kasai ² , Keiko Udaka ² , Kenji Kono ¹
7	¹ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture
8	University, 1–1 Gakuen–cho, Naka–ku, Sakai, Osaka 5998531, Japan
9	² Department of Immunology, School of Medicine, Kochi University, Nankoku, Kochi
10	7838505, Japan
11	*Correspondence: yuba@chem.osakafu-u.ac.jp

12 Tel.: +81-72-254-9330; Fax: +81-72-254-9330

14 Abstract

15 For establishment of advanced medicines such as cancer immunotherapy, high performance carriers that precisely deliver biologically active molecules must be 16 17 developed to target organelles of the cells and to release their contents there. From the 18 viewpoint of antigen delivery, endosomes are important target organelles because they 19 contain immune-response-related receptors and proteins of various types. To obtain 20 carriers for precision endosome delivery, a novel type of polyamidoamine dendron-21 based lipid having pH-sensitive terminal groups was synthesized for this study. 22 Liposomes were prepared using these pH-sensitive dendron-based lipids and egg yolk 23 phosphatidylcholine. Their pH-responsive properties and performance as an endosome 24 delivery carrier were investigated. pH-Sensitive dendron lipid-based liposomes retained 25 water-soluble molecules at neutral pH but released them under weakly acidic 26 conditions. Especially, liposomes containing CHexDL-G1U exhibited highly sensitive 27 property responding to very weakly acidic pH. These dendron lipid-based liposomes 28 released the contents specifically in endosome. The timing of content release can be 29 controlled by selecting pH-sensitive dendron lipids for liposome preparation. 30 Significant tumor regression was induced in tumor-bearing mice by administration of 31 CHexDL-G1U-modified liposomes containing model antigenic protein. Furthermore,

32	CHexDL-G1U-modified liposomes induced WT1 tumor antigenic peptide-specific
33	helper T cell proliferation. Results demonstrate that dendron lipid-based liposomes are
34	useful as potent vaccine for cancer immunotherapy.
35	
36	Keywords: dendron; liposome; pH-sensitive; cellular immunity; peptide vaccine

38 1. Introduction

39 Since the discovery of liposomes by Bangham, liposomes have been regarded as an ideal drug carrier. Many efforts have been made to improve the accuracy of drug delivery 40 41 using liposomes. An effective approach is to give stimulus-sensitive properties to liposomes. Therefore, liposomes of various kinds have been developed to have sensitivity 42 to stimuli such as temperature, pH, light, ultrasound, and magnetic fields¹⁻⁴. These 43 liposomes retain drug molecules under physiological conditions, whereas they become 44 45 destabilized at target sites of the body, which have environments different from 46 physiological environments or which are applied with the stimuli, resulting in drug 47 release there.

pH-Sensitive liposomes are regarded as important stimuli-sensitive liposomes from 48 49 the perspectives of tumor tissue-selective drug delivery and intracellular drug delivery. Tumor tissues are known to have a weakly acidic environment of around pH $7.0-6.5^{5,6}$, 50 51 which is lower than the pH of normal tissues. Therefore, liposomes must have very high 52 pH-sensitivity to respond to such tiny pH decreases for this purpose. Some liposome 53 systems have achieved tumor microenvironmental pH-responsive detachment of 54 hydrophilic layer such as PEG to promote association of liposomes to tumor cells^{7, 8}. 55 However, widely used phosphatidylethanolamine-based pH-sensitive liposomes need

56	acidic environments of pH below 6 to induce their pH-triggered collapses ^{9–11} , implying
57	some difficulty of producing liposomes to release pH-responsive contents efficiently in
58	such a weakly acidic environment. To use pH-sensitive liposomes for intracellular
59	delivery, precise control of pH-sensitive region is necessary to induce drug release at a
60	specified organelle. Liposomes are generally taken up by cells through endocytosis and
61	are trapped in early endosomes, of which the interior is very weakly acidic pH (pH 6.5).
62	Endosome interior pH decreases during maturation to lysosomes, which have somewhat
63	more acidic pH (pH 4.5) ¹² . To date, various molecular designs to achieve drug release at
64	late endosomes or lysosomes have been reported ^{13, 14} , although selective release of
65	contents at early endosomes persists as a challenge for future research.
65 66	contents at early endosomes persists as a challenge for future research. Release of contents at specific intracellular organelles is especially effective for
65 66 67	contents at early endosomes persists as a challenge for future research. Release of contents at specific intracellular organelles is especially effective for antigen delivery because endosomes contain many target receptors or proteins to
65 66 67 68	contents at early endosomes persists as a challenge for future research. Release of contents at specific intracellular organelles is especially effective for antigen delivery because endosomes contain many target receptors or proteins to modulate immune responses. More importantly, the intracellular fate of antigens in
65 66 67 68 69	contents at early endosomes persists as a challenge for future research. Release of contents at specific intracellular organelles is especially effective for antigen delivery because endosomes contain many target receptors or proteins to modulate immune responses. More importantly, the intracellular fate of antigens in antigen-presenting cells strictly determines the mode of antigen-specific immunity ^{15, 16} .
 65 66 67 68 69 70 	contents at early endosomes persists as a challenge for future research. Release of contents at specific intracellular organelles is especially effective for antigen delivery because endosomes contain many target receptors or proteins to modulate immune responses. More importantly, the intracellular fate of antigens in antigen-presenting cells strictly determines the mode of antigen-specific immunity ^{15, 16} . When an antigen is transferred into lysosomes and is hydrolyzed there, degraded antigenic
 65 66 67 68 69 70 71 	contents at early endosomes persists as a challenge for future research. Release of contents at specific intracellular organelles is especially effective for antigen delivery because endosomes contain many target receptors or proteins to modulate immune responses. More importantly, the intracellular fate of antigens in antigen-presenting cells strictly determines the mode of antigen-specific immunity ^{15, 16} . When an antigen is transferred into lysosomes and is hydrolyzed there, degraded antigenic peptides are carried onto major histocompatibility complex (MHC) class II molecules.
 65 66 67 68 69 70 71 72 	contents at early endosomes persists as a challenge for future research. Release of contents at specific intracellular organelles is especially effective for antigen delivery because endosomes contain many target receptors or proteins to modulate immune responses. More importantly, the intracellular fate of antigens in antigen-presenting cells strictly determines the mode of antigen-specific immunity ^{15, 16} . When an antigen is transferred into lysosomes and is hydrolyzed there, degraded antigenic peptides are carried onto major histocompatibility complex (MHC) class II molecules. Presentation of antigenic peptide via MHC II molecules promotes the differentiation of

74	immunity. When an antigen is transferred to cytosol and is processed via proteasomes,
75	these degraded peptides are presented via MHC I molecules to promote the differentiation
76	of CD8+ T cells into cytotoxic T lymphocytes (CTLs). Actually, CTL-based immune
77	response (cellular immunity) plays a crucially important role in eliminating virus-infected
78	cells or attacking immunogenic cancer cells. Another route to activate cellular immunity
79	is known as vacuolar pathway of cross-presentation, which is achieved through antigen
80	released in early endosomes ^{17, 18} . Therefore, control of the intracellular fate of antigen
81	using pH-sensitive liposomes is expected to provide on-demand immunity-inducing
82	systems for the treatment of immunity-relating diseases including cancer, tolerance,
83	autoimmunity-relating diseases, and infectious diseases.
84	We earlier developed pH-sensitive liposomes modified with polyglycidols or
85	polysaccharides having 3-methyl glutarylated (MGlu) units or 2-carboxycyclohexane-1-
86	carboxylated (CHex) units to induce membrane fusion of liposomes with endosomal
87	membrane responding to acidic pH in late endosomes or lysosomes ¹⁹⁻²¹ . These pH-
88	
	sensitive polymer-modified liposomes achieved efficient cytosolic transfer of antigenic
89	sensitive polymer-modified liposomes achieved efficient cytosolic transfer of antigenic proteins or peptides, leading to induction of antigen-specific cellular immunity ^{22, 23} . We
89 90	sensitive polymer-modified liposomes achieved efficient cytosolic transfer of antigenic proteins or peptides, leading to induction of antigen-specific cellular immunity ^{22, 23} . We also developed cytosolic antigen delivery liposomes using polyamidoamine dendron-

92	from vesicle to micelle-like morphology ²⁴ . The pH-responsive region of polyamidoamine
93	dendron-bearing lipid is determined by the protonation behavior of primary and tertiary
94	amines in a dendron moiety. Indeed, polyamidoamine dendron-bearing lipid assemblies
95	induce sharp pH-sensitive membrane destabilization activity below pH 6.3, which
96	corresponds to the late endosome pH region ²⁴ . Consequently, cytosolic antigen delivery
97	can be achieved using conventional pH-sensitive liposomes. Nevertheless, early
98	endosome-specific antigen release towards induction of cross-presentation remains
99	challenging.

100 For this study, carboxylated polyamidoamine dendron-bearing lipids were designed 101 to control pH-sensitivity precisely for selective antigen release at specific intracellular 102 organelles (Fig. 1). MGlu units or CHex units were introduced to polyamidoamine dendron-bearing lipids as a pH-sensitive moiety. These dendron lipids have both carboxy 103 104 groups and tertiary amines to be protonated in the very weakly acidic pH region. For that 105 reason, these dendron lipid-containing liposomes are expected to induce content release 106 responding to a slight pH decrease. Here, syntheses of carboxylated polyamidoamine 107 dendron-bearing lipids were investigated along with their pH-sensitivity, intracellular 108 behavior and induction of antigen-specific immune responses using both model antigen 109 and WT1-derived natural tumor antigenic peptides.

- 111 Figure 1. Design of carboxylated polyamidoamine dendron-bearing lipids for precise
- 112 control of intracellular fate of cargo and induction of antigen-specific immune
- 113 responses.
- 114

115 **2. Materials and Methods**

- 116 2.1. Materials
- 117 Egg yolk phosphatidylcholine (EYPC) was kindly donated by NOF Co. (Tokyo,
- 118 Japan). 3-Methylglutaric anhydride, 1,2-cyclohexanedicarboxylic anhydride, ovalbumin
- 119 (OVA), fetal bovine serum (FBS), *p*-xylene-bis-pyridinium bromide (DPX), calcein,

120	triethylamine and monophosphoryl lipid A (MPLA) were purchased from Sigma (St.
121	Louis, MO.). Pyranine and Triton X-100 were obtained from Tokyo Chemical
122	Industries Ltd. (Tokyo, Japan). Lissamine rhodamine B-sulfonyl
123	phosphatidylethanolamine (Rh-PE) was purchased from Avanti Polar Lipids
124	(Birmingham, AL, USA). FITC-OVA was prepared by reacting OVA (10 mg) with
125	FITC (11.8 mg) in 0.5 M NaHCO ₃ (4 mL, pH 9.0) at 4°C for three days and subsequent
126	dialysis. Polyamidoamine dendron-bearing lipids (DL-G1S, DL-G1U and DL-G2S)
127	were synthesized as previously reported ^{25, 26} .
128	2.2. Synthesis of carboxylated polyamidoamine dendron-bearing lipids
129	Carboxylated dendron lipids were synthesized by reaction of dendron lipids
130	with acid anhydrides, such as 3-methylglutaric anhydride and 1,2-
131	cyclohexanedicarboxylic anhydride (Scheme S1).
132	For the synthesis of MGluDL-G1U, DL-G1U (430 mg, 0.909 mmol) dissolved
133	in DMF (4 mL) was mixed with 3-methylglutaric anhydride (618 mg, 4.23 mmol)
134	dissolved in DMF (3 mL) and triethylamine (0.37 mL, 5 mmol). The mixed solution
135	was kept at 50°C under argon atomosphere for 7 days with stirring. Solvent was
136	removed under vacuum, and the residue was chromatographed on LH-20 using
	Q

```
9
```

137 methanol as an eluent and was subsequently chromatographed on silica gel using

- 138 chloroform-methanol-water (60/35/5, v/v/v) as an eluent. The yield was 208 mg
- 139 (20.5%). ¹H NMR for MGluDL-G1U (CDCl₃, 400 MHz): δ (ppm) 0.88 (m, CH₃(CH₂)₆-
- 140), 1.03 (s, -CH(CH₃)-), 1.2-1.4 (m, CH₃(CH₂)₆-, -CH₂(CH₂)₅CH₂-), 1.60 (s, -CH₂CH₂N-
- 141), 2.0 (m, -CH₂CH₂CH-), 2.03-2.45 (m, -CH₂CH₂N-, -CH₂CH₂CO, -CH (CH₃)-), 2.46-
- 142 2.95 (m, -CH₂CH₂CO, -CH₂CH₂NH-), 3.2-3.4 (m, -CH₂CH₂N-, -
- 143 COCH₂CH(CH₃)CH₂COOH), 5.35 (m, -CH₂CHCHCH₂-). Calc [M]+ (C₆₃H₁₁₇N₇O₉)
- 144 m/z 1115.9. Found ESI-MS [M+ H]+ m/z 1114.8.
- 145 For the synthesis of CHexDL-G1U, DL-G1U (207.7 mg, 0.234 mmol)
- 146 dissolved in DMF (3 mL) was mixed with 1,2-cyclohexanedicarboxylic anhydride
- 147 (390.5 mg, 2.53 mmol) dissolved in DMF (5 mL) and triethylamine (0.17 mL, 2.4
- 148 mmol). The mixed solution was kept at 50°C under argon atomosphere for 4 days with
- 149 stirring. Solvent was removed under vacuum, and the residue was chromatographed on
- 150 LH-20 using methanol as an eluent. The yield was 80.9 mg (29.3%). ¹H NMR for
- 151 CHexDL-G1U (CDCl₃, 400 MHz): δ (ppm) 0.88 (m, CH₃(CH₂)₆-), 1.2-1.4 (m,
- 152 CH₃(CH₂)₆-, -CH₂(CH₂)₅CH₂-, -CH₂CH₂N-), 1.4-1.9 (m, -COCH-(CH₂)₄-CHCOOH),
- 153 2.0 (m, -CH₂CH₂CH-), 2.3-2.7 (m, -CH₂CH₂N-, -CH₂CH₂COO), 2.6-2.8 (m, -
- 154 CH₂CH₂COO, -CH₂CH₂NH₂, -COCH-CH₂), 3.25 (m, -CH₂CH₂N-), 5.35 (m, -

155 CH₂CHCHCH₂-), Calc [M]⁺ (C₆₇H₁₂₁N₇O₉) m/z 1167.9. Found ESI-MS [M]⁺ m/z
156 1166.6.

157	For the synthesis of CHexDL-G1S, DL-G1S (145.3 mg, 0.307 mmol) dissolved
158	in DMF (5 mL) was mixed with 1,2-cyclohexanedicarboxylic anhydride (265 mg, 1.63
159	mmol) dissolved in DMF (5 mL) and triethylamine (0.125 mL, 1.7 mmol). The mixed
160	solution was kept at 50°C under argon atomosphere for 25 h with stirring. Solvent was
161	removed under vacuum, and the residue was chromatographed on LH-20 using
162	methanol as an eluent and was subsequently chromatographed on silica gel using
163	chloroform-methanol (4/1, v/v) as an eluent. The yield was 80.3 mg (22.3%). ¹ H NMR
164	for CHexDL-G1S (CDCl ₃ , 400 MHz): δ (ppm) 0.88 (m, CH ₃ (CH ₂) ₁₅ -), 1.26 (s,
165	CH ₃ (CH ₂) ₁₅ -), 1.42 (m, -CH ₂ CH ₂ N-), 1.4-1.9 (m, -COCH-(CH ₂) ₄ -CHCOOH), 2.32 (m, -
166	CH ₂ CONHCH ₂ CH ₂ NH ₂), 2.36 (m, -CH ₂ CONH-), 2.42 (m, -CH ₂ N-), 2.50 (t, -
167	CONHCH ₂ CH ₂ -), 2.6-2.8 (m, -COCH-CH ₂), 2.67 (t, -CH ₂ CH ₂ CONH-), 2.74 (t, -
168	CH ₂ CH ₂ CONHCH ₂ CH ₂ NH ₂), 2.83 (t, -CH ₂ NH ₂), 3.22 (m, -CONHCH ₂ -), 3.29 (m, -
169	$CH_2CH_2NH_2$). Calc $[M]^+$ (C ₆₇ H ₁₂₁ N ₇ O ₉) m/z 1172.0. Found ESI-MS $[M]^+$ m/z 1170.8.
170	For the synthesis of CHexDL-G2S, DL-G2S (594 mg, 0.45 mmol) dissolved in
171	DMF (5 mL) was mixed with 1,2-cyclohexanedicarboxylic anhydride (8.13 g, 46.2

172	mmol) dissolved in DMF (5 mL) and triethylamine (1.0 mL, 13.6 mmol). The mixed
173	solution was kept at 50°C under argon atomosphere for 38 h with stirring. Solvent was
174	removed under vacuum, and the residue was chromatographed on LH-20 using
175	methanol as an eluent and was subsequently chromatographed on silica gel using
176	chloroform-methanol (4/1, v/v) as an eluent. The yield was 204 mg (23.5%). ¹ H NMR
177	for CHexDL-G2S (CDCl ₃ , 400 MHz): δ (ppm) 0.88 (m, CH ₃ (CH ₂) ₁₅ -), 1.26 (s,
178	CH ₃ (CH ₂) ₁₅ -), 1.42 (m, -CH ₂ CH ₂ N-), 1.4-1.9 (m, -COCH-(CH ₂) ₄ -CHCOOH), 2.32 (m, -
179	CH ₂ CONHCH ₂ CH ₂ NH ₂), 2.36 (m, -CH ₂ CONH-), 2.42 (m, -CH ₂ N-), 2.50 (m, -
180	CONHCH ₂ CH ₂ -), 2.6-2.8 (m, -COCH-CH ₂), 2.67 (m, -CH ₂ CH ₂ CONH-), 2.74 (m, -
181	CH ₂ CH ₂ CONHCH ₂ CH ₂ NH ₂), 2.83 (m, -CH ₂ NH ₂), 3.22 (m, -CONHCH ₂ -), 3.29 (m, -
182	$CH_2CH_2NH_2$).

Figure 2. Chemical structures of carboxylated dendron-bearing lipids: (A) MGluDLG1U, (B) CHexDL-G1U, (C) CHexDL-G1S, and (D) CHexDL-G2S.

187

2.3. Surface pressure measurement

191	400 mm ²), which was used as the subphase, in the trough. The monolayer was
192	compressed at a rate of 20 mm/sec after the initial delay period of 20 min for
193	evaporation of organic solvent. The subphase temperature was controlled to be 37°C.
194	2.4. Preparation of carboxylated dendron lipid-containing liposomes
195	A dry, thin membrane composed of a mixture of EYPC and dendron lipid (10
196	mol% or 25 mol%) was dispersed in phosphate-buffered saline (PBS) containing OVA
197	(4 mg/mL) by a brief sonication at room temperature, and the liposome suspension was
198	further hydrated by freezing and thawing and was extruded through a polycarbonate
199	membrane with a pore size of 100 nm at room temperature. The liposome suspension
200	was purified with Sepharose 4B column using PBS as an eluent at 4°C.
201	2.5. Characterization of liposomes
202	The concentrations of lipid and OVA in liposome suspension were measured using
203	phospholipid C test-Wako and Coomassie Protein Assay Reagent, respectively.
204	Diameters in PBS and zeta potentials in 0.1 mM phosphate aqueous solution of
205	dendron lipid assemblies or liposomes (0.1 mM of lipid concentration) were measured
206	using a Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK). Data were
207	obtained as an average of more than three measurements on different samples.

208	Pyranine-loaded liposomes were prepared as described above except that mixture of
209	EYPC and dendron lipid was dispersed in aqueous 35 mM pyranine, 50 mM DPX, and
210	25 mM phosphate solution. Liposomes encapsulating pyranine (lipid concentration: 2.0
211	\times 10 ⁻⁵ M) were added to PBS of varying pH at 37°C and fluorescence intensity at 512
212	nm of the mixed suspension was followed with excitation at 416 nm using a
213	spectrofluorometer (Jasco FP-6500 or FP-6200). The percent release of pyranine from
214	liposomes was defied as:
215	Release(%) = $(F_{t} - F_{i})/(F_{f} - F_{i}) \times 100$
216	where F_i and F_t mean the initial and intermediary fluorescence intensities of the
217	liposome suspension, respectively. $F_{\rm f}$ is the fluorescent intensity of the liposome
218	suspension after the addition of TritonX-100 (final concentration: 0.1%).
219	A given amounts of lipid-containing PBS was sealed in Ag pan. Differential
220	scanning calorimetry (DSC) measurements were performed with a DSC 120
221	microcalorimeter (Seiko Electronics). The heating rate was 1.0°C/min.
222	2.6. Confocal laser scanning microscopy
223	Rh-PE-labeled liposomes containing calcein were prepared as described above
224	except that a mixture of EYPC and dendron lipid containing Rh-PE (0.1 mol%) was
225	dispersed in 63 mM calcein solution. HeLa cells (1.0×10^5 cells) or DC2.4 cells 15

226	(murine dendritic cell line, 3.0×10^5 cells) cultured for 2 days in a glass-bottom dish
227	were washed twice with PBS and then incubated in a medium with 10% FBS (1.0 mL).
228	Rh-PE-labeled liposomes (1.0 mM lipid concentration, 1.0 mL) were added gently to
229	the cells and incubated for 1, 4 or 24 h at 37°C. After incubation, the cells were washed
230	with PBS three times and observed using confocal laser scanning microscopy LSM5
231	EXCITER (Carl Zeiss). For staining of nucleus, Hoechst33342 (Thermo) was used
232	according to the manufacture's instruction. For selective staining of early endosomes,
233	late endosomes or lysosomes, CellLight TM (Thermo) was used according to the
234	manufacture's instruction.
235	2.7. Cellular association of liposomes
236	Rh-PE-labeled liposomes containing FITC-OVA were prepared as described above
237	except that a mixture of EYPC and dendron lipid containing Rh-PE (0.1 mol%) was
238	dispersed in PBS containing FITC-OVA (4 mg/mL). DC2.4 cells (3.0×10^5 cells)
239	cultured for 2 days in a glass bottom dish were washed twice with PBS and then
240	incubated in the culture medium (1.0 mL). Liposomes (1 mM lipid concentration, 1.0
241	mL) were added gently to the cells and incubated for 4 h at 37°C. After incubation, the
242	cells were washed with PBS three times. Fluorescence intensity of these cells was
243	determined by a flow cytometric analysis (CytoFlex, Beckman Coulter, Inc.). 16

244 2.8. Cytokine production from dendritic cell line

245	DC2.4 cells (3×10^5 cells) cultured for 2 days in a six-well plate were washed with
246	PBS twice and then incubated in the culture medium. OVA-loaded liposomes
247	containing MPLA (4 g/mol lipids) (final lipid concentration: 0.5 mM) were added
248	gently to the cells, followed by incubation for 4 h at 37°C. After incubation, the cells
249	were washed with PBS three times and were additionally cultured for 20 h at 37°C.
250	After incubation, supernatants were collected, and cytokine (IL-6 and TNF- α)
251	production was measured using an enzyme-linked immunosorbent assay kit (ELISA
252	Development Kit, PeproTech EC Ltd.) according to the manufacturer's instruction.
253	2.9. Mice
254	Seven-week-old female C57BL/6 mice (H-2 ^b) were purchased from Oriental Yeast
255	Co., Ltd (Tokyo, Japan). Animal experiments using OVA were approved by the
256	Institutional Animal Experimentation Committee in Osaka Prefecture University
257	(Approval No. 24-2) and were performed in compliance with the institutional guidelines
258	of animal care and use. Nine-week-old BALB/c mice or CBF1 mice (H-2 ^{b/d}) were bred
259	in SPF facility of Kochi University. Animal experiments using antigenic peptides were
260	approved by the Institutional Animal Experimentation Committee in Kochi University

261	(Approval No. H-00127) and were performed in compliance with the institutional
262	guidelines of animal care and use.
263	2.10. Detection of antigen-specific antibodies in sera
264	On days 0 and 7, 50 μ g of OVA-loaded liposomes containing MPLA (4 g/mol
265	lipids) were subcutaneously injected into the back of the mice under anesthesia with
266	isoflurane. After 7 days from final immunization, sera were collected and OVA-specific
267	antibody in sera was detected by ELISA.
268	2.11 Induction of antitumor immunity
200	
269	E.G7-OVA cells, OVA-expressing T-lymphoma, $(1.0 \times 10^6 \text{ cells/mouse})$ were
269 270	E.G7-OVA cells, OVA-expressing T-lymphoma, $(1.0 \times 10^6 \text{ cells/mouse})$ were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with
269 270 271	E.G7-OVA cells, OVA-expressing T-lymphoma, $(1.0 \times 10^6 \text{ cells/mouse})$ were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On days 5 and 12, 50 µg of OVA-loaded liposomes containing MPLA (4
269270271272	E.G7-OVA cells, OVA-expressing T-lymphoma, $(1.0 \times 10^6 \text{ cells/mouse})$ were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On days 5 and 12, 50 µg of OVA-loaded liposomes containing MPLA (4 g/mol lipids) were subcutaneously injected into the right back of the mice under
 269 270 271 272 273 	E.G7-OVA cells, OVA-expressing T-lymphoma, $(1.0 \times 10^6 \text{ cells/mouse})$ were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On days 5 and 12, 50 µg of OVA-loaded liposomes containing MPLA (4 g/mol lipids) were subcutaneously injected into the right back of the mice under anesthesia with isoflurane. Tumor sizes were monitored from the day of tumor
 269 270 271 272 273 274 	E.G7-OVA cells, OVA-expressing T-lymphoma, $(1.0 \times 10^{6} \text{ cells/mouse})$ were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On days 5 and 12, 50 µg of OVA-loaded liposomes containing MPLA (4 g/mol lipids) were subcutaneously injected into the right back of the mice under anesthesia with isoflurane. Tumor sizes were monitored from the day of tumor inoculation. Mice immunized with PBS were used as a control to confirm the

- 275 development of tumors following the first inoculation of E.G7-OVA cells. Mice were
- 276 sacrificed when tumor volumes became over $2,000 \text{ mm}^3$.
- 277 2.12. In vivo induction of peptide-specific Th cells

278	An I-A ^d -binding ovalbumin peptide PtOVII (PSVHAAHAEINEAGRP $_{\beta}$ A, 327-
279	339) bearing peptidase-resistant flanking sequences (to be published elsewhere), or a
280	tumor peptide from mouse WT1 tumor antigen sW336 (KLSHLQMHSRK, 336-346)
281	were synthesized manually by Fmoc chemistry and purified by reverse phase HPLC to
282	the purity of $> 95\%$. Peptide-loaded liposomes were prepared as described above except
283	that a mixture of EYPC, CHexDL-G1U and MPLA was dispersed in PBS containing
284	peptides (1 mg/mL). A group of three mice, BALB/c for PtOVII and CBF1 (BALB/c x
285	C57BL/6, H-2 ^{b/d}) for sW336 were immunized three times for 20 nmol PtOVII or four
286	times for 50 nmol sW336 every week by footpad injection. For comparison, 100 μL of
287	the 1:1 mixture of 50 nmol peptide and Freund's complete adjuvant (FA) was used for
288	priming of sW336 followed by boost immunizations with the peptide in Freund's
289	incomplete adjuvant containing pertussis whole cell vaccine ²⁷ . Seven days after final
290	immunization, splenocytes were harvested from the mice and were cultured for 4 days
291	in the presence of corresponding antigenic peptide. Peptide-specific cell proliferation in
292	splenocytes was detected using ³ H thymidine uptake.

293 2.13. Statistical analysis

Statistically significant differences between experimental groups were determined 294

using Prism software (v8, GraphPad). Where one-way ANOVA followed by Tukey's 295

296	HSD post hoc test was used, variance between groups was found to be similar by
297	Brown-Forsythe test. Log-rank test was employed for analysis of survival of mice (Fig.
298	8b). The symbols *, **, *** and **** indicate <i>P</i> values less than 0.05, 0.01, 0.001 and
299	0.0001, respectively.

301 3. Results and Discussion

302 **3.1.** Synthesis and characterization of carboxylated dendron-bearing lipids

\mathbf{a}	\mathbf{n}	`	<u> </u>	1 / 1	• .	• • •	1 1	. 1	1	1	1 .		•	C I	•
- 4	"	4	1 Orboyy	10100 114	110 JJ/0#0	introd	luood 1	പ	androw	11101	da 1710	1 POOOT	10000	t 10 m	11220127
- 1	•	1		іатенті	IIIS WEIE					,	US VIA				יייייי
\sim	•••	9	Curony	Inten al		11111000		ω ω	vii ai oi	11101	GD 11			ι ρι.	IIIIMI y
			2							1				- 1	2

- amines of dendron lipid and acid anhydrides (Scheme S1). Syntheses of dendron lipids
- 305 were confirmed by the presence of carboxylated unit-derived proton peaks at 1.03 ppm

306 for MGlu unit and 1.2–2.0 ppm for CHex unit in ¹H NMR charts and by mass

- 307 spectrometric analysis, as reported in the *Materials and Experiments* section.
- 308 Assembling structures of carboxylated dendron lipids were investigated by
- 309 measuring the π -A isotherm of each dendron lipid monolayer at various degrees of pH
- 310 (Fig. 3). Surface pressures of all dendron lipid monolayers increased along with the
- 311 decrease of the occupied area of lipids (Fig. 3A–D). To elucidate the behavior of
- 312 dendron lipids at liposomal membrane, the occupied area of dendron lipids at surface

325	Figure 3. π-A isotherms of (A) MGluDL-G1U, (B) CHexDL-G1U, (C) CHexDL-G1S,
326	and (D) CHexDL-G2S monolayers at various pH and 37 °C. (E and F) pH-Dependence
327	of the molecular surface area for various dendron lipids at surface pressure of 25 mN/m
328	at 37 °C. (G) Plausible molecular behaviors of dendron lipids at the air-water interface.
329	

330 In our earlier report, dendron lipid without carboxylated units (DL-G1S) takes a 331 vesicle structure at alkaline and neutral pH, whereas the vesicle structure was collapsed into a micelle-like structure responding to acidic pH²⁴. Such a change in the assembling 332 333 structure is understood according to the change in the apparent hydrophilic and 334 hydrophobic balance of the lipid molecule after protonation of primary and tertiary 335 amines of dendron moiety. For this study, primary amines of dendron lipid are 336 converted to carboxylated units, which are expected to change the pH-sensitivity of 337 dendron lipid considerably. Indeed, CHexDL-G2S suspension at pH 7.4 was 338 transparent, but it became turbid at pH 5.5 and became transparent again at pH 3.0 (Fig. 339 S1A). Figures S1B and S1C respectively depict the diameters and size distribution of 340 dendron lipid suspensions at various pH. The MGluDL-G1U suspension exhibited an 341 almost identical diameter change profile to that of the CHexDL-G2S suspension: small size at alkaline pH, aggregation at pH 6.0-4.0, and a marked decrease in diameter at 342

343	pH<4. In contrast, CHexDL-G1U and CHexDL-G1S showed a small size at alkaline pH
344	and aggregation in the low pH region. Both MGluDL-G1U and CHexDL-G2S might
345	form aggregates after protonation of the carboxy group, but these aggregates might be
346	re-dispersed after protonation of tertiary amines in dendron moiety at lower pH. Also,
347	CHexDL-G1S and CHexDL-G1U formed aggregates after protonation of carboxy
348	groups, but the strong hydrophobic interaction between cyclohexyl units might interfere
349	with the redispersion of the aggregates, even after protonation of tertiary amines at low
350	pH.
351	
252	
352	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes
352 353	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes Next, carboxylated dendron lipid-containing liposomes were prepared for pH-
352353354	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes Next, carboxylated dendron lipid-containing liposomes were prepared for pH- sensitizing of conventional liposome carriers. Pyranine and its quencher (DPX) were
352353354355	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes Next, carboxylated dendron lipid-containing liposomes were prepared for pH- sensitizing of conventional liposome carriers. Pyranine and its quencher (DPX) were encapsulated into these liposomes to evaluate the pH-responsive content release
 352 353 354 355 356 	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes Next, carboxylated dendron lipid-containing liposomes were prepared for pH- sensitizing of conventional liposome carriers. Pyranine and its quencher (DPX) were encapsulated into these liposomes to evaluate the pH-responsive content release behavior. Pyranine fluorescence after disruption of liposomes was almost identical for
 352 353 354 355 356 357 	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes Next, carboxylated dendron lipid-containing liposomes were prepared for pH- sensitizing of conventional liposome carriers. Pyranine and its quencher (DPX) were encapsulated into these liposomes to evaluate the pH-responsive content release behavior. Pyranine fluorescence after disruption of liposomes was almost identical for all liposomes (Table S1), suggesting that the encapsulation amounts of pyranine was
 352 353 353 354 355 356 357 358 	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes Next, carboxylated dendron lipid-containing liposomes were prepared for pH- sensitizing of conventional liposome carriers. Pyranine and its quencher (DPX) were encapsulated into these liposomes to evaluate the pH-responsive content release behavior. Pyranine fluorescence after disruption of liposomes was almost identical for all liposomes (Table S1), suggesting that the encapsulation amounts of pyranine was same between samples. Liposomes without carboxylated dendron lipids (EYPC)
 352 353 354 355 356 357 358 359 	3.2. pH-sensitive behaviors of dendron lipid-containing liposomes Next, carboxylated dendron lipid-containing liposomes were prepared for pH- sensitizing of conventional liposome carriers. Pyranine and its quencher (DPX) were encapsulated into these liposomes to evaluate the pH-responsive content release behavior. Pyranine fluorescence after disruption of liposomes was almost identical for all liposomes (Table S1), suggesting that the encapsulation amounts of pyranine was same between samples. Liposomes without carboxylated dendron lipids (EYPC) showed negligible content release at any pH, indicating that EYPC liposome has no pH-

361	retained pyranine at alkaline pH and physiological pH, although these liposomes
362	induced content release at a lower pH condition (Fig. S2). The content release behavior
363	varied with carboxylated units, alkyl chain structure, dendron generation, and dendron
364	lipid contents. To compare these differences, release% at 15 min was used as shown in
365	Fig. 4. Figure 4A depicts the pH-dependence of pyranine release for 25 mol% dendron
366	lipid-containing liposomes. All dendron lipid-containing liposomes induced content
367	release with pH decreasing. At lower pH, protonated carboxylated units might
368	destabilize liposomal membrane via hydrophobic interaction, as reported earlier in the
369	literature ¹⁹ . Compared with MGluDL-G1U, CHexDL-G1U liposomes induced
370	significantly higher content release at weakly acidic pH, indicating that bulkier CHex
371	units disrupted liposomal membranes more effectively than MGlu units did. The content
372	release% of CHexDL-G1S liposomes was less than CHexDL-G1U liposomes.
373	Incorporation of octadecyl groups of CHexDL-G1S might increase membrane stability
374	compared with unsaturated oleyl groups of CHexDL-G1U, resulting in decreased
375	content release at the same pH condition. According to results of DSC analysis of
376	CHexDL-G1S assemblies and CHexDL-G1S-containing liposomes and comparison of
377	ΔH (Fig. S3), CHexDL-G1S took a gel phase at 37 °C. Approx. 12% of CHexDL-G1S
378	formed the domain in the EYPC liposomal membrane. We were unable to obtain 25

384 physiological condition.

386 Figure 4. pH-Dependence of pyranine release at 15 min from various dendron

387 lipid/EYPC liposomes in PBS at 37 °C. Lipid concentration was 2.0×10^{-5} M: (A)

388 Various G1 dendron lipid (25 mol%)-containing liposomes and (B) CHexDL-G1S and

390

391 To elucidate the pH-sensitive content release behavior of carboxylated dendron

392 lipid-containing liposomes, diameters at various pH were investigated (Fig. S4). All

393	liposomes had around 100 nm size in the high pH region. However, MGluDL-G1U
394	liposomes and CHexDL-G2S liposomes exhibited a marked increase in size at the
395	weakly acidic pH region, whereas particle sizes of these liposomes became around 100
396	nm at even lower pH regions. These liposomes might be mutually associated at weakly
397	acidic pH via hydrophobic interaction between protonated MGlu units or CHex units,
398	although these aggregates are dissociated by electrostatic repulsion of protonated
399	tertiary amines at low acidic pH. By contrast, no change was observed for the diameter
400	of CHexDL-G1S and CHexDL-G1U liposomes at any pH (Fig. S4). These results
401	suggest that CHexDLs interacted with their own liposomal membranes rather than other
402	liposomes and induced content release from the liposomes.
403	Figure 5 shows the zeta potential of liposomes at various pH. Carboxylated dendron
404	lipid-containing liposomes possess negative zeta potential at the alkaline pH region.
405	With decreasing pH, the zeta potential of these liposomes changed from negative to
406	positive charge. Results show that MGluDL-G1U liposomes possessed positive charge
407	at less than pH 6, whereas CHexDL-G1U, CHexDL-G1S and CHexDL-G2S-containing
408	liposomes possessed positive zeta potential below pH 8.0, 7.5 and 7.0, respectively.
409	Acid-base titration was performed to elucidate the protonation behavior of dendron
410	lipids (Fig. S5). From the titration curve of DL-G0.5U, which has only tertiary amines

411	to be protonated in dendron moiety, protonation of tertiary amines in dendron moiety
412	occurred below pH 7.0; it was promoted below pH 4.5. For MGluDL-G1U, the degree
413	of protonation at pH 7.0 was almost 50%, indicating that carboxy groups in MGlu units
414	were first protonated during pH 10-7.0; then tertiary amines were protonated. For
415	CHexDL-G1U and CHexDL-G1S, the protonation of CHexDL-G1U during pH 10-7.0
416	was promoted compared with CHexDL-G1S probably because of fluidic characteristic
417	of CHexDL-G1U assemblies. The degree of protonation at pH 6.0 was almost 25%,
418	indicating that one carboxy group in the CHex unit was protonated at pH 10-6.0. Then
419	tertiary amines were protonated (Fig. S5). These protonation behaviors of CHexDLs
420	remarkably differ from the change in zeta potential of CHexDL-G1U and CHexDL-
421	G1S-containing liposomes, for which zeta potentials became almost neutral at pH 7.5
422	and 8.0, respectively. The protonation of carboxy groups in CHexDL might be
423	promoted because CHexDL molecules are buried in lipid membrane having
424	hydrophobic parts near dendron moiety. Thus, accurate evaluation of ionic state of
425	dendron lipid molecules seems difficult only from titration curves because the titration
426	was performed as lipid assemblies, not as single lipid molecule. Considering the zeta
427	potential change, plausible protonation behaviors of CHexDL and MGluDL in
428	liposomes are presented in Fig. 5. From comparison between zeta potential change and

429	content release behaviors, the content release was induced when the zeta potential
430	changed to a positive charge. Therefore, the content release is expected to be induced by
431	destabilization of liposomal membrane via hydrophobic interaction of the protonated
432	carboxylated units and by temporary pore formation on the lipid membrane via
433	electrostatic repulsion between tertiary amines in the dendron moiety (Fig. 1). In
434	addition, membrane fluidity derived from unsaturated allyl chains (CHexDL-G1U
435	compared with CHexDL-G1S) and the bulkiness of head group (CHexDL-G2S
436	compared with CHexDL-G1S as shown in Fig. 3F) might also affect the extents of
437	pyranine leakage from these liposomes.

439 **Figure 5.** ζ-potentials of various dendron lipid/EYPC liposomes at various pH.

440 Comparison of MGluDL-G1U and CHexDL-G1U dendron lipid (25 mol%)-containing

- 441 liposomes is shown with a comparison of CHexDL-G1S and CHexDL-G2S dendron
- 442 lipid (10 mol%)-containing liposomes, and proposed charged states of dendron lipids on
- the liposome surface at various pH.
- 444

3.4. Intracellular distribution of dendron lipid-containing liposomes

446	Considering pH-responsive content release properties of carboxylated dendron
447	lipid-containing liposomes, we used confocal laser scanning microscopy to investigate
448	the intracellular distribution of liposomes. Rh-PE-labeled and almost same amount of
449	calcein-loaded liposomes (Table S1) were incubated with HeLa cells for 4 h. Then lipid-
450	derived fluorescence (Rh-PE) and released content-derived fluorescence (calcein
451	fluorescence is quenched when encapsulated in the liposomes ²⁹) were observed (Fig. 6).
452	For all liposomes, red fluorescence dots were observed from the cells, meaning that all
453	liposomes were internalized to these cells via endocytosis. Slight fluorescence derived
454	from calcein was detected from cells treated with EYPC liposomes and MGluDL-G1U-
455	containing liposomes, suggesting that these liposomes did not induce calcein release
456	under these experimental conditions. In contrast, calcein fluorescence dots were
457	observed from cells treated with CHexDL-containing liposomes, indicating that calcein
458	release was induced by these liposomes. It is particularly interesting that calcein release
459	was observed near the nucleus in most cases.

461 Figure 6. Confocal laser scanning microscopic (CLSM) images of HeLa cells treated
462 with rhodamine-PE-labeled and calcein-loaded liposomes of various kinds for 4 h at 37
463 °C in the presence of serum. The cell nucleus was stained with Hoechst. Scale bar
464 represents 10 μm. Dendron lipid contents in the liposomes were 25 mol%, except for
465 CHexDL-G2S (10 mol%).

470 calcein fluorescence was colocalized with these organelles. For Fig. S7, the observation 471 time was changed to reveal the content-release dynamics. For CHexDL-containing 472 liposomes, calcein fluorescence was overlapped with early endosome-derived 473 fluorescence, even for 1 h incubation. Considering that CHexDL-containing liposomes 474 showed immediate content release below pH 7.0 within 15 min (Fig. S2 and 4A), 475 CHexDL-containing liposomes achieved content release for early endosomes 476 immediately after internalization into the cells. 477 For EYPC and MGluDL-G1U liposomes, released calcein fluorescence dots were 478 detectable after 24 h incubation and were colocalized with late endosome-derived or

479 lysosome-derived fluorescence (Fig. S7). These results indicate that EYPC liposomes

480 are degraded in late endosomes or lysosomes within 24 h and also indicate that

MGluDL-G1U liposomes can induce content release at late endosomes or lysosomes by

482 long-term incubation. Results show that intracellular content release behavior, timing,

483 and sites can be changed by adjusting the pH-sensitivity of liposomes using different

484 carboxylated units on dendron lipids.

485

481

486 3.5. Cellular association of dendron lipid-containing liposomes with immune cells

487 Precise control of the intracellular fate of cargo is expected to support a precision

488 therapeutic approach. For induction of antigen-specific immunity, antigen-presenting

cells such as dendritic cells, play a crucially important role³⁰. Especially, the 489

490 intracellular distribution of antigenic proteins or peptides strongly affects the induced

immune responses^{17, 18}. Antigen release into cytosol or at very weakly acidic 491

492 compartments such as early endosomes promotes MHC class I-mediated antigen
493 presentation, resulting in the induction of cellular immune responses^{17, 18}. In contrast,
494 antigen released in lysosomes is carried onto MHC class II molecules to induce helper T
495 cell (Th) responses, such as IgG antibody production or CTL activation. Considering
496 the performance of carboxylated dendron lipid-containing liposomes, these liposomes
497 were applied to antigen delivery to dendritic cells.

498 Figure 7A represents the cellular association of liposomes to the dendritic cell line. 499 Modification of carboxylated dendron lipids into EYPC liposomes increased the cellular 500 association 1.5–4 times. Figure S8 portrays the intracellular behavior of Rh-PE-labeled 501 and calcein-loaded liposomes. Similarly to the case of HeLa cells, all liposomes were 502 taken up by the cells, whereas remarkable calcein release in the cells was induced by 503 CHexDL-containing liposomes. To evaluate intracellular antigen delivery, FITC-labeled 504 OVA was encapsulated into the liposomes; also, cellular fluorescence was observed by 505 CLSM (Fig. 7B). OVA encapsulation efficiency for each liposome was almost identical 506 according to the analysis of protein and lipid concentrations for liposomes (Table S1). 507 The FITC fluorescence is not quenched irrespective of encapsulation or release from the 508 liposomes. For cells treated with FITC-OVA-loaded liposomes of all types, green 509 fluorescence dots were observed and were colocalized with Rh-PE fluorescence. These 510 results indicate that FITC-OVA molecules are located in endo/lysosomes, not in 511 cytosol, even in cases of pH-responsive MGluDL-containing or CHexDL-containing 512 liposomes, which is completely different from our earlier systems using MGlu or CHex unit-introduced polymer-based cytosolic delivery liposomes^{21, 22, 31}. MGlu or CHex unit-513 514 introduced polymers interact with other membranes such as endosomes or lysosomes

via hydrophobic interaction after protonation of carboxy groups in MGlu or CHex units^{21, 22, 31}, whereas carboxylated DL-containing liposomes mainly interacted with their own liposomal membrane, as discussed above. These differences in intracellular delivery performance are expected to provide important information related to the molecular design of pH-sensitive materials for precise control of the intracellular fate of cargo.

Figure 7. (A) Mean fluorescence intensity for DC2.4 cells treated with various dendron
lipid-containing liposomes labeled with Rh-PE for 4 h at 37 °C in the presence of
serum. (B) CLSM images of DC2.4 cells treated with Rh-PE-labeled and FITC-OVAloaded liposomes of various kinds for 4 h at 37 °C in the presence of serum. The scale
bar represents 10 μm.

527

528 **3.6.** Immunity-activating properties of dendron lipid-containing liposomes

529	Control of intracellular fate of antigen and maturation of dendritic cells are both
530	crucially important to induce antigen-specific immune responses. Therefore, MPLA
531	(TLR4 agonist) was incorporated into liposomes for providing adjuvant function. After
532	treatment of these liposomes, inflammatory cytokine production from dendritic cells
533	was promoted (Fig. S9A). CHexDL-containing liposomes induced slightly high
534	cytokine production, suggesting an additional adjuvant effect derived from CHex units,
535	as reported ²¹ .
536	Because antigenic proteins were released in endo/lysosomes (Fig. 7A), the
537	induction of humoral immune responses in mice was evaluated. We twice
538	subcutaneously injected OVA-loaded liposomes into mice. After 7 days, OVA-specific
539	antibody in serum was detected using ELISA (Fig. S9B). No antibody was detected
540	from PBS-immunized mice, although OVA-specific IgG1 was produced in sera of mice
541	that had been immunized with OVA-loaded liposomes. CHexDL-G1U liposomes
542	induced slightly higher antibody production than other formulations, which might
543	reflect its additional adjuvant effect (Fig. S9A).

3.7. Induction of anitumor effects by dendron lipid-containing liposomes

546	To assess therapeutic effects of liposomes on immunotherapy, the prophylactic
547	effect of carboxylated dendron lipid-containing liposomes was evaluated (Fig. S10).
548	After immunization of PBS or OVA-loaded CHexDL-G1U liposomes, mice were
549	inoculated OVA-expressing tumor cells (E.G7-OVA cells). In the case of PBS-treated
550	mice, tumors started to grow 4 days after tumor inoculation. By contrast, no tumor
551	growth was observed from mice immunized with OVA-loaded CHexDL-G1U
552	liposomes. This finding suggests that OVA-loaded CHexDL-G1U liposomes can induce
553	not only humoral immunity (Fig. S9B) but also cellular immunity, which directly
554	attacks antigen-expressing tumor cells. Indeed, OVA-specific IFN- γ secretion from
555	splenocytes, which indicates the induction of Th1 cells and/or CTLs, was promoted by
556	pH-sensitive dendron lipid-containing liposomes (Fig. S11A). In addition, pH-sensitive
557	dendron lipid-containing liposomes induced higher OVA-specific CTLs in spleen than
558	EYPC liposomes did (Fig. S11B). Furthermore, many CD8-positive cells (CTLs) were
559	observed in the tumor tissues from the mice immunized with pH-sensitive dendron
560	lipid-containing liposomes (Fig. S11C). These results apparently indicate that pH-
561	sensitive dendron-bearing lipid-containing liposomes could induce strong OVA-specific
562	cellular immune responses via cross-presentation.

563	Encouraged by these results, therapeutic effects of OVA-loaded liposomes on
564	tumor-bearing mice were examined (Fig. 8). E.G7-OVA cells were inoculated to the
565	mice. Then, OVA-loaded liposomes, OVA solution or PBS was injected subcutaneously
566	at 5 and 12 days after tumor inoculation. Figure 8A shows that OVA solution exhibited
567	no tumor suppressive effect. The OVA-loaded EYPC liposomes induced some degree
568	of tumor suppression. Whereas, MGluDL-G1U- or CHexDL-G1U-containing liposomes
569	showed regression of tumor volume until day 20. Figure 8B shows that CHexDL-G1U-
570	containing liposomes induced a remarkably strong antitumor effect compared to that of
571	CHexDL-G1S-containing liposomes. Whereas tumor reoccurrence took place in some
572	mice after Day 20 (Fig. 8A) or 30 (Fig. 8B) even in CHexDL-G1U-containing
573	liposome-treated mice. Tumor reoccurrence might be induced after diminishing of CTL
574	activity but its occurring rate and timing varied in each mouse. Furthermore, mice
575	survival results are presented in Fig. 8C. All carboxylated dendron lipid-containing
576	liposomes extended mice survival significantly compared with PBS, OVA solution, and
577	EYPC liposomes. Especially, CHexDL-G1U-containing liposomes significantly
578	prolonged mice survival compared to other liposomes: 40% of mice were completely
579	cured. Although liposome uptake performance of MGluDL-G1U- and CHexDL-G1U-
580	containing liposomes was identical (Fig. 7A), CHexDL-G1U-containing liposomes

showed the highest content-release behavior (Fig. 4A), content release in early
endosomes (Fig. S6–S8 and 7B), and additional adjuvant effect (Fig. S9A). Such highly
intracellular delivery performance and adjuvant function can be expected to induce
cross-presentation of OVA via vacuolar pathway to induce OVA-specific cellular
immunity and CTL infiltration into tumor tissues (Fig. S11), thereby producing strong

Figure 8. Antitumor effects induced by subcutaneous administration of OVA-loaded

590	inoculated subcutaneously into the back of C57BL/6 mice. Then tumor volume (A and
591	B) and survival of mice (C) were monitored. Mice were immunized with various
592	liposomes loaded with OVA (50 $\mu g)$ or OVA solution twice at day 5 and day 12. PBS-
593	treated mice were used as a control. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, and **** P
594	<0.0001.
595	
596	3.8. Induction of natural tumor antigen-specific Th cells by dendron lipid-
597	containing liposomes
598	Carboxylated dendron lipid-containing liposomes were applied further to antigenic
599	peptide delivery. Compared with whole protein, peptide can be synthesized chemically
600	that excludes the problems of biological contaminants in producing drugs. In addition,
601	peptide sequence can be designed freely and are cost-efficient. First, OVA class II
602	epitope-containing peptide (PtOVII) was encapsulated into CHexDL-G1U-containing
603	liposomes. After immunization to mice, peptide-specific proliferation of helper T
604	lymphocytes in splenocytes was evaluated (Fig. 9A). Compared with PBS, peptide
605	alone, peptide-loaded CHexDL-G1U-containing liposomes induced significant cell
606	proliferation in splenocytes from low peptide concentration in <i>in vitro</i> culture, which
607	indicates that CHexDL-G1U-containing liposomes can promote induction of OVA-

608	specific Th subsets. Although OVA II peptides might be released at early endosomes as
609	a result of the pH-sensitivity of CHexDL-G1U-containing liposomes (Fig. S6 and S7),
610	OVA II peptide cannot bind to MHC class I molecules in early endosomes. After
611	transfer into late endosomes/lysosomes, OVA II peptide might bind to MHC II
612	molecules and be presented to CD4+ T cells.
613	Finally, WT-1 tumor antigenic peptide with wild type sequence was used to
614	evaluate the potential of CHexDL-G1U-containing liposomes to induce aggressive T
615	cell responses sufficient for clinical use. Tumor antigens are regarded as self thus are
616	under immune tolerance. Therefore, the induction of natural tumor antigen-specific
617	immune responses is quite challenging. WT1-derived helper T cell epitope peptide
618	(sW336) was incorporated into CHexDL-G1U-containing liposomes. After
619	immunization, peptide-specific T cell proliferation was observed (Fig. 9B).
620	Immunization of sW336 peptide emulsified in Freund's complete adjuvant as clinically-
621	used formulation, however, induced minimal proliferation. Surprisingly, CHexDL-
622	G1U-containing liposomes induced significantly high proliferation in an antigen-
623	specific manner. These results suggest that CHexDL-G1U-containing liposome is
624	applicable not only for immunization of highly antigenic foreign peptide (OVA
625	peptide), but also for natural tumor antigens of clinical use.

Figure 9. Proliferation of peptide-specific Th cells in splenocytes from mice immunized
with (A) PtOVII peptide- or (B) WT1-derived peptide-loaded CHexDL-G1U-containing
liposomes. (A) BALB/c mice were immunized in footpads with PtOVII (30 nmol)-

630 loaded CHexDL-G1U-containing liposomes three times at one week intervals. (B)

631 CBF1 mice were immunized in footpads with WT1-derived peptide (50 nmol)-loaded

632 CHexDL-G1U-containing liposomes or peptide/Freund's complete adjuvant (FA)

633 emulsion four times at one-week intervals. Seven days after the last immunization,

634 splenocytes were harvested from the mice. Proliferation of peptide-specific Th cells was

635 detected by ³H thymidine uptake. Statistical analyses were done using analysis of

636 variance (ANOVA) with Tukey's test. **P < 0.01; ***P < 0.001.

637

638 4. Conclusion

639	For this study, carboxylated unit-introduced polyamidoamine dendron lipids were
640	synthesized for precise control of intracellular distribution of the cargo. Carboxylated
641	dendron lipid-containing liposomes induced pH-responsive content release in the very
642	weakly acidic pH region and released their contents at early endosomes or late
643	endosomes/lysosomes. Carboxylated dendron lipid-containing liposomes with early
644	endosome release property achieved induction of antigen-specific antibody production,
645	induction of antigen-specific CTLs, prophylactic effect of tumor cells, regression of
646	solid tumors, and induction of WT1 peptide-specific Th responses. Results demonstrate
647	that carboxylated dendron lipid-containing liposomes are promising as antigen delivery
648	carriers for induction of antigen-specific cancer immunity and for establishment of
649	peptide vaccine-based cancer immunotherapy.
650	
651	Acknowledgments
652	This research was funded by Grants-in-aid for Scientific Research from the
653	Ministry of Education, Science, Sports, and Culture in Japan, grant number (25133707,
654	26242049 and 15H03024). The authors appreciate Prof. Hiroyuki Nakazumi, Prof.

655 Shigeyuki Yagi and Dr. Takeshi Maeda on their experimental help on ESI-MS.

657	1. Lee,	Y.: Thom	pson, D.	H. Stin	nuli-resp	onsive li	posomes :	for drug	delivery	. Wilev
		,						<i>L</i>)	_	~

- 658 Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9 (5), e1450.
- 659 2. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery.
- 660 Nat. Mater. 2013, 12 (11), 991–1003.
- 661 3. Kneidl, B.; Peller, M.; Winter, G.; Lindner, L. H.; Hossann, M. Thermosensitive
- 662 liposomal drug delivery systems: state of the art review. *Int. J. Nanomedicine* 2014, 9,
 663 4387–4398.
- 664 4. Shen, S.; Huang, D.; Cao, J.; Chen, Y.; Zhang, X.; Guo, S.; Ma, W.; Qi, X.; Ge, Y.;
- 665 Wu, L. Magnetic liposomes for light-sensitive drug delivery and combined
- 666 photothermal-chemotherapy of tumors. J. Mater. Chem. B 2019, 7, 1096–1106.
- 667
 5. Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y.
 668
 Acidic extracellular microenvironment and cancer. *Cancer Cell Int.* 2013, *13* (1), 89.
- 6. Swietach, P.; Vaughan-Jones, R. D.; Harris, A. L.; Hulikova, A. The chemistry,
- 670 physiology and pathology of pH in cancer. *Philos. Trans. R. Soc. Lond. B Biol. Sci.*
- 671 **2014**, *369* (1638), 20130099.

672	7. Kanamala, M.; Palme	r, B. D.; Jamieson	, S. M. F.; Wilson	, W. R.; Wu, Z. Dual p	νH-
	, , ,				

- 673 sensitive liposomes with low pH-triggered sheddable PEG for enhanced tumor-targeted
- 674 drug delivery. *Nanomedicine* **2019**, *14* (15), 1971–1989.
- 8. Fang, Y.; Xue, J.; Gao, S.; Lu, A.; Yang, D.; Jiang, H.; He, Y.; Shi, K. Cleavable
- 676 PEGylation: a strategy for overcoming the "PEG dilemma" in efficient drug delivery.
- 677 *Drug Deliv.* **2017**, *24* (sup1), 22–32.
- 678
 9. Hafez, I. M.; Ansell, S.; Cullis, P. R. Tunable pH-sensitive liposomes composed of
 679
 mixtures of cationic and anionic lipids. *Biophys. J.* 2000, 79 (3), 1438–1446.
- 680 10. Slepushkin, V. A.; Simões, S.; Dazin, P.; Newman, M. S.; Guo, L. S.; Pedroso de
- 681 Lima, M. C.; Düzgüneş, N. Sterically stabilized pH-sensitive liposomes. Intracellular
- delivery of aqueous contents and prolonged circulation in vivo. J. Biol. Chem. 1997, 272
- 683 (4), 2382–2388.
- 684 11. Monteiro, L. O. F.; Malachias, Â.; Pound-Lana, G.; Magalhães-Paniago, R.;
- 685 Mosqueira, V. C. F.; Oliveira, M. C.; de Barros, A. L. B.; Leite, E. A. Paclitaxel-loaded
- 686 pH-sensitive liposome: new insights on structural and physicochemical characterization.
- 687 Langmuir 2018, 34 (20), 5728–5737.

688	12. Hu, YB.; Dammer, E. B.; Ren, RJ.; Wang, G. The endosomal-lysosomal system:
689	from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 2015,
690	4, 18.
691	13. Oishi, M.; Hayashi, H.; Iijima, M.; Nagasaki, Y. Endosomal release and intracellular
692	delivery of anticancer drugs using pH-sensitive PEGylated nanogels. J. Mater. Chem. 2007,
693	17, 3720 – 3725.
694	14. Battistella, C.; Klok, HA. Controlling and monitoring intracellular delivery of
695	anticancer polymer nanomedicines. Macromol. Biosci. 2017, 17 (10) 10.
696	15. Wagner, C. S.; Grotzke, J. E.; Cresswell, P. Intracellular events regulating cross-
697	presentation. Front. Immunol. 2012, 3, 138.
698	16. Blum, J. S.; Wearsch, P. A.; Cresswell, P. Pathways of antigen processing. Annu.
699	<i>Rev. Immunol.</i> 2013 , <i>31</i> , 443–473.
700	17. Embgenbroich, M.; Burgdorf, S. Current concepts of antigen cross-presentation.
701	Front. Immunol. 2018, 9, 1643.
702	18. Joffre, O. P.; Segura, E.; Savina, A.; Amigorena, S. Cross-presentation by dendritic
703	cells. Nat. Rev. Immunol. 2012, 12 (8), 557–569.
704	19. Sakaguchi, N.; Kojima, C.; Harada, A.; Kono, K. Preparation of pH-sensitive

- 705 poly(glycidol) derivatives with varying hydrophobicities: their ability to sensitize stable
- 706 liposomes to pH. *Bioconjug. Chem.* **2008**, *19* (5), 1040–1048.
- 20. Yuba, E.; Tajima, N.; Yoshizaki, Y.; Harada, A.; Hayashi, H.; Kono, K. Dextran
- derivative-based pH-sensitive liposomes for cancer immunotherapy. *Biomaterials* 2014,
 35 (9), 3091–3101.
- 710 21. Yuba, E.; Uesugi, S.; Miyazaki, M.; Kado, Y.; Harada, A.; Kono, K. Development of
- 711 pH-sensitive dextran derivatives with strong adjuvant function and their application to
- 712 antigen delivery. *Membranes* **2017**, 7 (3), 41.
- 713 22. Yuba, E.; Harada, A.; Sakanishi, Y.; Watarai, S.; Kono, K. A liposome-based antigen
- 714 delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy.
- 715 *Biomaterials* **2013**, *34* (12), 3042–3052.
- 716 23. Yoshizaki, Y.; Yuba, E.; Komatsu, T.; Udaka, K.; Harada, A.; Kono, K. Improvement
- 717 of peptide-based tumor immunotherapy using pH-sensitive fusogenic polymer-modified
- 718 liposomes. *Molecules* **2016**, *21* (10), 1284.
- 719 24. Doura, T.; Yamada, M.; Teranishi, R.; Yamamoto, Y.; Sugimoto, T.; Yuba, E.;
- 720 Harada, A.; Kono, K. PAMAM dendron lipid assemblies that undergo structural
- transition in response to weakly acidic pH and their cytoplasmic delivery capability.
- 722 *Langmuir* **2015**, *31* (18), 5105–5114.

- 723 25. Takahashi, T.; Kojima, C.; Harada, A.; Kono, K. Alkyl chain moieties of
- polyamidoamine dendron-bearing lipids influence their function as a nonviral gene vector.
- 725 Bioconjug. Chem. 2007, 18 (4), 1349–1354.
- 726 26. Yuba, E.; Nakajima, Y.; Tsukamoto, K.; Iwashita, S.; Kojima, C.; Harada, A.; Kono,
- 727 K. Effect of unsaturated alkyl chains on transfection activity of poly(amidoamine)
- 728 dendron-bearing lipids. J. Control. Release 2012, 160 (3), 552–560.
- 729 27. Yano, A.; Komatsu, T.; Ishibashi, M.; Udaka, K. Potent CTL induction by a whole
- cell pertussis vaccine in anti-tumor peptide immunotherapy. Microbiol. Immunol. 2007,
- 731 *51* (7), 685–699.
- 732 28. Papahadjopoulos, D.; Kimelberg, H. K. Phospholipid vesicles (liposomes) as models
- 733 for biological membranes: their properties and interactions with cholesterol and proteins.
- 734 Prog. Surf. Sci. 1974, 4, 141–232.
- 735 29. Hamann, S.; Kiilgaard, J. F.; Litman, T.; Alvarez-Leefmans, F. J.; Winther, B. R.;
- 736 Zeuthen, T. Measurement of cell volume changes by fluorescence self-quenching. J.
- 737 Fluor. 2002, 12, 139–145.
- 30. Banchereau, J.; Steinman, R. M. Dendritic cells and the control of immunity. *Nature*
- 739 **1998**, *392* (6673), 245–252.
- 740 31. Yuba, E.; Kono, Y.; Harada, A.; Yokoyama, S.; Arai, M.; Kubo, K.; Kono, K. The

- application of pH-sensitive polymer-lipids to antigen delivery for cancer immunotherapy.
- *Biomaterials* **2013**, *34* (22), 5711–5721.