
GPU-based Parallel Single and Multi-objective
Particle Swarm Optimization for Large Swarms
and High Dimensional Problems

言語: English

出版者:

公開日: 2021-05-11

キーワード (Ja):

キーワード (En):

作成者: HUSSAIN, MD MARUF

メールアドレス:

所属:

メタデータ

https://doi.org/10.24729/00017392URL

PhD Thesis
GPU-based Parallel Single and Multi-objective

Particle Swarm Optimization for
Large Swarms and High Dimensional Problems

By
Md Maruf Hussain

Supervisor
Noriyuki Fujimoto

February 2020
Department of Mathematics and Information Sciences

Graduate School of Science
Osaka Prefecture University

Abstract

The social learning process of birds and fishes inspired the development of the
heuristic Particle Swarm Optimization (PSO) search algorithm. The advancement
of Graphics Processing Units (GPU) and the Compute Unified Device Architecture
(CUDA) platform plays a significant role to reduce the computational time in search
algorithm development. This doctoral thesis paper presents a good implementation
for the Standard Particle Swarm Optimization (SPSO) on a GPU based on the CUDA
architecture, which uses coalescing memory access. Here, we also present an analysis
of the performance of the various Pseudorandom Number Generators (PRNGs) on
a GPU SPSO on the CUDA architecture. The algorithm is evaluated on a suite
of well-known benchmark optimization functions. The experiments are performed
on an NVIDIA GeForce GTX 980 GPU and a single core of 3.20 GHz Intel Core
i5 4570 CPU and the test results demonstrate that the GPU algorithm runs about
maximum 170 times faster than the corresponding CPU algorithm. The success of
the PSO algorithm as a single objective optimizer has motivated us to extend its use
in multi-objective optimization problems (MOOPs). During the last couple of years,
parallel MOPSO (Multi-objective Particle Swarm Optimization) with two or more
objectives has gained a lot of attention in the literature on GPU computing. A number
of implementations have been published for MOPSO on a GPU. However, none of
them have been able to capture good enough Pareto fronts fast. In addition, the
authors have pointed out their limitations in various aspects such as archive handling,
picking up fewer nondominated solutions and so on. Previous literature also lacks
evaluation of its MOPSO implementation with large swarms and high dimensional
problems. This thesis paper presents a faster implementation of parallel MOPSO on
a GPU based on the CUDA architecture. We achieved our faster implementation
by using coalescing memory access, a fast pseudorandom number generator, Thrust
library, CUB library, an atomic function, parallel archiving and so on. The proposed
parallel implementation of MOPSO using a master-slave model provides up to 157
times speedup compared to the corresponding CPU implementation.

As the proposed implementations perform very highly even with increased size of
problem dimensionality and swarm population, it can be widely used in real world
optimization problems.

i

ii

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Noriyuki
Fujimoto for the continuous support of my Ph.D study and research, for his patience,
motivation, enthusiasm, and immense knowledge. His guidance helped me in all the
time of research and writing of this thesis. I could not have imagined having a better
advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.
Yushi Uno and Prof. Kazuhisa Seta, for their encouragement, insightful comments,
and hard questions.

In particular, I am grateful to my labmats Hiroyuki Kobayashi and Hiroshi Hattori
for enlightening me the first glance of research.

Last but not the least, I would like to thank my family: my parents Md Omar
Ali and Mrs Nurun Nahar, my brother Md Obaej Tareq, my sister Shohelly Akther
Shampa and my wife Mahfuza Sharmin for supporting me spiritually throughout my
life.

iii

iv

Contents

1 Introduction 1

2 Background Information 5
2.1 The Particle Swarm Optimization (PSO) 5
2.2 The Standard Particle Swarm Optimization 6
2.3 Multi Objective Optimization Problems (MOOPs) 7
2.4 Multi Objective Particle Swarm Optimization (MOPSO) 9
2.5 GPU Computing . 10
2.6 An Overview of CUDA Architecture 10
2.7 Coalescing Memory Access . 11
2.8 Random Number Generators . 11

2.8.1 Combined Tausworthe Generator 12
2.8.2 Linear Congruential Generator 12
2.8.3 Xorshift RNG . 13
2.8.4 Multiply-with-carry(MWC) . 13
2.8.5 cuRAND Library . 13

2.9 Thrust Library . 14
2.10 CUB Library . 16
2.11 Parallel Models . 16

3 A CUDA Implementation of the Standard Particle Swarm
Optimization 19
3.1 Introduction . 19
3.2 Related Works . 19
3.3 Implementing SPSO Using CUDA . 21
3.4 Experiments and Analysis . 24
3.5 Summary . 28

4 Effect of the Pseudorandom Number Generators on the Standard
Particle Swarm Optimization on a GPU 41
4.1 Introduction . 41
4.2 Our PRNG Implementation . 42

v

CONTENTS

4.3 Experimental Evaluations . 42
4.3.1 Experimental Result . 45
4.3.2 Experimental Analysis . 45

4.4 Summary . 47

5 GPU-based Parallel Multi-objective Particle Swarm Optimization for
Large Swarms and High Dimensional Problems 51
5.1 Introduction . 51
5.2 Our Implementations of MOPSO . 51
5.3 Experimental Evaluations . 55

5.3.1 Environment . 56
5.3.2 Experimental Result . 56
5.3.3 Experimental Analysis . 56
5.3.4 The Bottleneck on a CPU and on a GPU 59

5.4 Related Works . 79
5.5 Summary . 79

6 Conclusion 81

Bibliography 83

Publications of the Author 89
Refereed Journal Paper . 89
Refereed International Conference Papers 89

vi

List of Figures

2.1 Ring topology . 7
2.2 An MOOP. 8
2.3 Memory access on a GPU. 11
2.4 A single step of the combined Tausworthe generator [24]. 12
2.5 Stable and unstable sort. 15

3.1 Our kernel function for computing fitness values and personal bests. . . 23
3.2 Our kernel function for local best. 24
3.3 A simple and efficient implementation of atomicMin function for

non-negative float values. 24
3.4 Difference between integer type and float type. 25
3.5 gBest and generation for f1 to f4 functions 27
3.6 gBest and generation for f5 to f7 functions 28
3.7 Speedup and swarm population for f1 to f4 functions 32
3.8 Speedup and swarm population for f5 to f7 functions 33
3.9 Overlap of computation time as a function of swarm population 35
3.10 Overlap of computation time as a function of dimension 36
3.11 Overlap of loop time as a function of swarm population 37
3.12 Overlap of loop time as a function of dimension 38
3.13 Speedup and dimension for f1 to f4 functions 39
3.14 Speedup and dimension for f5 to f7 functions 40

4.1 a single step TausStep of the combined Tausworthe generator
implementation on a GPU and on a CPU. 43

4.2 Speedup (number of Particles = 2000, number of iterations= 2000) . . 47
4.3 Speedup (number of dimensions = 50, number of iterations= 2000) . . 48

5.1 The master in our GPU MOPSO. 53
5.2 The slaves in our GPU MOPSO. 54
5.3 Our kernel function for initialization (Step 1). 55
5.4 Our kernel function for computing fitness values and personal bests (Step

2). 56

vii

LIST OF FIGURES

5.5 Our kernel function for selecting personal bests to be placed in the
archive (Step 3). 57

5.6 Our kernel function for archiving on a GPU (Step 4). 58
5.7 Our kernel function for computing a new velocity and position of each

particle on a GPU (Step 5). 59
5.8 Our kernel function for generating a Pareto optimal set on a GPU (Step

6). 60
5.9 Pareto fronts constructed on a CPU (n = 1024,d= 30, number of

iterations = 2500). 64
5.10 Pareto fronts constructed on a GPU (n = 1024,d= 30, number of

iterations = 2500). 65
5.11 Pareto fronts constructed on a CPU (n = 32768, d = 30, number of

iterations = 2500). 66
5.12 Pareto fronts constructed on a GPU (n =32768,d = 30, number of

iterations = 2500). 67
5.13 Pareto fronts constructed on a CPU (n = 8192, d = 256, number of

iterations = 2500). 68
5.14 Pareto fronts constructed on a GPU (n = 8192, d = 256, number of

iterations = 2500). 69
5.15 Pareto fronts constructed on a CPU (n=10000 or 20000, d =512,

number of iterations=2500) for Test function 3 and Test function 4. . 70
5.16 Pareto fronts constructed on a GPU (n=10000 or 20000, d =512,

number of iterations=2500) for Test function 3 and Test function 4. . 71
5.17 Pareto fronts constructed on a CPU (n=10000 or 20000, d =1024,

number of iterations=2500) for Test function 3 and Test function 4. . 72
5.18 Pareto fronts constructed on a GPU (n=10000 or 20000, d =1024,

number of iterations=2500) for Test function 3 and Test function 4. . 73
5.19 Overlap of execution time on a GPU (number of dimensions = 30,

number of iterations = 2500). 74
5.20 Overlap of execution time on a GPU (number of particles = 8192,

number of iterations = 2500). 75
5.21 Speedup (number of dimensions = 30, number of iterations = 2500). . 76
5.22 Speedup (number of particles = 8192, number of iterations = 2500). . 77

viii

List of Tables

3.1 Benchmark Test Functions . 26
3.2 GPU SPSO and CPU SPSO on f1 (number of dimensions d = 50) . . 29
3.3 GPU SPSO and CPU SPSO on f2 (number of dimensions d = 50) . . 29
3.4 GPU SPSO and CPU SPSO on f3 (number of dimensions d = 50) . . 30
3.5 GPU SPSO and CPU SPSO on f4 (number of dimensions d = 50) . . 30
3.6 GPU SPSO and CPU SPSO on f5 (number of dimensions d = 50) . . 30
3.7 GPU SPSO and CPU SPSO on f6 (number of dimensions d = 50) . . 31
3.8 GPU SPSO and CPU SPSO on f7 (number of dimensions d = 50) . . 31
3.9 GPU SPSO and CPU SPSO on f1 (number of particles n = 2000) . . 31
3.10 GPU SPSO and CPU SPSO on f2 (number of particles n = 2000) . 32
3.11 GPU SPSO and CPU SPSO on f3 (number of particles n = 2000) . 33
3.12 GPU SPSO and CPU SPSO on f4 (number of particles n = 2000) . 34
3.13 GPU SPSO and CPU SPSO on f5 (number of particles n = 2000) . 34
3.14 GPU SPSO and CPU SPSO on f6 (number of particles n = 2000) . 34
3.15 GPU SPSO and CPU SPSO on f7 (number of particles n = 2000) . 35
3.16 GPU SPSO and CPU SPSO on f1 (number of particles n = 10000,

acceptable optimization value 0.0001 and optimal value for f1 is 0 . . 36
3.17 A Comparison between [36] and ours on f4 (number of dimensions d =

50) . 37

4.1 Benchmark Test Functions[45] for minimization 44
4.2 Impact of the PRNGs on SPSO speedup (number of particles n = 2000,

number of iteration 2000) for f1 . 45
4.3 Impact of the PRNGs on SPSO speedup (number of dimensions d = 50,

number of iteration 2000) for f1 . 45
4.4 Impact of the PRNGs on SPSO speedup (number of particles n = 2000,

number of iteration 2000) for f6 . 45
4.5 Impact of the PRNGs on SPSO speedup (number of dimensions d = 50,

number of iteration 2000) for f6 . 46
4.6 SPSO gBest value (number of particles n = 2000, number of iteration

2000) for f1 . 46

ix

LIST OF TABLES

4.7 SPSO gBest value (number of dimensions d = 50, number of iteration
2000) for f1 . 46

4.8 SPSO gBest value (number of particles n = 2000, number of iteration
2000) for f6 . 49

4.9 SPSO gBest value (number of dimensions d = 50, number of iteration
2000) for f6 . 49

4.10 speedup for large swarm population and high dimensional problems on
a SPSO (number of iterations = 10000) 49

5.1 Four classical benchmark test functions 61
5.2 Speedup of our GPU MOPSO (number d of dimensions = 30, number

of iterations = 2500) for Test function 1. 61
5.3 Speedup of our GPU MOPSO (number d of dimensions = 30, number

of iterations = 2500) for Test function 2. 62
5.4 Speedup of our GPU MOPSO (number d of dimensions = 30, number

of iterations = 2500) for Test function 3. 62
5.5 Speedup of our GPU MOPSO (number d of dimensions = 30, number

of iterations = 2500) for Test function 4. 62
5.6 Speedup of our GPU MOPSO (number n of particles = 8192, number

of iterations = 2500) for Test function 1. 63
5.7 Speedup of our GPU MOPSO (number n of particles = 8192, number

of iterations = 2500) for Test function 2. 63
5.8 Speedup of our GPU MOPSO (number n of particles = 8192, number

of iterations = 2500) for Test function 3. 63
5.9 Speedup of our GPU MOPSO (number n of particles = 8192, number

of iterations = 2500) for Test function 4. 64
5.10 Speedup comparison between [9] and our implementation (number n

of particles = 4096, number of iterations = 250) for Test function 4. 65
5.11 More nondominated solutions and speedup are found when swarm and

dimension are simultaneously larger (number of dimensions = 1024,
number of iteration = 2500, Test function 3). 66

5.12 The bottleneck on a CPU (number d of dimensions = 30, number n of
particles = 2000, number of iterations = 2500) for Test function 4. . 67

5.13 The bottleneck on a GPU (number d of dimensions = 30, number n of
particles = 2000, number of iterations = 2500) for Test function 4. . 78

x

Chapter 1

Introduction

The Particle Swarm Optimization (PSO) algorithm has been first introduced by
Eberhart and Kennedy in 1995 [1], which is one of the most important population
based non-deterministic optimization algorithms for single objective optimization
problems. Since then, many successful applications of PSO have been reported.
In many of those applications, the PSO algorithm has shown several advantages
over other swarm intelligence based optimization algorithms due to its robustness,
efficiency and simplicity. Moreover, compared to other stochastic algorithms, it
usually requires less computational effort and resources [2].

The PSO algorithm maintains a swarm of particles, where each of which represents
a potential solution. Here a swarm can be identified as the population and a particle
as an individual. In a PSO system, each particle flows through a multidimensional
search space and adjusts its position based on its own experience with neighboring
particles.

On a CPU, this process is implemented based on task scheduling into serial
processing, whereas on a GPU, many particles can reach to their positions simultaneo-
usly, which improves the PSO efficiency significantly. In recent years, a GPU
becomes a very popular platform for the realization of parallel computing, mainly
due to changes in architecture and development of CUDA and OpenCL languages.
Previously reported works have shown that the PSO implementation on a GPU
provides a better performance than CPU-based implementations [3] which makes
us interested in this study.

At first, we implemented a good implementation for the Standard Particle Swarm
Optimization (SPSO) on a GPU based on the CUDA architecture, which uses atomic
function, a fast pseudorandom number generator, coalescing memory access. The
algorithm is evaluated on a suite of well-known benchmark optimization functions.
The experiments are performed on an NVIDIA GeForce GTX 980 GPU and a single
core of 3.20 GHz Intel Core i5 4570 CPU and the test results demonstrate that the
GPU algorithm runs about maximum 170 times faster than the corresponding CPU
algorithm [4]. Therefore, this proposed algorithm can be used to improve required

1

CHAPTER 1. INTRODUCTION

time to solve optimization problems. After that, we conducted experiments for testing
the effect of the Pseudorandom Number Generators on the SPSO on a GPU [5]. By
using a single step TausStep of the combined Tausworthe generator, the proposed
parallel implementation of SPSO provides up to 307 times speedup compared to a
serial SPSO implementation. Speedup is greatly accelerated for high dimensional
problems, large particles and complex benchmark functions.

The success of the PSO algorithm as a single objective optimizer has motivated
us to extend its use in other areas. One of such areas is multi-objective optimization.
Multi-objective optimization problems (MOOPs) are very common in real-world opti-
mization fields, where the objectives to be optimized are normally in conflict with
each other. Moore and Chapman proposed the first extension of the PSO strategy
for solving MOOPs (Multi-Objective PSO, MOPSO) in an unpublished manuscript
in 1999 [6].

With big data becoming more important as time goes by, the necessity for faster
methods is growing [7]. The previous implementations of serial and parallel cases of
MOPSO do not meet the requirements of big data. In addition, those implementations
could only handle a limited number of dimensions. The necessity for a better method
is sorely needed.

This thesis paper presents a new GPU-parallelized implementation of MOPSO
(GPU MOPSO) based on a master-slave model for large swarms and high dimensional
optimization problems. This paper also presents a new serial implementation of
MOPSO (CPU MOPSO). Our CPU program uses a single core only although our
CPU has multiple cores. Our CPU MOPSO achieves faster performance for large
swarms and high dimensional optimization problems. The experimental results
show that the proposed GPU MOPSO increases the processing speed compared to
previously proposed approaches on a GPU based on the CUDA architecture. The
proposed parallel implementation of MOPSO using a master-slave model provides up
to 157 times speedup compared to the corresponding CPU implementation. Here, we
investigate a large number of iterations to reach good nondominated solutions which
achieve good Pareto fronts. Pareto fronts of both CPU MOPSO and GPU MOPSO
implementations match very closely to the true Pareto fronts.

Performance of MOPSO is dependent upon an archiving technique. We propose a
simple parallel archiving technique which significantly speeds up the process. Our
serial archiving technique is the same as the parallel archiving except that it is
executed in serial. In our GPU MOPSO, the used PRNG and coalescing memory
access have a positive impact which improve computational time.

In the literature, several models for parallel MOPSO have previously been
proposed. Some of these models are suited for costly platforms. For example, the
island model is suitable for clusters and grids. The diffusion model of multi-objective
evolutionary algorithms is also suitable for another costly platform, massively parallel
processors. In contrast, there are models for more affordable platforms. The
master-slave model [8] and the hierarchical model are both suitable for GPUs, but

2

CHAPTER 1. INTRODUCTION

the hierarchical model tends to be slower than the master-slave model [9].
The doctoral thesis is organized as follows. In Chapter 1, we introduce our

implementations. In Chapter 2, we sketch out briefly PSO, SPSO, MOOPs, MOPSO,
GPU computing, an overview of CUDA architecture coalescing memory access,
random number generators, Thrust library, CUB library and parallel models. In
Chapter 3, we present our CUDA Implementation of SPSO. In Chapter 4, we conduct
experiments for testing the effect of ten Pseudorandom Number Generators on the
SPSO on a GPU. In Chapter 5, we provide our MOPSO implementations on a CPU
and a GPU, analyze experimental results and compare our implementation with the
previous implementation in terms of execution time and speedup. Finally, in Chapter
6, we give some concluding remarks and point out directions for future work.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Background Information

2.1 The Particle Swarm Optimization (PSO)
A PSO system simulates the behaviors of a bird flock. In a bird flock, some birds
are randomly searching food in an area [10]. If there is only one piece of food in the
area, all the birds do not know the exact location of the food. However, with each
iteration, they know how far the food is. For an individual bird the best effective way
to find the food source is to follow the bird which is nearest to the food.

A PSO algorithm follows the similar principle, where it learns from the past
scenario and uses it to solve the optimization problems. Compared to the bird
scenario, each single solution in PSO is a bird in the search space. We call it a
particle. In our paper, the number of particles is represented by n and the number
of dimensions is represented by d. All particles are evaluated by their fitness values
which are evaluated by the fitness function to be optimized, and each particle has a
velocity to direct the flying of the particle.

Initially, a PSO starts with a group of random particles (solutions). Each particle
then searches for optima by updating generations. Each particle is updated by
following two “best” values in every iteration. The first best value is the personal
best which is the best fitness value it has achieved so far and called as pBest. The
second “best” value is the value that is obtained by any particle in the population.
This best value is a global best and called gBest.

In a PSO, the position and velocity of a particle within the domain of the fitness
function are computed by two following equations:

Velocity update :

vij(t+ 1) = w(vij(t)
+c1 ∗ rand1() ∗ (pBestPosij − xij(t)))
+c2 ∗ rand2() ∗ (gBestPosj − xij(t))))

Position update:

5

CHAPTER 2. BACKGROUND INFORMATION

xij(t+ 1) = xij(t) + vij(t+ 1)

where i is the identifier of a particle and t is time in generation. vij(t) is the jth
component of the current velocity vector and xij(t) is the jth component of the current
position vector of the ith particle. pBestPosij is jth component of the personal best
position of the ith particle and gBestPosj is jth component of the position of the
global best. vij(t + 1) is the jth component of modified velocity and xij(t + 1) is
the jth component of updated position of the ith particle. rand1() and rand2() are
random real numbers in [0, 1]. c1 and c2 are constants and w is also a constant
called inertia weight. rand1() and rand2() are independent each other. Moreover,
rand1() and rand2() are independent among particles respectively. Therefore, many
independent random sequences are required.

A particle as well as its topological neighbors is considered as part of the
population. In that case, the best value in the part is a local best and is called
lBest [10]. In a PSO lBest version, the position and velocity of a particle within the
domain of the fitness function are computed by two following equations:

Velocity update:

vij(t+ 1) = w(vij(t)
+c1 ∗ rand1() ∗ (pBestPosij − xij(t)))
+c2 ∗ rand2() ∗ (lBestPosj − xij(t))))

Position update:

xij(t+ 1) = xij(t) + vij(t+ 1)

where lBestPosj is jth component of the local best position.

2.2 The Standard Particle Swarm Optimization
In 2007, by Bratton and Kennedy [11], the Standard Particle Swarm Optimization
(SPSO) is defined which is designed by a straightforward extension of the PSO original
algorithm while taking into account more recent developments that can be expected
to improve performance on standard measures. This standard algorithm is intended
for use both as a baseline for performance testing of improvements to the technique
and introduce PSO to the wider optimization community.

In SPSO, every particle only uses a local best particle for velocity updating, which
is chosen from its left and right neighbors and itself. We call this a ring topology, as
shown in Fig. 2.1.

In the last couple of years, many inertia weight calculation methods were proposed
[12]. The SPSO introduced an inertia weight method. This method introduced a new
parameter χ, known as the constriction factor. χ is derived from the existing constants

6

CHAPTER 2. BACKGROUND INFORMATION

Fig. 2.1: Ring topology

in the velocity update equation:

χ =
2

| 2− φ−
√
φ2 − 4φ |

φ = c1 + c2, φ > 4

It was found that when φ < 4, the swarm would slowly “spiral” toward and around
the best found solution in the search space with no guarantee of convergence, while
for φ > 4 convergence would be quick and guaranteed. Using the constant φ = 4.1
to ensure convergence, the values χ = 0.72984 and c1 = c2 = 2.05 are obtained. But
there are other possible choices for the constriction coefficients.

This constriction factor is applied to the entire velocity update equation:
vij(t+ 1) = χ(vij(t)

+c1 ∗ rand1() ∗ (PbestPosij − xij(t))
+c2 ∗ rand2() ∗ (lBestPosj − xij(t)))

If xij(t+ 1) exceeds the boundary limitation Xmax or Xmin, it will be directly set
to Xmax or Xmin[9].

2.3 Multi Objective Optimization Problems
(MOOPs)

An MOOP [13][14][15] is a problem with solutions evaluated along two or more
incomparable or conflicting criteria. The solution of an MOOP minimizes or
maximizes the values of objective functions simultaneously. In this paper, we assume
to minimize all objective functions without loss of generality (see Fig. 2.2). An
MOOP is also called a vector optimization, multi-performance, or multi-criteria
problem. In general an MOOP can be expressed as follows.

7

CHAPTER 2. BACKGROUND INFORMATION

Fig. 2.2: An MOOP.

Finding the vector x⃗∗ = [x∗
1, x

∗
2, · · · , x∗

d]
T which satisfies the p inequality constraints

gi(x⃗) ≥ 0, i = 1, 2, 3, · · · , p
and the q equality constraints

hi(x⃗) = 0, i = 1, 2, 3, · · · , q
and optimizes the vector function,

f⃗(x⃗) = [f1(x⃗), f2(x⃗).......fN(x⃗)]
T

where x⃗ = [x1, x2, x3, · · · , xd]
T is the vector of decision variables. In this paper, we

focus on an MOOP without any constraint.

In this paper, we use the following basic terminologies.

• Feasible solution (or solution for short): A vector x⃗ that satisfies all the
constraints and variable bounds is known as a feasible solution.

• Search space: A set of all feasible solutions is called a search space which is
denoted by S.

• Pareto optimality: A solution x⃗∗ is pareto optimal iff there does not exist

8

CHAPTER 2. BACKGROUND INFORMATION

another solution x⃗ such that fi(x⃗) ≤ fi(x⃗
∗) for i = 1, 2, 3, · · · , N and fi(x⃗) <

fi(x⃗
∗) for at least one i.

• Pareto optimal set: A Pareto optimal set is a set of the solutions that cannot
be improved in one objective function without deteriorating their performance
in at least one of the rest.

• Pareto front: A plot of the entire Pareto optimal set in the objective space is
called a Pareto front.

• Pareto dominance: A solution x⃗ dominates another solution x⃗′ (denoted by
x⃗ ≺ x⃗′) if x⃗ is better than x⃗′. We say that a solution is better than other if it
is better in at least one objective and in the others are better or equal.

2.4 Multi Objective Particle Swarm Optimization
(MOPSO)

PSO is an efficient and simple population-based technique. Therefore, it can be
naturally extended to deal with an MOOP. In MOPSO, it is necessary to modify
the PSO to solve an MOOP[14]. In general, when solving an MOOP, there are
three main goals to achieve [16] : Maximize the number of elements in the Pareto
optimal set; Minimize the distance of the Pareto optimal set produced by an algorithm
with respect to the Pareto front; Maximize the spread of solutions investigated to
obtain a distribution of vectors as smooth and uniform as possible. Two new basic
terminologies are introduced in MOPSO.

• Leader: Generally, a nondominanted solution called a leader is used to guide
the particles.

• Archive: In each iteration, solutions nondominanted with each other are stored
to detect a Pareto optimal set. Those solutions are stored in a data structure
called an archive.

In MOPSO, the position and velocity of a particle within the domain of the fitness
function are computed by the following two equations [9]:
Velocity update:

vij(t+ 1) = w(vij(t)
+c1 ∗ rand1() ∗ (pBestPosij − xij(t))
+c2 ∗ rand2() ∗ (leaderPosj − xij(t)))

Position update:

xij(t+ 1) = xij(t) + vij(t+ 1)

9

CHAPTER 2. BACKGROUND INFORMATION

where leaderPosj is jth component of the position of the leader. The leader is selected
in some way from the archive. Several ways to select a leader from the archive were
proposed in the literature. Here, SPSO constriction factor χ is also applied to the
entire velocity update equation.

2.5 GPU Computing
Over the years, GPUs [17] have been evolved into highly parallelized, multi-threaded,
and multi-core processors with tremendous computational horsepower and very high
memory bandwidth due to the insatiable demand for real-time high definition 3D
graphics. GPUs are specialized in compute intensive, highly parallel computation
unerringly. Therefore, GPUs are well-suited to meet the demand of simultaneous
processing of large data and repetitive operation with high arithmetic intensity.
Due to those advantages, in recent years GPUs have entered into the mainstream
application and have successfully been implemented in many applications such as
Voronoi diagram and neural network computation, etc.[18],[19].

Over the years, many platforms and programming models have been proposed for
GPU computing, of which the most important platforms are CUDA and OpenCL.
Both platforms are based on C/C++ language and have very similar platform
models, execution models, memory models and programming models. In MOPSO, a
large number of data needs to be processed with the shortest time to find a set of
nondominated solutions (a Pareto front). A GPU is very well suited to handle this
kind of task and can provide superior performance than a conventional CPU.

2.6 An Overview of CUDA Architecture
This section illustrates the CUDA architecture. CUDA is a parallel computing
platform and programming model introduced by NVIDIA. CUDA programming
model is a multithreaded programming model which utilizes the multi-core parallel
processing power of a GPU to solve complex computational problems without the
need of mapping them into a graphics API by the programmer. In a CUDA program,
the threads are categorized into two hierarchy structure, a grid and thread blocks. A
thread block is a set of threads and has dimensionality 1, 2, or 3. A grid block is a set of
blocks with the same size and dimensionality. A kernel function call generates threads
as a grid with given dimensionality and size. The threads in a thread block can share
data efficiently via shared memory. However, the maximum number of threads per
block is limited to 1024. So, if more than 1024 threads are required, we have to
partition threads into several thread blocks with the same size. Some applications
have already been developed based on CUDA, for example, matrix multiplication,
real-time visual hull computation, image denoising, and so on [20][21][22]. In this

10

CHAPTER 2. BACKGROUND INFORMATION

Video RAM (VRAM)
Single memory segment

Threads in a warp

Coalescing memory access Non coalescing memory access

0 127 255 383 511

Fig. 2.3: Memory access on a GPU.

paper, we intend to implement SPSO, MOPSO on a GPU in parallel to accelerate
the running speed of it.

2.7 Coalescing Memory Access
GPUs provide high-bandwidth memory. It is important to follow the right memory
access pattern to get maximum memory bandwidth. The most efficient way to access
global memory in a GPU is the coalescing memory access pattern.

During the coalescing memory access, the Video RAM (VRAM) memory is used.
VRAM bandwidth is most efficiently used when a single memory segment of 32,
64, 128 or 256 bytes is simultaneously accessed by threads in a warp (during the
execution of a single read or write instruction). This is called coalesced memory
access [23] (See Fig. 2.3). On the other hand, VRAM bandwidth is inefficiently used
and also time consuming when the simultaneous memory access by threads in a warp
is non-coalesced. In this case, at least two memory segments are accessed by threads
in a warp. If the threads access the different segments of the VRAM, the bandwidth
efficiency is dramatically decreased.

2.8 Random Number Generators
Random number generators are used to deterministically generate a sequence of
numbers that is difficult to distinguish from a natural random sequence. Random
numbers are essential elements in a great number of solutions in computer science.
Randomized algorithms require a random source to ensure computational complexity
bounds and sampling methods often require randomness to accurately represent the
terms they are surveying.

11

CHAPTER 2. BACKGROUND INFORMATION

1 // S1 , S2 , S3 , and M are a l l cons tants ,
2 // and z i s par t o f the p r i v a t e per−thread genera tor s t a t e .
3 unsigned TausStep (unsigned &z , int S1 , int S2 , int S3 ,
4 unsigned M) {
5 unsigned b=(((z << S1) ^ z) >> S2) ;
6 return z = (((z & M) << S3) ^ b) ;
7 }

Fig. 2.4: A single step of the combined Tausworthe generator [24].

According to the source of randomness, random number generators (RNGs) can
be classified into three groups [24]: true random number generators (TRNGs), quas-
irandom number generators (QRNGs) and pseudo number generators (PRNGs). The
most common type of random number generator is the PRNG. PRNGs are designed
to look as random as a TRNG, but PRNGs can be implemented in deterministic
software because the state transition function can be predicted completely. In
our implementation of MOPSO on a GPU, we consider only the following type of
generator - a generator that is a single step TausStep of the combined Tausworthe
generator[24].

2.8.1 Combined Tausworthe Generator
The combined Linear Feedback Shift Register (LFSR) or tausworthe generator provi-
des a fast implementation and makes use of exclusive-or operations to combine the
results of two or more independent binary matrix derived streams, providing a stream
of longer period and much better quality. Each independent stream is generated using
TausStep shown in Fig. 2.4, in six bitwise instructions.

A popular version of this procedure is the four component LFSR113 generator[25]
which produces a random stream with a period of approximately 2113. However,
statistical tests show that even the four-component LFSR113 produces significant
correlations across 5-tuples and 6-tuples for relatively small sample sizes. Also the
periods are not sufficiently long enough. However in terms of speed, these are highly
competitive to those which are currently available from software libraries. In our
implementation, we used as a random number generator a single step TausStep with
S1 = 6, S2 = 13, S3 = 18, and M = 4294967294UL, which is the first component
of the four component LFSR113.

2.8.2 Linear Congruential Generator
One of classic generators is the linear congruential generator (LCG) which was intro-
duced by Knuth in 1969 [26]. It uses a transition function of the form shown below

12

CHAPTER 2. BACKGROUND INFORMATION

xn+1 = (axn + c)mod m

The maximum period of the generator is m(assuming the triple (a, c,m) has
certain properties), but this means that in a 32-bit integer, the period can be at
most 232, which is far too short. LCGs also have known statistical flaws, making
them unsuitable for modern simulations.

2.8.3 Xorshift RNG
Xorshift RNG was proposed as a class of very fast, good-quality PRNG by Mars-
aglia[27]. It produces a sequence of 232 − 1 integers, or a sequence of 264 − 1 pairs
of integers or a sequence of 296 − 1 triples of integers etc., by means of repeated use
of a simple construction: exclusive-or (xor) a computer word with a shifted version
of itself. In C, the basic operation is y xor operation on (y << a) for shifts left, y
xor operation on ˆ(y >> a) for shifts right. Combining such xorshift operations for
various shifts and arguments provide extremely fast and simple RNGs that seem to do
very well on tests of randomness. Several weaknesses of such generators was showed
by Panneton and L’Ecuye[28]. Subsequent analysis by Vigna[29], explores the space
of possible generators obtained by multiplying the result of a xorshift generator by a
suitable constant.

2.8.4 Multiply-with-carry(MWC)
Multiply-with-carry (MWC)[27] was invented by Marsaglia to generate a sequences
of random integers based on an initial set from two to many thousands of randomly
chosen seed values. The MWC methods provides a very fast generation of random
number sequences with immense periods ranging from 260 to 22000000 using a very
simple arithmetic.

2.8.5 cuRAND Library
The cuRAND library[30] can be used for simple and efficient generation of high
-quality pseudorandom and quasirandom number sequences. CUDA libraries can be
directly called from kernel code. A quasirandom sequence of n dimensional points is
generated by a deterministic algorithm designed to fill an n dimensional space evenly.
Configuring the device cuRAND API requires four options: an RNG algorithm with
which to generate a random sequence, a distribution to which the returned values will
adhere, a seed from which to start and an offset into the random number sequence at
which to begin sampling. The device API requires the explicit specification of each
of these parameters. The device API includes functions for pseudorandom generation
and quasirandom generation. The functions for pseudorandom sequences support bit
generation and generation from distributions. Bit generations are given below:

13

CHAPTER 2. BACKGROUND INFORMATION

Bit Generation with XORWOW generator (curand XORWOW): Foll-
owing a call to curand_init(), curand() returns a sequence of pseudorandom numbers
with a period greater than 2190.
__device__ unsigned int

curand (curandStateXORWOW_t ∗state)
__device__ void curand_init

(unsigned long long seed,
unsigned long long sequence,
unsigned long long offset,
curandStateXORWOW_t ∗state)

Different seeds are guaranteed to produce different starting states and different
sequences. The same seed always produces the same state and the same sequence.

Bit Generation with Philox generator (curand Philox4_32_10_t): Foll-
owing a call to curand_init(), curand() returns a sequence of pseudorandom numbers
with a period 2128.
__device__ unsigned int
curand (curandStatePhilox4_32_10_t ∗state)
__device__ void curand_init

(unsigned long long seed,
unsigned long long sequence,
unsigned long long offset,
curandStatePhilox4_32_10_t ∗state)

Subsequence and offset together define offset in a sequence with period 2128. Offset
defines offset in subsequence of length 264. When last element from subsequence
is generated, then the next random number is first element from consecutive
subsequence. The same seed always produces the same state and the same sequence.
Sequences generated with different seeds usually do not have statistically correlated
values, but some choices of seeds may give statistically correlated sequences.

2.9 Thrust Library
Thrust [31] is a C++ template library for both GPUs and CPUs which is based
on the Standard Template Library (STL). Mainly, Thrust allows to implement high
performance parallel applications with minimal programming effort through a high-
level interface that is fully interoperable with CUDA C/C++. These high-level
abstractions provide Thrust with the freedom to select the most efficient implementa-
tion automatically. As a result, Thrust can be utilized in rapid prototyping of
CUDA applications, where programmer’s productivity matters most, as well as in
production, where robustness and absolute performance are crucial. Thrust provides
a rich collection of data parallel primitives such as scan, sort, and reduce, which can be

14

CHAPTER 2. BACKGROUND INFORMATION

0 1 2 3 4 5

2 5 6 2 1 4

5 6 4 8 5 7

0 1 2 3 4 5

1 2 2 4 5 6

5 5 8 7 6 4

0 1 2 3 4 5

2 5 6 2 1 4

5 6 4 8 5 7

0 1 2 3 4 5

1 2 2 4 5 6

5 8 5 7 6 4

0 1 2 3 4 5

1 2 2 4 5 6

5 5 8 7 6 4

Original array

Stable sorted Original array

Either could be unstable sorted result

Key

Value

Key

Value

Fig. 2.5: Stable and unstable sort.

composed together to implement complex algorithms with concise and readable source
code. Prefix-sums or scan operations are important building blocks in many parallel
algorithms such as stream compaction and radix sort. thrust::exclusive_scan
function provides an efficient parallel implementation of prefix-sums. Thrust offers
several functions to sort data or rearrange data according to a given criterion.
The thrust::sort and thrust::stable_sort functions are direct analogs of sort
and stable sort in the STL. In our implementation, we used thrust::stable_sort
function due to stability of sorting.

A sorting algorithm[32] is claimed to be stable if two objects with equal keys
appear in sorted output in the same order as the order they appear in the unsorted
input array. Whereas a sorting algorithm is considered to be unstable if there are two
or more objects with equal keys that don’t appear in the same order before and after
sorting. For instance, in Fig. 2.5, key 2 appears twice at position ”0” and ”3” and
their order is preserved in unsorted and sorted array i.e, key 2 at position ”0” appear
first in unsorted and sorted array (before and after sorting). In case of unstable sort
this order of appearance before and after sorting is not preserved.

15

CHAPTER 2. BACKGROUND INFORMATION

2.10 CUB Library
The CUB library[33] is developed as an open-source project by NVIDIA Research. It
is a C++ template library, which provides state-of-the-art and reusable software
components for every layer of the CUDA programming model. In particular, it
includes warp-wide, block-wide and device-wide collective primitives. Warp-wide
”collective” primitives such as cooperative warp-wide prefix scan, reduction, etc.
are safely specialized for each underlying CUDA architecture. Block-wide ”collec
tive” primitives such as cooperative I/O, sort, scan, reduction, histogram, etc. are
compatible with arbitrary thread block sizes and types. Device-wide primitives such
as parallel sort, prefix scan, reduction, histogram, etc. are compatible with CUDA
dynamic parallelism.

As a SIMT library[34] and software abstraction layer, CUB provides simplicity of
composition, high performance, performance portability, simplicity of performa nce
tuning, robustness, durability, reduced maintenance burden, and a path for language
evolution.

CUB’s device-wide primitives can be performance-tuned to match the processor
resources provided by each CUDA processor architecture. As a result, CUB imple-
mentations demonstrate much better performance-portability when compared to more
traditional, rigidly-coded parallel libraries such as Thrust[31] .

In our implementation, we used CUB library for computing a prefix-sums. In
particular, we used cub::DeviceScan which provides device-wide parallel operations
for computing a prefix-sums across a sequence of data items residing within device-
accessible memory.

CUB and Thrust share some similarities, for example they both provide similar
device-wide primitives for CUDA. CUB and Thrust are complementary to each other
and they can be used together. In fact, the CUB project arose out of a maintenance
need to achieve better performance-portability within Thrust by using reusable block-
wide primitives to reduce maintenance and tuning effort.

2.11 Parallel Models
For the parallel implementation of multi-objective evolutionary algorithms (MO EAs),
several models were provided by Van Veldhuizen, Zydallis and Lamont [35].

Master − slave model : The master-slave model is one of the simplest ways to
parallelize an MOEA. Here, a master processor executes the MOEA and the objective
function evaluations are distributed among a number of slave processors. As soon as
the slaves complete the evaluations they return the objective function values to the
master and remain idle until the next generation.

Diffusion model : An individual is evaluated and mutated on a single proc essor.
Selection and crossover are limited to a few neighbors. Such an approach is very useful

16

CHAPTER 2. BACKGROUND INFORMATION

when we execute MOPSO on massively parallel processors.
Island model : This model is very popular among researchers, but it requires

many parameters and design decisions. The population is divided into several small
sub-populations, called islands, which evolve independently of each other.

Hierarchical model : This model combines a coarse-grained parallel scheme at a
high level island model with a fine-grained scheme at a low level diffusion model. It
was a slower model.

From the knowledge about the above models, we come to the conclusion that
the master-slave model is suitable for our parallel implementation of MOPSO. The
master-slave model is most suited for stream processors such as NVIDIA’s GPU.

17

CHAPTER 2. BACKGROUND INFORMATION

18

Chapter 3

A CUDA Implementation of the
Standard Particle Swarm
Optimization

3.1 Introduction
This chapter presents a new parallelized implementation of the Standard Particle
Swarm Optimization (SPSO), an extension of PSO, partially using coalescing memory
access. The experimental results show that the proposed parallelized SPSO increases
the processing speed compared to previously proposed approach on a GPU based on
the CUDA architecture. We investigate a large number of iterations to reach a good
optimization solution. We also investigate the impact of fine grained parallelism in
high-dimensionality problems. A large swarm of particles is analyzed to achieve a
desired SPSO solution with improved computational time compared to a CPU.

The remainder of this chapter is organized as follows. In Section 3.2, summarizes
some related works. In Section 3.3 we provide the SPSO and its implementation on a
GPU. Subsequently, in Section 3.4, we present and analyze the obtained results and
compare it to the previous implementation in terms of execution time, speedup and
fitness values. Finally, in Section 3.5, we give some concluding remarks and point out
directions for next work.

3.2 Related Works
Y. Zhou and Y. Tan [36] presented parallel approach to run SPSO on a GPU. Some
experiments are conducted by running SPSO both on a GPU and a CPU, respectively.
The running time of the SPSO based on a GPU is greatly shortened compared to that
of the SPSO on a CPU. Running speed of GPU SPSO can be more than 11 times as
fast as that of CPU SPSO.

19

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Calazan et al. [37] proposed GPU based Parallel Dimension Particle Swarm
Optimization (PDPSO). For optimization problems with low computational
complexity i.e. low dimensions, CPU based PDPSO gives better performance than
GPU based PDPSO. A GPU provides positive impact on large optimization problems.
Fine grained model is used i.e. distribute one dimension to one thread. GPU PDPSO
is 85 times faster than CPU PDPSO.

V. K. Reddy and S. Reddy [38] implemented a parallel asynchronous version and
synchronous version of PSO on a GPU and compare the performance in terms of
execution time and speedup with their sequential version on a CPU. Mussia et al.
[39] proposed two different ways of exploiting GPU parallelism. The execution speeds
of the two parallel algorithms are compared, on functions which are typically used as
benchmarks for PSO, with a sequential implementation of SPSO.

Li and Zhang [40] proposed a CUDA based Multichannel particle swarm algo rithm.
The optimization experiments results of 4 benchmark functions like sphere, rastrigin,
griewank and rosenbrock, it showed that the CUDA-based parallel algor ithm can
greatly save computing time and improve computing accuracy. Compar ison of results
on GeForce GTX 480 GPU with Intel Core i7 860 also showed, as population gradually
increases, speedup also increases.

Calazan et al. implementation [41] of a Cooperative Parallel Particle Swarm
Optimization (CPPSO) for high-dimension problems on GPUs results showed that
the proposed architecture is up to 135 times and not less than 20 times faster in
terms of optimization time when compared to the direct software execution of the
algorithm.

Zhou and Tan [9] compared with the CPU based sequential Multiobjective Particle
Swarm Optimization (MOPSO) and GPU based parallel MOPSO. Imple mentation
of GPU based parallel MOPSO is much more efficient in terms of running time, and
the speedups range from 3.74 to 7.92 times.

Zhu et al. [42] presented a faster parallel Euclidean Particle Swarm Optim
ization (pEPSO). Five benchmark functions had been employed to examine the perfor
mance of the pEPSO. Experimental results showed that the average proc essing
time of calculating fitness had been accelerated to maximum 16.27 times the original
algorithm (EPSO).

Silva and Filho [43] proposed to use multiple sub-swarms. Each sub-swarm
is executed in a GPU block aiming at maximizing data alignments and avoiding
instructions bifurcations and also provided two communication mechanisms and two
topologies in order to allow the sub-swarm to exchange information and collaborate
by using the GPU global memory. They showed speedups up to 100 and 5 times
when compared to the serial implementation and PSO start-of-art implementation
for CUDA.

Bali et al. [44] illustrated a novel parallel approach to run SPSO on GPUs and
applied to TSP (GPU-PSO-A-TSP). Results showed that running speed of GPU-PSO
is four times as fast as that of CPU PSO.

20

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Algorithm 1: CPU SPSO algorithm
for i = 1 to n do

initialize the position & velocity of particle i randomly
initialize the pBest & lBest of particle i to infinity

for j = 1 to iterations do
for i = 1 to n do

compute fitness[i]
if fitness[i] < pBest[i] then

pBest[i] := fitness[i]
for i = 1 to n do

l:= 1 + (n + l - 2) % n
r:= 1+r % n
lBestIndex[i]:=i
if pBest[r] < pBest[lBestIndex[i]] then

lBestIndex[i]:=r
if pBest[l] < pBest[lBestIndex[i]] then

lBestIndex[i]:=l
for i = 1 to d do

update velocity & position of particle i
gBest := infinity
for i = 1 to n do

if pBest[i] < gBest then
gBest := pBest[i]

3.3 Implementing SPSO Using CUDA
The CPU SPSO algorithm is described in Algorithm 1. Here the personal best (pBest)
position and value are obtained by adjusting the pervious personal position and fitness
value. After that, the local best position and value are updated by comparing the right
(pBest[r]) and left (pBest[l]) neighbor respectively. Finally, it updates the velocity
and position of the particle (shown in algorithm 1). In a parallel processing system
the individual particle can find their best position simultaneously and increases the
SPSO efficiency significantly. During our development of SPSO on CUDA, fitness
function, pBest, lBest, gBest, updated position and velocity of particles in the swarm
can be computed on a GPU while initialization also can be done on a GPU. In this
section we show the main parts of the SPSO-code developed for a GPU. The SPSO
algorithm, expressed in a CUDA-based pseudocode, is given in Algorithm 2.

We used seven kernel functions. The first kernel allocates memory on a GPU with
1 block of 1 thread. In order to generate random numbers on a GPU, we used a
single step TausStep of the combined Tausworthe generator for each thread with an
independent seed number.

The second kernel generates random number seeds using a single step TausStep

21

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Algorithm 2: GPU SPSO algorithm
let n = number of particles; let d = number of dimensions
allocate memory on a GPU with 1 block of 1 thread.
generate random number seeds for TausStep & initialize velocity
& position of each particles of each particle on a GPU with n blocks of d threads.
for i = 1 to iterations do

calculate fitness values & pBests on a GPU with (n+ 32− 1)/32 blocks of 32 threads.
calculate lBest on a GPU with (n+ 32− 1)/32 blocks of 32 threads.
update velocities & positions on a GPU with n blocks of d threads.

end;
calculate gBest by atomicMin() on a GPU with (n+ 32− 1)/32 blocks of 32 threads.
transfer gBest to a CPU
free seeds using 1 block of 1 thread
free memory on a GPU
return the best result & corresponding position

and initializes the basic information of each particle such as position and velocity on
a GPU with n blocks of d threads. For this initialization, we used coalescing memory
access. The arrays on VRAM are arranged to realize coalescing memory access, in
particular the array of random number seeds.

The third kernel generates (n + 32 − 1)/32 blocks of 32 threads to compute the
fitness function. This kernel performs the reduction process to get the fitness value.
When this process is completed, the current pBest value of each particle is compared
with the previous pBest value. If the current pBest value is smaller than the previous
pBest value, then it is updated. When the pBest is updated, the threads of this kernel
also update the coordinates of the pBest value accordingly. The CUDA pseudo-code
for kernel fitness and pBest calculator is given in Fig. 3.1.

The next kernel computes the local best (lBest) value by comparing the previous
pBest of neighboring (left and right) particles. The details of kernel lBest calculator
are shown in Fig. 3.2. Here the neighbors of a particle are particles (tid+1) and
(tid-1). During this process, in each terminal of the array, it will cause illegal access
(out of array) if no special consideration is given.

Therefore, we set exception handling for particles number “0” and “n-1”. For
number “0” the left neighbor was set as “n-1” and for number “n-1”, the right neighbor
was set as “0”. This implementation enables us to implement ring topology. The local
best position of the particle is calculated based on the definition of right neighborhood
and left neighborhood.

The fifth kernel generates n blocks of d threads, which compute velocities and
positions for the next iteration. In this function, we also used coalescing memory
access. Our experiment showed that coalesced access is faster than non-coalesced
access. Therefore in our experiment, coalescing memory access has an important
effect that our implementation is faster than other related work [36].

We also used an atomic function [34] which performs a read-modify-write atomic

22

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

1 __global__ void e v a l u a t e _ p a r t i c l e s (int d , int n , f loat ∗x ,
2 f loat ∗pValue , f loat ∗pBestValue , f loat ∗pBestPos , int ∗ lBes t Idx)
3 {
4 int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
5 i f (i >= n) return ;
6 pValue [i] = f i t n e s s _ f u n c t i o n (d , &x [d ∗ i]) ;
7
8 i f (pValue [i] < pBestValue [i]) {
9 pBestValue [i] = pValue [i] ;

10 pBestPos [d ∗ i . . d ∗ i + d − 1] = x [d ∗ i . . d ∗ i + d−1] ;
11 }
12 }

Fig. 3.1: Our kernel function for computing fitness values and personal bests.

operation on one 32-bit or 64-bit word residing in global or shared memory. Atomic
operations are an advanced feature provided by the GPU vendor NVIDIA. The
operation is atomic in that no other thread can access this address until the operation
is complete. The atomic operations guarantee the correct calculation result.

Among atomic functions, atomicMin function computes the minimum of given
values. atomicMin(addr, val) reads the 32-bit or 64-bit word old located at the
address addr in global or shared memory, computes the minimum of old and val, and
stores the result back to memory at the same address. These three operations are
performed in one atomic transaction. The function returns old. atomicMin functions
are provided only for type int, unsigned, and unsigned long long. However, in our
proposed method, the expected pBest values are of float type. Therefore, we need
the atomicMin function for float type. Fortunately, we can simply implement it using
the atomicMin function for unsigned type as shown in Fig. 3.3.

Our implementation merely casts float type into unsigned type. Why this simple
implementation works correctly can be explained as follows. In CUDA C, both
unsigned type and float type are of size 32 bits (shown in Fig. 3.4). Notice that sign
bit, exponent, and mantissa in a float value are allocated to more significant bit(s) in
this order. Hence, for any given float value x and y, the magnitude correlation of x
and y is equivalent to that of x and y as unsigned integers if x and y are non-negative
integers. If only non-positive values are given, our atomicMin() implementation
behaves as atomicMax().

The most important kernel computes the global best value based on the all particle
positions in the swarm. During this kernel process, we used atomicMin() function
for good fitness values. Finally, our last kernel is used to free the array for seeds. In
our experiments, better performance can be achieved if all the kernel functions use
coalesceing memory access.

23

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

1 __global__ void c a l c u l a t e _ l o c a l B e s t (int n , f loat ∗pBestValue ,
2 int ∗ lBes t Idx)
3 {
4 int t i d = blockDim . x ∗ blockIdx . x + threadIdx . x ;
5 i f (t i d >= n) return ;
6
7 int r i g h t = (t i d == (n − 1)) ? 0 : t i d +1;
8 int l e f t = (t i d == 0) ? (n − 1) : t id −1;
9 int lBestCandidate = t i d ;

10
11 i f (pBestValue [r i g h t] < pBestValue [lBestCandidate])
12 lBestCandidate = r i g h t ;
13 i f (pBestValue [l e f t] < pBestValue [lBestCandidate])
14 lBestCandidate = l e f t ;
15 lBes t Idx [t i d] = lBestCandidate ;
16 }

Fig. 3.2: Our kernel function for local best.

1 __device__ in l ine f loat atomicMin (f loat ∗addr , f loat va l)
2 {
3 unsigned old=atomicMin ((unsigned ∗) addr , ∗ ((unsigned ∗)&va l)) ;
4 return ∗((unsigned ∗) &old) ;
5 }

Fig. 3.3: A simple and efficient implementation of atomicMin function for
non-negative float values.

3.4 Experiments and Analysis

In this section, we present our experimental results which have been obtained using
a CPU and a GPU platforms described below. The results are compared with
other previous implementation [36] in terms of speedup, execution time, loop time
per iteration and fitness values. In our experiment, seven classical benchmark
functions [45] (shown in Table 3.1) were used to evaluate the performance of the
implementations. The six functions except Easom always return non-negative values.
In contrast, Easom always returns a non-positive value. Since our atomicMin()
implementation behaves as atomicMax() for non-positive values as explained in
Section 3.3, the aims of our experiments are to minimize the six functions and
to maximize Easom function although all the seven functions are originally for

24

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Fig. 3.4: Difference between integer type and float type.

minimization. Hence, the optimal solutions of all the seven functions are 0.
One of the most common measure used by the parallel computing community to

compare the test results is speedup. Speedup is defined as the ratio of the execution
time TimeCPU of the sequential implementation to the execution time TimeGPU of
the parallel implementation:

Speedup =
TimeCPU

TimeGPU

We run the CPU SPSO and the GPU SPSO using the same configuration of
parameters n and d, which are the number of particles and the dimensions
respectively.

Our tests were conducted using an NVIDIA GeForce GTX 980 GPU [46] and an
Intel(R) Core i5(TM) 4570 @ 3.20GHz with 8 GB RAM. The operating system was
Windows 7 Professional SP1. For compilation, we used Microsoft Visual Studio 2012
Professional Edition and CUDA 7.5 SDK.

In all experiments the number of dimensions and particles were respectively set
from 50 to 200 and from 2000 to 20000. Each experiment was run until the maximum
number of iterations has been reached, which was set at 2000. We carried out
another set of simulations to evaluate convergence speed with respect to the number
of iterations. In all cases, we got good solutions for seven functions (See Figs. 3.5
and 3.6).

The average results using some complex functions are shown in Tables 3.2 through
3.8. In these cases, the number of particles ranges from 2000 to 5000, the number of
dimensions is 50 and the number of iterations is 2000. The GPU SPSO and the CPU
SPSO were run on from f1 to f7 functions for 50 times independently with different
seeds.

Analyzing the data of the tables, we can observe that in Table 3.8, a GPU SPSO
can reach a maximum speedup of greater than 170 times when the swarm population

25

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Table 3.1: Benchmark Test Functions

Name Equation Bounds

Sphere f1 =
∑d

i=0 x2i
(−5.12, 5.12)d

Rosenbrock f2 =
d−1∑
i=0

(100(xi+1 − x2i)
2 + (xi − 1)2) (−10, 10)d

Rastrigin f3 =
∑d

i=0[x
2
i − 10 ∗ cos(2πxi) + 10] (−5.12, 5.12)d

Griewank f4 =
1

4000

∑d
i=1 x

2
i −

∏d
i=1 cos(xi√

i
) + 1 (−600, 600)d

Ackley
f5 = −20 exp[−1

5

√
1
d

∑d
i=1 x

2
i]− exp[1d

∑d
i=1 cos(2πxi)] + 20 + e

(−32.768, 32.768)d

De Jong f6 =
∑d

i=1 | xi |
(i+1) (−1, 1)d

Easom f7 = −(−1)d(
∏d

i=1 cos2(xi)) exp[−
∑d

i=1(xi − π)2] (−2π, 2π)d

size is 5000 and dimension size is 50, running on complex function f7. For more
complex functions speedup may be even greater (see Figs. 3.7 and 3.8).

However, when optimized by a GPU SPSO, the time needed is almost the same
among the seven functions under the same dimension and population. Therefore, the
curves for f1 to f7 by a GPU SPSO in Figs. 3.9 to 3.12 are overlapped with each
other.

In the next test, the swarm population was set at 2000 and the dimension was
changed from 50 to 200. The results shown in Tables 3.9 to 3.15 demonstrate that
running PSO on a CPU to optimize high dimensional problems is slow, but the speed
can be greatly accelerated if we run it on a GPU (see Figs. 3.9 to 3.12). In these
cases, in Table 3.15, a GPU SPSO can reach a maximum speedup of greater than 139
times when the dimension size is 200 and the swarm population size is 2000, running
on complex function f7. For more complex functions speedup may be even greater
(See Figs. 3.13 and 3.14).

We observed that speedup is increased when swarm population and dimension
size are large due to the coalescing memory access. Due to difference between
random number sequence on a CPU and that on a GPU, the gBest values may
be slightly different. Moreover, execution time depends on function types and how

26

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

0 50000 100000 150000

Sphere Rosenbrock

Rastrigin Griewank

Generation

A
ve

ra
ge

 g
B

e
st

 v
al

u
e

Fig. 3.5: gBest and generation for f1 to f4 functions

many operators that have been used inside a function. We focused on execution time
and speedup for fixed number of iterations.

However, we also investigate on execution time and speedup for the stop condition
when an acceptable optimization value has been found. The results shown in Table
3.16 are obtained when running on simple function f1. The speedup can be improved
significantly using complex function. The other implementation [36] of SPSO is slower
than our implementation under the same dimension and the same population size (see
Table 3.17). In our implementation the best key point is that we try to implement
good parallelization. In the other implementation of SPSO, the random numbers were
generated inside a CPU whereas, in our implementation, all the random numbers
were generated inside a GPU. The implementation of a single step TausStep of the
combined Tausworthe generator on a CPU is same as a GPU implementation and
not time-consuming. However, the transfer of generated random numbers from a
CPU to a GPU is time-consuming. This increases the overall processing time of
the other implementation. In our work, the random numbers were generated by
TausStep and initialized the basic information of each particle on a GPU for SPSO
application to reduce the processing time significantly. Moreover, we used some
kernels that are using coalescing memory access which increase the processing speed.

27

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

0 50000 100000 150000

Ackley De Jong Easom

Generation

A
ve

ra
ge

 g
B

es
t

va
lu

e

Fig. 3.6: gBest and generation for f5 to f7 functions

The “atomicMin” function was used to calculate good solutions in SPSO on a GPU.
On the other hand, in the previous approach, solutions were calculated by using a
complex algorithm.

3.5 Summary
This chapter has presented an implementation of the SPSO on the CUDA
architecture. The proposed GPU SPSO significantly reduces execution time compared
to previous development. We have achieved a good fitness value with short execution
time and kernel loop time simultaneously. Moreover, the implementation has a
significant speedup when compared to the CPU serial implementation. The proposed
imple mentation is 170 times faster.

In this paper we focused on realizing good implementation of the original SPSO.
In our future work, we want to investigate the effect of the Pseudorandom Number
Generators on the SPSO on a GPU and parallel implementation of the extensions
[37][41][9] of SPSO to improve the efficiency of other implementations. We also
want to improve the SPSO performance by implementing all kernel functions using

28

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Table 3.2: GPU SPSO and CPU SPSO on f1 (number of dimensions d = 50)

n CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

2000 1.3888 0.1498 0.00069 0.00003 1.32E-04 1.33E-04 9.2

3000 2.0852 0.1962 0.00104 0.00005 1.14E-04 1.07E-04 10.6

4000 2.7791 0.2214 0.00138 0.00006 1.10E-04 9.47E-05 12.5

5000 3.4822 0.2561 0.00174 0.00007 9.84E-05 8.18E-05 13.5

Table 3.3: GPU SPSO and CPU SPSO on f2 (number of dimensions d = 50)

n CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

2000 1.6302 0.1607 0.00081 0.00004 1.26E+00 1.24E+00 10.1

3000 2.4432 0.1955 0.00122 0.00005 1.15E+00 1.12E+00 12.4

4000 3.2494 0.2224 0.00162 0.00006 1.11E+00 1.08E+00 14.6

5000 4.0665 0.2588 0.00203 0.00007 1.03E+00 9.62E-01 15.7

coalescing memory access which should improve SPSO performance significantly.

29

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Table 3.4: GPU SPSO and CPU SPSO on f3 (number of dimensions d = 50)

n CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

2000 5.3248 0.1779 0.00266 0.00004 1.82E-01 1.23E-01 29.9

3000 8.0448 0.2201 0.00402 0.00006 8.05E-02 8.20E-02 36.5

4000 10.7043 0.2437 0.00535 0.00007 7.36E-02 7.24E-02 43.9

5000 13.4521 0.2691 0.00672 0.00008 6.07E-02 6.25E-02 49.9

Table 3.5: GPU SPSO and CPU SPSO on f4 (number of dimensions d = 50)

n CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

2000 5.9915 0.1984 0.00299 0.00005 7.66E-02 7.75E-02 30.1

3000 8.9916 0.2385 0.0077 0.00007 5.94E-02 6.24E-02 37.7

4000 11.9985 0.2625 0.0102 0.00008 5.30E-02 5.74E-02 45.7

5000 15.0037 0.2879 0.0128 0.00009 4.72E-02 5.30E-02 52.1

Table 3.6: GPU SPSO and CPU SPSO on f5 (number of dimensions d = 50)

n CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

2000 4.4402 0.1774 0.00222 0.00004 3.38E-02 3.26E-02 25.0

3000 6.6004 0.2179 0.00329 0.00006 3.03E-02 2.92E-02 30.2

4000 8.8019 0.2416 0.00400 0.00007 2.88E-02 2.75E-02 36.4

5000 10.9857 0.2661 0.00549 0.00008 2.72E-02 2.52E-02 41.2

30

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Table 3.7: GPU SPSO and CPU SPSO on f6 (number of dimensions d = 50)

n CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

2000 4.1840 0.1829 0.00209 0.00005 8.62E-24 8.42E-24 22.8

3000 6.2895 0.2185 0.00314 0.00006 7.64E-25 5.07E-25 28.7

4000 8.3929 0.2422 0.00420 0.00007 5.36E-25 8.03E-26 34.6

5000 10.5018 0.2689 0.00525 0.00008 7.43E-26 5.49E-26 39.0

Table 3.8: GPU SPSO and CPU SPSO on f7 (number of dimensions d = 50)

n CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

2000 19.2378 0.1904 0.00961 0.00005 0.00E+00 0.00E+00 101.0

3000 28.6848 0.2324 0.01434 0.00007 0.00E+00 0.00E+00 123.4

4000 38.2021 0.2547 0.01910 0.00008 0.00E+00 0.00E+00 149.9

5000 47.8445 0.2800 0.02392 0.00009 0.00E+00 0.00E+00 170.8

Table 3.9: GPU SPSO and CPU SPSO on f1 (number of particles n = 2000)

d CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

50 1.3888 0.1498 0.00069 0.00003 1.32E-04 1.33E-04 9.2

100 2.8172 0.2404 0.00140 0.00007 1.00E-02 9.89E-03 11.7

150 4.3661 0.3187 0.00218 0.00010 5.49E-02 5.58E-02 13.6

200 6.0485 0.3903 0.00302 0.00013 1.59E-01 1.60E-01 15.4

31

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Table 3.10: GPU SPSO and CPU SPSO on f2 (number of particles n = 2000)

d CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

50 1.6302 0.1607 0.00081 0.00004 1.26E+00 1.24E+00 10.1

100 3.4275 0.2403 0.00171 0.00007 3.36E+01 3.33E+01 14.2

150 5.3585 0.3189 0.00267 0.00010 1.01E+02 1.01E+02 16.8

200 7.8724 0.3944 0.00393 0.00013 2.58E+02 2.58E+02 19.9

0

10

20

30

40

50

60

2000 3000 4000 5000

Sphere

Rosenbrock

Rastrigin

Griewank

Number of particles

Sp
e

ed
u

p

Fig. 3.7: Speedup and swarm population for f1 to f4 functions

32

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0

20

40

60

80

100

120

140

160

180

2000 3000 4000 5000

Ackley

De Jong

Easom

Number of Particles

Sp
ee

d
u

p

Fig. 3.8: Speedup and swarm population for f5 to f7 functions

Table 3.11: GPU SPSO and CPU SPSO on f3 (number of particles n = 2000)

d CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

50 5.3248 0.1779 0.00266 0.00004 1.18E-01 1.23E-01 29.9

100 10.5850 0.2971 0.00529 0.00009 4.38E+00 4.11E+00 35.6

150 16.7847 0.4159 0.00839 0.00014 2.18E+01 2.16E+01 40.3

200 23.3476 0.5021 0.01167 0.00018 5.57E+01 5.42E+01 46.4

33

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Table 3.12: GPU SPSO and CPU SPSO on f4 (number of particles n = 2000)

d CPU GPU CPU loop GPU loop CPU gGest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

50 5.9915 0.1984 0.00299 0.00005 7.66E-02 7.75E-02 30.1

100 11.8170 0.3345 0.00590 0.00011 5.33E-01 5.35E-01 35.3

150 19.6374 0.4658 0.00981 0.00015 6.95E-01 6.90E-01 42.1

200 24.5178 0.5716 0.01325 0.00019 1.07E+00 1.06E+00 42.8

Table 3.13: GPU SPSO and CPU SPSO on f5 (number of particles n = 2000)

d CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

50 4.4402 0.1774 0.00222 0.00004 3.38E-02 3.26E-02 25.0

100 8.3446 0.2934 0.00417 0.00009 3.47E-01 3.44E-01 28.4

150 12.4729 0.4086 0.00623 0.00014 7.49E-01 7.54E-01 30.5

200 16.6014 0.4943 0.00829 0.00018 1.07E+00 1.07E+00 33.5

Table 3.14: GPU SPSO and CPU SPSO on f6 (number of particles n = 2000)

d CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

50 4.1840 0.1829 0.00209 0.00004 8.62E-24 8.42E-24 22.8

100 10.2486 0.3141 0.00512 0.00010 8.08E-22 1.87E-21 32.6

150 17.7679 0.4540 0.00888 0.00015 1.12E-17 8.22E-19 39.1

200 25.3917 0.5668 0.01269 0.00019 8.60E-19 2.15E-19 44.7

34

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

Table 3.15: GPU SPSO and CPU SPSO on f7 (number of particles n = 2000)

d CPU GPU CPU loop GPU loop CPU gBest GPU gBest Speedup
Time(s) Time(s) Time(s) Time(s) Value Value

50 19.2378 0.1904 0.00961 0.00005 0.00E+00 0.00E+00 101.0

100 38.2600 0.3239 0.01912 0.00011 0.00E+00 0.00E+00 118.1

150 57.2342 0.4507 0.02775 0.00016 0.00E+00 0.00E+00 126.9

200 76.7703 0.5518 0.0383 0.00020 0.00E+00 0.00E+00 139.1

0

10

20

30

40

50

60

2000 3000 4000 5000

Sphere (CPU)

Sphere (GPU)

Rosenbrock (CPU)

Rosenbrock (GPU)

Rastrigin (CPU)

Rastrigin (GPU)

Griewank (CPU)

Griewank (GPU)

Ackley (CPU)

Ackley (GPU)

De Jong (CPU)

De Jong (GPU)

Easom(CPU)

Easom (GPU)

Number of particles

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Fig. 3.9: Overlap of computation time as a function of swarm population

35

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0

10

20

30

40

50

60

70

80

90

50 100 150 200

Sphere (CPU)

Sphere (GPU)

Rosenbrock (CPU)

Rosenbrock (GPU)

Rastrigin (CPU)

Rastrigin (GPU)

Griewank (CPU)

Griewank (GPU)

Ackley (CPU)

Ackley (GPU)

De Jong (CPU)

De Jong (GPU)

Easom(CPU)

Easom (GPU)

Number of dimensions

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Fig. 3.10: Overlap of computation time as a function of dimension

Table 3.16: GPU SPSO and CPU SPSO on f1 (number of particles n = 10000,
acceptable optimization value 0.0001 and optimal value for f1 is 0

d CPU GPU CPU loop GPU loop Speedup
Time(s) Time(s) Time(s) Time(s)

50 1.1038 0.2030 0.0045 0.0002 5.4

100 5.9410 0.4024 0.0089 0.0004 14.7

150 15.4436 1.0243 0.0133 0.0006 15.0

200 32.1552 1.7544 0.0182 0.0007 18.3

36

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0

0.005

0.01

0.015

0.02

0.025

0.03

2000 3000 4000 5000

Sphere (CPU)

Sphere (GPU)

Rosenbrock (CPU)

Rosenbrock (GPU)

Rastrigin (CPU)

Rastrigin (GPU)

Griewank (CPU)

Griewank (GPU)

Ackley (CPU)

Ackley (GPU)

De Jong (CPU)

De Jong (GPU)

Easom(CPU)

Easom (GPU)

Number of particles

Lo
o

p
 t

im
e

 (
s)

Fig. 3.11: Overlap of loop time as a function of swarm population

Table 3.17: A Comparison between [36] and ours on f4 (number of dimensions d =
50)

[36] ours
n iterations CPU GPU Speedup CPU GPU Speedup

Time(s) Time(s) Time(s) Time(s)
2000 2000 481.5713 57.6654 8.3 5.9915 0.1984 30.1

10000 10000 1269.7554 113.1295 11.2 241.5331 1.7695 136.4
20000 10000 2537.7515 221.9755 11.4 646.2705 4.3384 148.9

37

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

50 100 150 200

Sphere (CPU)

Sphere (GPU)

Rosenbrock (CPU)

Rosenbrock (GPU)

Rastrigin (CPU)

Rastrigin (GPU)

Griewank (CPU)

Griewank (GPU)

Ackley (CPU)

Ackley (GPU)

De Jong (CPU)

De Jong (GPU)

Easom(CPU)

Easom (GPU)

Lo
o

p
 t

im
e(

s)

Number of dimensions

Fig. 3.12: Overlap of loop time as a function of dimension

38

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200

Sphere

Rosenbrock

Rastrigin

Griewank

Number of dimensions

Sp
ee

d
u

p

Fig. 3.13: Speedup and dimension for f1 to f4 functions

39

CHAPTER 3. A CUDA IMPLEMENTATION OF THE STANDARD PARTICLE SWARM OPTIMIZATION

0

20

40

60

80

100

120

140

160

50 100 150 200

Ackley

De Jong

Easom

Number of dimensions

Sp
ee

d
u

p

Fig. 3.14: Speedup and dimension for f5 to f7 functions

40

Chapter 4

Effect of the Pseudorandom
Number Generators on the
Standard Particle Swarm
Optimization on a GPU

4.1 Introduction
A key component of particle swarm optimization algorithms is PRNGs which provide
random numbers to drive the stochastic search process. The performance of SPSO
algorithms is influenced by the quality of the PRNGs running on a GPU.

In our previous research paper[4], the SPSO algorithm was implemented based
on task scheduling on a GPU, where many particles can reach to their best position
simultaneously by using ring topology and it could significantly improved the PSO
efficiency. Some random variables included in the SPSO implementation were used
to initiate the positions and the velocities of the particles and to evaluate the velocity
update equation as well on a GPU. These random variables were generated by
a PRNG called curandXORWOW [30]. These random variables help to guide
a more effective exploration during the search process. We achieved 46 times
speedup compared to CPU SPSO on large swarm population and high dimensional
problems. However, the curandXORWOW takes some time to setup for the first
time. Therefore, large swarm population and high dimensional problems require more
computation time to initialize velocity and position on a GPU.

In this chapter, we present an analysis of the performance of the various PRNGs
on a GPU SPSO on the CUDA architecture. We have implemented ten PRNGs. By
using a single step TausStep of the combined Tausworthe generator, we have achieved
a desire SPSO solution with improved computational time on a GPU which have
been evaluated with SPSO implemented on a CPU by using the same PRNG. The
experimental results show a significant speedup of SPSO with large swarm population

41

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

and high dimensional problems.
The remainder of this paper is organized as follows. Section 4.2 our PRNG imple

mentation is presented. Subsequently, experimental evaluations, obtained results and
analysis are presented in Section 4.3. Finally, Section 4.4 gives some concluding
remarks and open directions for future work.

4.2 Our PRNG Implementation
We implemented ten PRNGs on a GPU SPSO. Each of them is simple, qualityful
and extremely fast. Between ten of them, three types xorshift were implemented
by combining xorshift operations in different ways which produce periods 232 − 1
for 32-bit words, period 264 − 1 for 64-bit words and period 2128 − 1 for 128-bit
words. We also implemented variations of xorshift operations likes xorshift*, xorwow,
multiply-with-carry (mwc). Other PRNGs of linear congruential generator (LCG), a
single step TausStep, curandPhilox and curandXORWOW were also implemented on
GPU SPSO. The important part of our random number generator implementation is
that GPU SPSO does not need initial seeds from the host. All are completely CPU
free. On the other hand, for CPU SPSO, all are completely CPU oriented. Our a
single step TausStep is presented on Fig. 4.1 which is based on a CPU and on a GPU
respectively. Inside this PRNG, four functions have been implemented. In these four
functions, fsrand(i, j, k, s) is used to set a seed s of each dimension where parameter
i,j,k are a particle number, dimension, and 0 or 1 to distinguish rand1() or rand2()
in the velocity update equation. Subsequently, each thread calls frand(i, j, k) with
the same prameters i, j, k as the parameters for fsrand() call in order to obtain a
uniformly random real number in [0, 1].

Each thread uses an individual seed with its thread index as a parameter. Due to
the fact that the random number generators are running in each thread independently,
the numbers can be generated on demand by each particle.

4.3 Experimental Evaluations
In this section, by using ten PRNGs the experimental results of an SPSO imple
mentation on a GPU and on a CPU are presented in terms of speedup. Performance
comparisons between PRNGs on a GPU SPSO and the same PRNGs on a CPU
SPSO are made based on six classical benchmark test functions [45] shown in Table
4.1. The six functions except Easom always return non-negative values. In contrast,
Easom always returns a non-positive value. Since our atomicMin() implementation
behaves as atomicMax() for non-positive values as explained in Section 3.3, the aims
of our experiments are to minimize the six functions and to maximize Easom function
although all the seven functions are originally for minimization. For all PRNGs on

42

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

1 __host__ __device__void taus_rand_seed (unsigned∗ seed , unsigned s)
2 {
3 ∗ seed =s ;
4 }
5 __host__ __device__ unsigned taus_rand (unsigned∗ seed)
6 {
7 unsigned int b = (((∗ seed << 6) ^ ∗ seed) >> 13) ;
8 ∗ seed = (((∗ seed &4294967294UL) << 18) ^ b) ;
9 return ∗ seed ;

10 }
11 __host__ __device__ unsigned ∗ seeds ;
12 __host__ __device__ int seeds_d ;
13 __host__ __device__ void f s rand (int i , int j , int k , unsigned seed)
14 {
15 taus_rand_seed (&seeds [(i ∗ 2 ∗ seeds_d+j+k∗ seeds_d)] , seed) ;
16 // s e t seed f o r frand ()
17 }
18 __host__ __device__ f loat f rand (int i , int j , int k)
19 // re turn a uni formly random r e a l number in [0 , 1]
20 {
21 return (f loat) taus_rand ((unsigned (∗))
22 &seeds [(i ∗ 2 ∗ seeds_d + j + k ∗ seeds_d)]) / UINT_MAX;
23 }

Fig. 4.1: a single step TausStep of the combined Tausworthe generator
implementation on a GPU and on a CPU.

a GPU SPSO, good fitness values are obtained which shows the reliability of our
results.

43

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

Ta
bl

e
4.

1:
Be

nc
hm

ar
k

Te
st

Fu
nc

tio
ns

[4
5]

fo
r

m
in

im
iz

at
io

n

N
am

e
Eq

ua
tio

n
Bo

un
ds

O
pt

im
al

va
lu

e

S
ph

er
e

f 1
(x

1
,x

2
,·
··

,x
d
)
=

∑ d i=
1

x
2 i

(−
5
.1
2
,5
.1
2
)d

0

R
os
en

br
oc
k

f 2
(x

1
,x

2
,·
··

,x
d
)
=

d ∑ i=
1

(1
00
(x

i+
1
−

x
2 i
)2
+
(x

i
−

1)
2
)

(−
1
0
,1
0
)d

0

R
a
st
ri
g
in

f 3
(x

1
,x

2
,·
··

,x
d
)
=

∑ d i=
1
[x

2 i
−

10
∗

co
s(
2π

x
i)
+
10
]

(−
5
.1
2
,5
.1
2
)d

0

G
r i
ew

a
n
k

f 4
(x

1
,x

2
,·
··

,x
d
)
=

1
40

00

∑ d i=
1
x
2 i
−

∏ d i=
1
co

s(
x
i

√
i)
+
1

(−
6
0
0
,6
0
0
)d

0

A
ck
le
y

f 5
(x

1
,x

2
,·
··

,x
d
)
=

−
20

ex
p[
−

1 5

√ 1 d

∑ d i=
1
x
2 i
]−

ex
p[

1 d

∑ d i=
1
co

s(
2π

x
i)
]+

20
+
e

(−
3
2
.7
6
8
,3
2
.7
6
8
)d

0

E
a
so
m

f 6
(x

1
,x

2
,·
··

,x
d
)
=

−
(−

1)
d
(∏ d i=

1
co

s2
(x

i)
)
ex

p[
−
∑ d i=

1
(x

i
−

π
)2
]

(−
2
π
,2
π
)d

0

44

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

Table 4.2: Impact of the PRNGs on SPSO speedup (number of particles n = 2000,
number of iteration 2000) for f1

d xorshift xorshift xorshift xorshift xorshift mwc LCG a single curand curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

50 35.8 36.2 37.7 23.1 15.0 24.1 38.1 37.3 12.7 12.5
100 46.6 48.1 47.4 28.1 17.7 29.0 48.4 48.0 14.4 6.6
150 53.9 54.0 54.4 31.5 18.3 33.3 55.4 55.4 14.8 5.3
200 67.4 68.5 68.7 37.5 22.7 39.8 68.7 69.5 17.7 5.5

Table 4.3: Impact of the PRNGs on SPSO speedup (number of dimensions d = 50,
number of iteration 2000) for f1

n xorshift xorshift xorshift xorshift xorshift mwc LCG a single step curand curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

2000 35.8 36.2 37.7 23.1 15.0 24.1 38.1 37.3 12.7 12.5
3000 43.2 44.0 43.9 27.4 16.9 29.1 45.3 44.5 13.9 9.5
4000 50.7 52.6 51.7 30.4 18.0 31.3 53.0 52.3 14.7 6.5
5000 54.8 55.8 56.0 31.9 18.6 32.9 57.0 56.5 15.1 5.4

4.3.1 Experimental Result
In all experiments, we considered large particles and dimensions. The number of
dimensions and particles were respectively set from 32 to 256 and 2000 to 10000.
Each experiment was run until the maximum number of iterations has been reached,
which was set to 2000. By using each PRNG, the GPU SPSO was run on from f1
to f6 functions for 50 times independently with different seeds. In the same way, the
CPU SPSO was also run on from f1 to f6 functions with the same PRNG for 50 times
independently with different seeds. The average speedup result of f1 and f6 functions
are shown in from Tables 4.2 to 4.5.

4.3.2 Experimental Analysis
Analyzing the data of the tables, we can observe that in Table 4.4, a GPU SPSO can
reach maximum 175 times speedup using a single step TausStep of PRNGs when the

Table 4.4: Impact of the PRNGs on SPSO speedup (number of particles n = 2000,
number of iteration 2000) for f6

d xorshift xorshift xorshift xorshift xorshift mwc LCG a single step cuRAND curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

50 121.4 121.0 123.9 80.5 56.3 85.3 123.9 125.6 47.1 46.2.
100 149.3 150.0 152.7 97.2 67.1 104.1 151.8 152.2 55.0 27.0
150 159.5 159.8 161.6 105.4 66.8 112.3 161.2 161.7 54.6 21.1
200 172.6 173.3 174.5 109.0 71.6 116.9 174.5 175.0 56.7 19.0

45

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

Table 4.5: Impact of the PRNGs on SPSO speedup (number of dimensions d = 50,
number of iteration 2000) for f6

n xorshift xorshift xorshift xorshift xorshift mwc LCG a single step curand curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

2000 121.4 121.0 123.9 80.5 56.3 85.3 123.9 125.6 47.1 46.2
3000 149.4 150.2 153.6 100.1 64.4 105.7 152.9 154.0 53.3 37.1
4000 183.0 183.2 186.9 114.2 70.4 121.8 184.7 187.6 57.5 26.2
5000 207.2 207.6 211.3 123.9 74.0 132.7 207.6 212.8 60.0 22.1

Table 4.6: SPSO gBest value (number of particles n = 2000, number of iteration
2000) for f1

d xorshift xorshift xorshift xorshift xorshift mwc LCG a single step curand curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

50 2.76E-15 7.66E-13 9.33E-12 3.09E-12 1.64E-13 3.27E-02 1.64E-14 1.33E-04 8.99E-12 8.65E-12
100 2.07E-08 1.63E-05 1.21E-04 5.37E-05 7.44E-06 7.40E-01 2.56E-07 9.89E-03 1.36E-04 1.39E-04
150 1.63E-05 5.63E-03 6.24E-02 2.55E-02 4.29E-03 2.23E+00 1.34E-04 5.58E-02 6.94E-02 6.52E-02
200 2.89E-04 9.42E-02 1.75+00 7.03E-01 1.34E-01 4.81E+00 3.65E-03 1.60E-01 2.40E+00 2.30E+00

swarm population and dimension size are respectively set to 2000 and 200, running
on a complex function. In the next test, the swarm population is set from 2000 to
5000 and the dimension is set to 50. The results shown in Table 4.5 demonstrate
that running a GPU-SPSO can reach maximum 212 times speedup for a single step
TausStep of PRNGs when the swarm population size is set to 5000 running on a
complex function. For more complex functions speed up may be even greater.

Analyzing the data of the tables, we have been obtained that curandXORWOW ,
curandPhilox4_32_10_t of PRNGs on a GPU were taken more time to optimize
large particles and high dimensional problems. On the others hand, the speed can be
greatly accelerated for xorshift RNGs, linear congruential generator, a single step
TausStep on a GPU. Moreover, a single step TausStep is faster than xorshift RNGs
and linear congruential generator (see Figs. 4.2 to 4.3) to be more exact. In GPU
SPSO, we achived good optimization value (see Tables 4.6 to 4.9) and the speedup
was greatly accelerated in the case of high dimension and large particles running on a
single step TausStep of PRNG. However, when dimension and particle size are small,
speedups were also accelerated moderately (see Table 4.10).

Table 4.7: SPSO gBest value (number of dimensions d = 50, number of iteration
2000) for f1

n xorshift xorshift xorshift xorshift xorshift mwc LCG a single step curand curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

2000 2.76E-15 7.66E-13 9.33E-12 3.09E-12 1.64E-13 3.27E-02 1.64E-14 1.33E-04 8.99E-12 8.65E-12
3000 1.96E-15 6.94E-13 8.30E-12 2.58E-12 1.27E-13 3.00E-02 1.42E-14 1.07E-04 7.88E-12 8.20E-12
4000 1.88E-15 6.62E-13 7.63E-12 2.73E-12 9.63E-14 2.82E-02 1.36E-14 9.47E-05 7.76E-12 7.65E-12
5000 1.81E-15 6.21E-13 7.24E-12 2.43E-12 1.03E-13 2.63E-02 1.28E-14 8.18E-05 7.32E-12 7.46E-12

46

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

0

50

100

150

200

50 100 150 200

S
p

ee
d
u

p

Number of Dimensions

A single Taus Step

LCG

xorshift(xor64*)

xorshift(xor64)

xorshift(xor32)

mwc

xorshift(xor128)

xorshift(xorwow)

cuRAND(Philox)

cuRAND(xorwow)

Fig. 4.2: Speedup (number of Particles = 2000, number of iterations= 2000)

In this chapter, we presented an analysis of the performance of the PRNGs on GPU
SPSO in terms of the PRNGs statistical quality and good parallelized implementation
on a SPSO. We showed that a single step TausStep of PRNG for GPU presents
enough quality to be used by the SPSO algorithm. We also achieved speedup and
execution time on a GPU SPSO are increased due to the overhead of memory access.
This proposed GPU SPSO algorithm can be used to improve required time to solve
optimization problems on large swarm population and high dimensional.

4.4 Summary
This chapter has presented an investigation about the influence of the quality of
PRNGs on the performance of the SPSO algorithm running on a GPU based on CUDA
architecture. The experimental results demonstrated that a single step TausStep of
PRNGs on GPU SPSO significantly reduces execution time compared to previous
development. By using a single step TausStep of PRNGs, we have achieved a
good fitness value with short execution time. The proposed implementation is 307

47

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

0

50

100

150

200

250

2000 3000 4000 5000

S
p

ee
d

u
p

Number of Particles

 A single Taus Step

xorshift(xor64*)

LCG

xorshift(xor64)

xorshift(xor32)

mwc

xorshift(xor128)

xorshift(xorwow)

cuRAND Philox

cuRAND xorwow

Fig. 4.3: Speedup (number of dimensions = 50, number of iterations= 2000)

times faster than CPU SPSO. This implementation has a positive impact on the
performance of the optimization of large dimension and large swarm population
problems. In our future work, we want to investigate about the influence of the quality
of PRNGs on the performance of the multi-objective particle swarm optimization
(MOPSO) and many objective particle swarm optimization.

48

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

Table 4.8: SPSO gBest value (number of particles n = 2000, number of iteration
2000) for f6

d xorshift xorshift xorshift xorshift xorshift mwc LCG a single step curand curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

50 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
150 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 4.9: SPSO gBest value (number of dimensions d = 50, number of iteration
2000) for f6

n xorshift xorshift xorshift xorshift xorshift mwc LCG a single step curand curand
xor32 xor64 xor64* xor128 xorwow TausStep Philox XORWOW

2000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 4.10: speedup for large swarm population and high dimensional problems on a
SPSO (number of iterations = 10000)

d n Sphere(f1) Rosenbrock(f2) Rastrigin(f3) Griewank(f4) Ackley(f5) Easom(f6)

32 128 10.4 4.1 7.5 8.2 8.0 12.1
64 1024 56.4 53.6 61.6 62.8 66.9 118.1
256 10000 104.7 124.3 127.7 134.3 130.9 307.9

49

CHAPTER 4. EFFECT OF THE PSEUDORANDOM NUMBER GENERATORS ON THE STANDARD
PARTICLE SWARM OPTIMIZATION ON A GPU

50

Chapter 5

GPU-based Parallel
Multi-objective Particle Swarm
Optimization for Large Swarms
and High Dimensional Problems

5.1 Introduction
This chapter presents a new serial implementation of MOPSO (CPU MOPSO) and
a new GPU-parallelized implementation of MOPSO (GPU MOPSO) based on a
master-slave model for large swarms and high dimensional optimization problems.
The proposed parallel implementation of MOPSO 157 times speedup compared to
the corresponding CPU implementation. We achieved our faster implementation
by using coalescing memory access, a fast pseudorandom number generator, Thrust
library, CUB library, an atomic function, parallel archiving and so on.

The remainder of this chapter is organized as follows. In Section 5.2, we provide
our MOPSO implementations on a CPU and a GPU. Subsequently, in Section 5.3, we
present and analyze experimental results and compare our implementation with the
previous implementation in terms of execution time and speedup. After that, Section
5.4 summarizes some related works. Finally, in Section 5.5, we give some concluding
remarks and point out directions for future work.

5.2 Our Implementations of MOPSO
A CPU MOPSO is implemented to evaluate its performance and execution time. In
the CPU MOPSO, the velocity and position of each particle are updated by using the
update equations in Section 2.4. The personal best (pBest) position and fitness value
are obtained by adjusting the previous personal best position and fitness value. At

51

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

each iteration, an archive is updated with respect to the contents of the personal best
repository. At the beginning of each iteration, the archive is empty. The personal
best of the first particle is added to the archive when the archive is empty. After
that, other personal bests nondominanted by the personal best of the first particle
are added to the archive. In our CPU MOPSO implementation, this is called our
archiving technique.

After completion of all iterations, the archive is returned as an outcome from
which a Pareto optimal set is constructed. Our CPU MOPSO uses six loops which
require a lot of time to run. Implementing this part of the program in parallel
using a GPU platform can reduce execution time significantly. In our CPU MOPSO
implementation, thrust::stable_sort is used for sorting in the ascending order of
f2 [47]. The Pareto fronts generated by our CPU MOPSO are quite close to the true
Pareto fronts for large swarms and high dimensional problems.

We utilize a simple, effective and quality archiving technique. This technique
starts with the first particle selection and finishes with the Pareto optimal set con-
struction from the final archive. The details of the same technique on a GPU is
described in the following explanation of our GPU MOPSO.

We use the master-slave model in our GPU MOPSO implementation. A CPU
handles a master and a GPU handles slaves. Our GPU MOPSO is delineated in Fig.
5.1 and Fig. 5.2.

The main process of MOPSO implementation on a GPU by using the master-slave
model is as follows.

Step 1: This step allocates memory on a GPU with 1 block of 1 thread and
initializes the basic information on each particle such as the position and the velocity
with n blocks of d threads. In order to generate random numbers on a GPU, we use
TausStep for each thread with an independent seed number. In our implementation
each particle is mapped onto a distinct thread block and each dimension is mapped
onto a distinct thread. Fig. 5.3 shows our kernel code for initialization where function
fsrand(i, j, k, seed) (resp. frand(i, j, k)) sets a seed of the PRNG (resp.
generates a random number) for the thread allocated to (particle i, dimension
j). Each thread requires two sequences of random numbers. The parameter k
distinguishes the two sequences (k ∈ {0, 1}). In Fig. 5.3, x[] , v[], and
pBestValue[] store positions, velocities, and the personal best values of particles
respectively.

In our previous work [4] of the Standard Particle Swarm Optimization (SPSO)
on a GPU, the curandXORWOW [30] was used for each thread with an independent
seed number. The curandXORWOW focuses on efficient generation of high-quality
pseudorandom and quasirandom numbers. However, it is a little bit complex and
generating a random number requires more computations. Therefore, updating
the XORWOW state takes more time. Our new implementation uses the PRNG
TausStep. TausStep has a positive impact on the performance to solve high
dimensional two objective optimization problems with a large swarm population. For

52

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

MASTER
let n = number of particles; let d = number of dimensions
allocate memory on a GPU with 1 block of 1 thread.
generate random number seeds for TausStep & initialize velocity and position
of each particle on a GPU with n blocks of d threads.

 Step1

for i = 1 to iterations do
calculate fitness values and pBests on a GPU with (n+ 256− 1)/256 blocks of 256 threads.

}
Step 2

select all personal bests nondominated by
the personal best of the first particle on a GPU with (n+ 256− 1)/256 blocks of 256 threads.

}
Step 3

using cub::DeviceScan::ExclusiveSum in advance,
compact the selected personal bests into a dense array archive
on a GPU with (n+ 256− 1)/256 blocks of 256 threads.

 Step 4

update velocities and positions on a GPU with n blocks of d threads.
}

Step 5
end;
stable_sort archive in the ascending order of f2 using thrust::stable_sort
construct a Pareto optimal set from archive on a GPU with 1 block of 1 thread.

}
Step 6

free seeds using 1 block of 1 thread

Fig. 5.1: The master in our GPU MOPSO.

this initialization, coalescing memory access is used. The arrays on the VRAM are
arranged to realize coalescing memory access, in particular the array for random
number seeds.
Step 2 : This step calculates fitness values and personal bests on a GPU with
(n + 256 − 1)/256 blocks of 256 threads by adjusting the previous personal best
positions and values of the two objectives. Here, each slave is mapped on a thread.
Fig. 5.4 shows our kernel code for calculating fitness values and personal bests
where pBestPos[] stores personal best positions. Function poscpy(int d, float
*dst, float *src) copies src[0..d-1] to dst[0..d-1] in serial. Functions f1 and
f2 denote the first and the second of the two objective functions respectively.
Step 3 : This step selects the personal bests to be placed in the archive by computing
a flag array archiveflag on a GPU with (n + 256 − 1)/256 blocks of 256 threads.
In this process, the personal best of the first particle is compared with the personal
bests of the other particles. After comparisons, the personal bests nondominated by
the first particle and the first particle itself are marked with the flag ”1” which means
that their values are stored in Step 4 to a dense array archive and finally returned
to the master. The kernel code of this step is shown in Fig. 5.5 where function
dominates(x, y) returns 1 if a solution x dominates a solution y otherwise returns
0.
Step 4 : In this step, on a GPU with (n+ 256− 1)/256 blocks of 256 threads, from
a sparse array archiveflag, a dense array archive of type key = thrust::tuple
(float, float, float *) is computed. The dense array archive stores together
with pBestPos[] the fitness values and positions of the personal bests selected in Step
3. The first (resp. second) element of a tuple stores the fitness value of the first
(resp. second) objective function. The third element of a tuple stores the pointer to
the corresponding element in pBestPos[]. This array implements the archive on a

53

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Slave 1 Slave 2 Slave 3 Slave 4 Slave 5 Slave 6 Slave 7 Slave 8 …… Slave n

Calculate fitness & pBest on a GPU with (n + 256- 1)/256 blocks of 256 threads.

fitness &
pBest

fitness &
pBest

fitness &
pBest

fitness &
pBest

fitness &
pBest

fitness &
pBest

fitness &
pBest

fitness &
pBest

……………. fitness &
pBest

1 2 3 4 5 6 7 8 n

Select pBests nondominated by the pBest of the first particle on a GPU with (n + 256-1)/256 blocks of 256 threads.

1 0 1 1 0 1 0 1 ……………. 1

Gather the selected pBests on a GPU with (n + 256-1)/256 blocks of 256 threads.

pBest pBest pBest pBest pBest pBest …………….

1 2 3 4 5 6 7 8 n

archiveflag

archive

Ste
p

 2
Ste

p
 3

Ste
p

 4

Master(a CPU thread)
Ste

p
 5

Move particles on a GPU with n blocks of d threads.

n Slaves (n GPU threads)

Fig. 5.2: The slaves in our GPU MOPSO.

GPU. Together with Step 4, Step 3 is called our GPU MOPSO archiving technique.
In this process, each flag value has an important role. The personal bests only with
flag value “1” are stored in archive. Here, prefix-sums is used to find out the location
of each personal best in archive. In our implementation, device-wide exclusive
prefix-sum cub::DeviceScan::ExclusiveSum in the CUB library is used. archive
is used in Step 5 for computing the new velocity and position of each particle. In each
iteration, archive is updated from the beginning. The kernel code is shown in Fig.
5.6 where archivedst[i] stores the index of archive at which the particle i should
be placed and archivesrc[i] stores the index of a particle such that the particle
archivesrc[i] is placed in archive[i]. Here, atomicAdd [17] library function is
used for counting the number of the solutions in the archive where archiveSize is
the counter.
Step 5 : This step moves all particles according to the velocity update equation and
the position update equation in Section 2.4 on a GPU with n blocks of d threads. In
our implementation, the leader is selected for each particle randomly from the archive.
Fig. 5.7 shows our kernel function for computing the new velocity and position of each
particle on a GPU where taus_rand(i, j, k) returns a random unsigned integer
using the same state as frand(i, j, k).
Step 6 : After completion of all iterations, one of the slaves collects nondominated

54

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

1 __global__ void i n i t i a l i z e (int d , int n , f loat ∗x , f loat ∗v ,
2 f loat ∗pBestValue , int seed , f loat domain)
3 {
4 int i = blockIdx . x , int j = threadIdx . x ;
5
6 f s rand (i , j , 0 , 1 + 2 ∗ (i ∗ d + j) + 0 + seed) ;
7 f s rand (i , j , 1 , 1 + 2 ∗ (i ∗ d + j) + 1 + seed) ;
8
9 x [i ∗ d + j] = domain ∗ frand (i , j , 0) ;

10 v [i ∗ d + j] = domain ∗ frand (i , j , 1) ;
11
12 i f (j == 0) {
13 pBestValue [i ∗ 2 + 0] = FLT_MAX;
14 pBestValue [i ∗ 2 + 1] = FLT_MAX;
15 }
16 }

Fig. 5.3: Our kernel function for initialization (Step 1).

solutions from the final archive on a GPU with 1 block of 1 thread, assuming that
archive is sorted in the ascending order of f2. Nondominated solutions are returned
as the outcome and are used to construct a Pareto front.

In our implementation,thrust::stable_sort is used for sorting in the ascending
order of f2 on a GPU. Fig. 5.8 shows our kernel code for generating the Pareto
optimal set where ParetoOptimalSetValue[] and ParetoOptimalSetPos[]
store the values and positions of the Pareto optimal set respectively. Here count
stores the number of solutions in the Pareto optimal set.

5.3 Experimental Evaluations
In this section, we present our experimental results which have been obtained using
a CPU platform and a GPU platform. The experimental results are obtained in
terms of speedup. The speedup is defined as the ratio of the execution time of the
sequential implementation to the execution time of the parallel implementation. Our
GPU MOPSO has been implemented using a single step of the combined Tausworthe
generator as a PRNG and the results have been compared with our CPU MOPSO
which uses the same PRNG. Performance comparisons are conducted based on four
classical benchmark test functions with two objectives shown in Table 5.1 [16][48][49].
The CPU MOPSO and the GPU MOPSO are run using the same configuration
of parameters n and d, which are the numbers of particles and the dimensions
respectively.

55

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

1 __global__ void e v a l u a t e _ p a r t i c l e s (int d , int n , f loat ∗x ,
2 f loat ∗pBestValue , f loat ∗pBestPos)
3 {
4 int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
5 i f (i >= n) return ;
6
7 f loat pValue0 = f1 (d , &x [d ∗ i]) , pValue1= f2 (d , &x [d ∗ i]) ;
8
9 i f (dominates (pValue0 , pValue1 , &pBestValue [i ∗ 2])) {

10 pBestValue [i ∗ 2 + 0] = pValue0 ;
11 pBestValue [i ∗ 2 + 1] = pValue1 ;
12 poscpy (d , &pBestPos [d ∗ i] , &x [d ∗ i]) ;
13 }
14 }

Fig. 5.4: Our kernel function for computing fitness values and personal bests (Step
2).

5.3.1 Environment
Tests were conducted using our GPU and CPU server. Our GPU server has an
NVIDIA TITAN V (5120 cores, 12GB VRAM)[50], a 2.8GHz Intel Core i7-6700T
(8MB L3 cache, 4 physical cores), 16GB main memory, and Windows 10 Professional.
Our CPU server has a 3.0GHz Intel Xeon E3-1220V5 (8MB L3 cache, 4 physical
cores)[51], 16GB main memory, and Windows Server 2012 R2. For compilation, we
used Microsoft Visual Studio 2017 Professional Edition and CUDA 10 SDK.

5.3.2 Experimental Result
In all experiments the numbers of dimensions and particles were respectively set from
30 to 1024 and from 1024 to 32768. Each experiment was run until the maximum
number of iterations has been reached, which was set from 250 to 2500. The GPU
MOPSO and CPU MOPSO were run for the four test functions with two objectives
(f1 and f2) 10 times independently with different seeds. The average speedup results
of the four functions are shown in Tables 5.2 to 5.11.

5.3.3 Experimental Analysis
Analyzing the data in Tables 5.2 through 5.5 and Figs. 5.9 to 5.12 we observe
that a large swarm improves the quality and size of the obtained nondominated
solutions which creates a good Pareto front. In these cases, the numbers of particles,
dimensions, and iterations are 1024 to 32768, 30, and 2500 respectively. On the

56

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

1 __global__ void s e l e c t_pBest s (int n , f loat ∗pBestValue ,
2 int ∗ a r c h i v e f l a g))
3 {
4 int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
5 i f (i >= n) return ;
6
7 i f ((pBestValue [0] == pBestValue [i ∗ 2 + 0])
8 && (pBestValue [1] == pBestValue [i ∗ 2 + 1])) return ;
9 i f (! dominates(&pBestValue [0] , &pBestValue [i ∗ 2]))

10 a r c h i v e f l a g [i] = 1 ;
11 else a r c h i v e f l a g [i] = 0 ;
12 }

Fig. 5.5: Our kernel function for selecting personal bests to be placed in the archive
(Step 3).

other hand, in Tables 5.6 through 5.9, we observe that the number of nondominated
solutions is decreased with an increase of the number of dimensions. It’s a common
phenomena that we have difficulty if the number of dimensions is increased while the
number of particles is fixed. However, Pareto fronts of both CPU MOPSO and GPU
MOPSO implementations are very close to the true Pareto fronts as shown in Figs.
5.13 and 5.14. Here, the numbers of dimensions, particles, and iterations are 256,
8192, and 2500 respectively. In this experiment, the CPU MOPSO and the GPU
MOPSO were run for Test functions 1 to 4. Moreover, we include Figs. 5.15 through
5.18 where the numbers of dimensions and particles are large at the same time. Here,
we observe that the obtained Pareto fronts are very close to the true Pareto fronts.

More remarkable point of our implementation is that we can handle large volume
cases faster as well which are more important for optimization problems. For this
reason, analyzing the data of the tables, we observe that in Table 5.11, the GPU
MOPSO can reach maximum 157 times speedup for Test function 3 when the swarm
population and the number of dimensions are respectively large.

The experimental results have been compared with an existing GPU parallel
implementation [9] using the same configuration to obtain a better comparative result.
However, their tests were conducted by using an NVIDIA GeForce 9800 GT [52]
GPU and an Intel Core 2 Duo, 2.20 GHz CPU. The operating system was Windows
XP Professional. Both platforms are older than our experimental platforms. The
comparative results are presented in Table 5.10 and they demonstrate that our GPU
implementation is faster when the swarm population size is 4096 and the number of
dimensions are increased from 100 to 200. Our GPU implementation increases the
speed up-to 28 times for Test function 4.

Our implementation runs fast even when the swarm size and the number of

57

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

1 __global__ void make_archive (int d , int n , f loat ∗pBestValue ,
2 f loat ∗pBestPos , key ∗ arch ive , int ∗ arch iveds t , int ∗ a r ch iv e s r c ,
3 int ∗ a r c h i v e f l a g)
4 {
5 int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
6 i f (i >= n) return ;
7 i f (a r c h i v e f l a g [i] == 1) {
8 arch ive [a r ch i v ed s t [i]] . get <0>()
9 = pBestValue [a r c h i v e s r c [a r ch i v ed s t [i]] ∗ 2 + 0] ;

10 arch ive [a r ch i v ed s t [i]] . get <1>()
11 = pBestValue [a r c h i v e s r c [a r ch i v ed s t [i]] ∗ 2 + 1] ;
12 arch ive [a r ch i v ed s t [i]] . get <2>()
13 = &pBestPos [a r c h i v e s r c [a r ch i v ed s t [i]] ∗ d] ;
14 atomicAdd(& arch iveS i z e , 1) ;
15 }
16 }

Fig. 5.6: Our kernel function for archiving on a GPU (Step 4).

dimensions are increased simultaneously (See Tables 5.2 to 5.10). Furthermore,
our CPU MOPSO is also fast due to a simple archiving technique. Our CPU
implementation works well for large swarms and high dimensional problems. In
our CPU MOPSO, the execution time depends on the function type and how many
loops are used inside the implementation. In addition, it depends on the number
of iterations. In our GPU MOPSO, the execution time depends on kernels and the
number of iterations. Moreover, coalescing memory access has an important effect
which makes our GPU MOPSO implementation faster for large swarms and high
dimensional problems. The test results for the four test functions demonstrated
that the execution times are almost the same when the number of iterations is
fixed. Therefore, the execution time curves for the four test functions by our GPU
MOPSO in Figs. 5.19 and 5.20 are overlapped with each other. Our GPU MOPSO
implementation effectively speeds up for large swarms and high dimensional problems.
(See Figs. 5.21 and 5.22)

In a nutshell, in our implementation the best key point is that we achieved
efficient parallelization. We presented a new approach to archive handling. In our
implementation, a single step of the combined Tausworthe generator of PRNGs for
GPUs presents enough quality Pareto fronts. We found more speedup with good
nondominated solutions when the swarm size and the number of dimensions are
simultaneously larger (See Table 5.11). The proposed GPU MOPSO can be used
to improve execution time to solve high dimensional optimization problems on a
large swarm population.

58

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

1 __global__ void move_part ic les (int d , int n , f loat ∗x , f loat ∗v ,
2 f loat ∗pBestPos , int ∗ a r c h i v e s r c)
3 {
4 const f loat W = 0.729 f , C1 = 1.4595 f , C2 = 1.4595 f ;
5 int i = blockIdx . x , int j = threadIdx . x ;
6
7 __shared__ int l e a d e r ;
8 i f (threadIdx . x == 0)
9 l e a d e r = a r c h i v e s r c [taus_rand (i , 0 , 1) % a r c h i v e S i z e] ;

10 __syncthreads () ;
11
12 v [d ∗ i + j] = W ∗ v [d ∗ i + j] + C1 ∗ frand (i , j , 0) ∗
13 (pBestPos [d ∗ i + j] − x [d ∗ i + j])
14 + C2 ∗ frand (i , j , 1) ∗
15 (pBestPos [l e a d e r ∗ d + j] − x [d ∗ i + j]) ;
16 x [d ∗ i + j] += v [d ∗ i + j] ;
17
18 i f (x [d ∗ i + j] < 0 .0 f) x [d ∗ i + j] = 0 .0 f ;
19 else i f (x [d ∗ i + j] > 1 .0 f) x [d ∗ i + j] = 1 .0 f ;
20 }

Fig. 5.7: Our kernel function for computing a new velocity and position of each
particle on a GPU (Step 5).

5.3.4 The Bottleneck on a CPU and on a GPU
In this section, we show profiling results of our CPU and GPU programs for Test
function 4 as two tables. For these experiments, the numbers of dimensions, particles
and iterations were respectively set to 30, 2000, and 2500. Table 5.12 is the profiling
result by the Microsoft Visual Studio CPU profiling tool. Here we observe that the
bottleneck of our CPU MOPSO is the second objective function f2. Table 5.13 is
the profiling result by the NVIDIA Nsight profiling tool which provides a breakdown
of the execution time of our GPU MOPSO implementation. Here, we observe that
cub::DeviceScanKernel is the bottleneck of our GPU MOPSO implementation.

59

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

1 __global__ void ca lcu late_ParetoOpt imalSet (f loat ∗ Pareto
2 OptimalSetValue , f loat ∗ ParetoOptimalSetPos , key ∗ arch ive , int d)
3 {
4 // precond i t i on : a rch i ve [] i s s o r t ed in the ascending
5 order o f f 2 .
6 ParetoOptimalSetValue [0] = arch ive [0] . get <0>() ;
7 ParetoOptimalSetValue [1] = arch ive [0] . get <1>() ;
8 poscpy (d , &ParetoOptimalSetPos [0] , a r ch ive [0] . get <2>()) ;
9 count = 1 ;

10 for (int i = 1 ; i < a r c h i v e S i z e ; i++) {
11 i f (a r ch ive [i] . get <0>() <
12 ParetoOptimalSetValue [(count − 1) ∗ 2 + 0]) {
13 ParetoOptimalSetValue [count ∗ 2 + 0]
14 = arch ive [i] . get <0>() ;
15 ParetoOptimalSetValue [count ∗ 2 + 1]
16 = arch ive [i] . get <1>() ;
17 poscpy (d , &ParetoOptimalSetPos [count ∗ d] ,
18 arch ive [i] . get <2>()) ;
19 i f (! ((ParetoOptimalSetValue [(count − 1) ∗ 2 + 0]
20 == ParetoOptimalSetValue [count ∗ 2 + 0])
21 && (ParetoOptimalSetValue [(count − 1) ∗ 2 + 1]
22 == ParetoOptimalSetValue [count ∗ 2 + 1])))
23 count++;
24 }
25 }
26 }

Fig. 5.8: Our kernel function for generating a Pareto optimal set on a GPU (Step 6).

60

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Table 5.1: Four classical benchmark test functions

Testfunction Objective 1 Objective 2 Bounds

1 f1 = x1

f2 = gh;

where, g = 1 + 9.0
∑d

i=2(
xi

d−1);

h = 1− (f1g)
2

[0, 1]

2 f1 = x1

f2 = gh;

where, g = 1 + 9.0
∑d

i=2(
xi

d−1);

h = 1−
√

f1
g

[0, 1]

3 f1 = x1

f2 = gh;

where, g = 1 + 9.0
∑d

i=2(
xi

d−1);

h = 1−
√

f1
g − (f1g)sin(10π ∗ f1)

[0, 1]

4 f1 = x1

f2 = gh;

where, g = 1 + 9.0
∑d

i=2(
xi

d−1);

h = 1− 4

√
f1
g − (f1g)

4

[0, 1]

Table 5.2: Speedup of our GPU MOPSO (number d of dimensions = 30, number of
iterations = 2500) for Test function 1.

n CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

1024 0.83 37 0.15 42 5.5
2048 1.59 86 0.15 112 10.6
4096 4.49 143 0.16 160 28.0
8192 6.98 269 0.20 280 34.9
16384 12.18 537 0.26 566 46.8
32768 35.68 1299 0.38 1355 93.8

61

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Table 5.3: Speedup of our GPU MOPSO (number d of dimensions = 30, number of
iterations = 2500) for Test function 2.

n CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

1024 0.92 208 0.16 268 5.7
2048 1.91 338 0.17 468 11.2
4096 3.03 838 0.18 856 16.8
8192 6.25 1436 0.21 1452 29.7
16384 12.94 2464 0.28 2563 46.2
32768 32.05 4227 0.40 4369 80.1

Table 5.4: Speedup of our GPU MOPSO (number d of dimensions = 30, number of
iterations = 2500) for Test function 3.

n CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

1024 0.74 228 0.16 279 4.6
2048 1.57 503 0.17 503 9.2
4096 3.17 834 0.18 837 17.6
8192 6.28 1309 0.22 1500 28.5
16384 12.37 2423 0.28 2450 44.1
32768 33.25 4213 0.40 4237 83.1

Table 5.5: Speedup of our GPU MOPSO (number d of dimensions = 30, number of
iterations = 2500) for Test function 4.

n CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

1024 0.92 467 0.16 492 5.7
2048 1.87 765 0.17 826 11.0
4096 3.82 1188 0.18 1328 21.2
8192 7.16 2171 0.21 2180 34.0
16384 14.51 3382 0.28 3337 51.8
32768 32.74 4701 0.40 4801 81.8

62

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Table 5.6: Speedup of our GPU MOPSO (number n of particles = 8192, number of
iterations = 2500) for Test function 1.

d CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

32 5.98 313 0.20 230 29.9
64 12.06 286 0.27 294 46.6
128 30.77 198 0.43 196 71.5
256 69.94 207 0.74 322 94.5
512 144.90 109 1.37 292 105.7
1024 362.26 365 2.73 569 132.6

Table 5.7: Speedup of our GPU MOPSO (number n of particles = 8192, number of
iterations = 2500) for Test function 2.

d CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

32 8.29 1114 0.21 1202 39.4
64 16.63 488 0.29 1147 57.3
128 33.31 371 0.45 1141 74.0
256 63.48 335 0.77 828 82.4
512 136.66 305 1.42 315 96.2
1024 358.29 226 2.71 246 132.2

Table 5.8: Speedup of our GPU MOPSO (number n of particles = 8192, number of
iterations = 2500) for Test function 3.

d CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

32 8.57 1242 0.21 1255 40.8
64 14.22 1012 0.28 1216 50.7
128 33.72 987 0.45 1077 74.9
256 68.22 1024 0.78 1033 87.4
512 136.62 912 1.43 922 95.5
1024 351.37 828 2.73 838 128.7

63

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Table 5.9: Speedup of our GPU MOPSO (number n of particles = 8192, number of
iterations = 2500) for Test function 4.

d CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

32 8.06 1680 0.21 1765 38.3
64 15.80 1513 0.29 1546 54.4
128 31.96 1395 0.46 1406 69.4
256 68.01 1214 0.79 1389 86.0
512 163.11 488 1.43 545 114.0
1024 368.46 128 2.72 148 135.4

Fig. 5.9: Pareto fronts constructed on a CPU (n = 1024,d= 30, number of iterations
= 2500).

64

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.10: Pareto fronts constructed on a GPU (n = 1024,d= 30, number of iterations
= 2500).

Table 5.10: Speedup comparison between [9] and our implementation (number n of
particles = 4096, number of iterations = 250) for Test function 4.

[9] Our implementation
d CPU GPU Speedup CPU GPU Speedup

Time(s) Time(s) Time(s) Time(s)
100 29.23 2.80 10.4 1.15 0.07 16.4
200 60.63 5.67 10.6 2.54 0.09 28.2

65

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.11: Pareto fronts constructed on a CPU (n = 32768, d = 30, number of
iterations = 2500).

Table 5.11: More nondominated solutions and speedup are found when swarm and
dimension are simultaneously larger (number of dimensions = 1024, number of
iteration = 2500, Test function 3).

n CPU # of Nondominated GPU # of Nondominated Speedup
Time(s) Solutions Time(s) Solutions

10000 340.30 946 3.08 946 110.4
20000 688.87 1283 4.88 1284 141.1
30000 1031.42 1510 6.79 1522 151.9
40000 1371.48 1713 8.73 1799 157.0

66

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.12: Pareto fronts constructed on a GPU (n =32768,d = 30, number of iterations
= 2500).

Table 5.12: The bottleneck on a CPU (number d of dimensions = 30, number n of
particles = 2000, number of iterations = 2500) for Test function 4.

Time (%) # of calls Name of the function
55.61% 5000000 float f2
31.82% 2500 void move_particles
11.96% 1 int PSO
0.60% 2500 void select_pBests
0.001% 1 void initialize

67

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.13: Pareto fronts constructed on a CPU (n = 8192, d = 256, number of
iterations = 2500).

68

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.14: Pareto fronts constructed on a GPU (n = 8192, d = 256, number of
iterations = 2500).

69

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.15: Pareto fronts constructed on a CPU (n=10000 or 20000, d =512, number
of iterations=2500) for Test function 3 and Test function 4.

70

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.16: Pareto fronts constructed on a GPU (n=10000 or 20000, d =512, number
of iterations=2500) for Test function 3 and Test function 4.

71

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.17: Pareto fronts constructed on a CPU (n=10000 or 20000, d =1024, number
of iterations=2500) for Test function 3 and Test function 4.

72

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Fig. 5.18: Pareto fronts constructed on a GPU (n=10000 or 20000, d =1024, number
of iterations=2500) for Test function 3 and Test function 4.

73

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

0

5

10

15

20

25

30

35

40

1024 2048 4096 8192 16384 32768

Test function 1(CPU) Test function 1(GPU)

Test function 2(CPU) Test function 2(GPU)

Test function 3(CPU) Test function 3(GPU)

Test function 4(CPU) Test function 4(GPU)

Fig. 5.19: Overlap of execution time on a GPU (number of dimensions = 30, number
of iterations = 2500).

74

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

0

50

100

150

200

250

300

350

400

32 64 128 256 512 1024

Test function 1(CPU) Test function 1(GPU)

Test function 2(CPU) Test function 2(GPU)

Test function 3(CPU) Test function 3(GPU)

Test function 4(CPU) Test function 4(GPU)

Fig. 5.20: Overlap of execution time on a GPU (number of particles = 8192, number
of iterations = 2500).

75

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

5.5
10.6

28

34.9

46.8

93.8

5.7
11.2

16.8

29.7

46.2

80.1

4.6
9.2

17.6

31.4

44.1

83.1

5.7 11

21.2

34

51.8

81.8

1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100
Test function 1 Test function 2

Test function 3 Test function 4

Number of Particles

Fig. 5.21: Speedup (number of dimensions = 30, number of iterations = 2500).

76

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

29.9

46.6

71.5

94.5

105.7

132.6

39.4
57.3

74 82.4

96.2

132.2

40.8
50.7

74.9

87.4

95.5

128.7

38.3

54.4

69.4

86

114

135.4

32 64 128 256 512 1024
0

20

40

60

80

100

120

140

160
Test function 1 Test function 2

Test function 3 Test function 4

Fig. 5.22: Speedup (number of particles = 8192, number of iterations = 2500).

77

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

Ta
bl

e
5.

13
:T

he
bo

tt
le

ne
ck

on
a

G
PU

(n
um

be
rd

of
di

m
en

sio
ns

=
30

,n
um

be
rn

of
pa

rt
ic

le
s=

20
00

,n
um

be
ro

fi
te

ra
tio

ns
=

25
00

)
fo

r
Te

st
fu

nc
tio

n
4.

T
im

e
T

im
e

#
of

ca
lls

A v
er

ag
e

M
in

im
um

M
ax

im
um

N
am

e
of

th
e

ke
rn

el
(%

)
(s

)
(µ
s)

(µ
s)

(µ
s)

84
.6

77
6

2.
06

27
25

00
0.

82
50

0.
81

81
0.

92
60

vo
id

cu
b:
:D
ev

ic
eS

ca
nK

er
ne

l
9.

10
45

0.
22

17
25

00
0.

08
87

0.
04

79
0.

10
79

__
gl

ob
al

__
vo

id
ev

al
ua

te
_p

ar
ti

cl
es

1.
92

81
0.

04
69

25
00

0.
01

87
0.

01
76

0.
02

53
__

gl
ob

al
__

vo
id

mo
ve

_p
ar

ti
cl

es
1.

66
46

0.
04

05
25

00
0.

01
62

0.
01

58
0.

01
89

__
gl

ob
al

__
vo

id
ma

ke
_a

rc
hi

ve
1.

15
05

0.
02

80
1

28
.0

28
4

28
.0

28
4

28
.0

28
4

__
gl

ob
al

__
vo

id
ca

lc
ul

at
e_

Pa
re

to
Op

ti
ma

lS
et

0.
49

54
0.

01
20

25
00

0.
00

48
0.

00
45

0.
01

08
__

gl
ob

al
__

vo
id

se
le

ct
_p

Be
st

s
0.

44
41

0.
01

08
25

00
0.

00
43

0.
00

42
0.

01
09

vo
id

cu
b:
:D
ev

ic
eS

ca
nI

ni
tK

er
ne

l
0.

31
66

0.
00

77
25

00
0.

00
30

0.
00

29
0.

01
02

__
gl

ob
al

__
vo

id
ca

lc
ul

at
e_

ar
ch

iv
es

rc
0.

12
66

0.
00

30
25

00
0.

00
12

0.
00

11
0.

00
96

[C
UD

A
me

ms
et

]
0.

04
42

0.
00

10
1

1.
07

83
1.

07
83

1.
07

83
vo

id
th

ru
st

::
cu

da
_c

ub
::

co
re

::
_k

er
ne

l_
ag

en
t<

th
ru

st
::

cu
da

_c
ub

::
__

me
rg

e_
so

rt
::

Bl
oc

kS
or

tA
ge

nt
>

0.
02

34
0.

00
05

2
0.

28
52

0.
24

93
0.

32
10

vo
id

th
ru

st
::

cu
da

_c
ub

::
co

re
::

_k
er

ne
l_

ag
en

t<
th

ru
st

::
cu

da
_c

ub
::

__
me

rg
e_

so
rt

::
Me

rg
eA

ge
nt

>
0.

02
10

0.
00

05
2

0.
25

59
0.

09
15

0.
42

02
vo

id
th

ru
st

::
cu

da
_c

ub
::

co
re

::
_k

er
ne

l_
ag

en
t<

th
ru

st
::

cu
da

_c
ub

::
__

me
rg

e_
so

rt
::

Pa
rt

it
io

nA
ge

nt
>

0.
00

09
0.

00
00

1
0.

02
21

0.
02

21
0.

02
21

__
gl

ob
al

__
vo

id
in

it
ia

li
ze

0.
00

08
0.

00
00

1
0.

02
07

0.
02

07
0.

02
07

__
gl

ob
al

__
vo

id
al

lo
ca

te
_m

em
or

y
0.

00
06

0.
00

00
1

0.
01

59
0.

01
59

0.
01

59
__

gl
ob

al
__

vo
id

fr
ee

_m
em

or
y

78

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

5.4 Related Works
Y. Zhou and Y. Tan [9] presented a parallel approach to running MOPSO on a
GPU for two objective problems based on hierarchical models. In their paper, they
modified a parallel version of the Vector Evaluated Particle Swarm Optimization
(VEPSO) method [53] for multi-objective problems. The optimization performance
was evaluated by only one of the objectives instead of both, thus the execution time
was reduced. We believe that this approach will not satisfy the constraints of MOPSO.
In this approach, running speed of their GPU MOPSO was 10 times faster than that
of their CPU MOPSO. In this case, no Parent front was shown.

M. L. Wong [54] implemented a parallel MOEA on a GPU based on the CUDA
architecture. In his implementation, all procedures were performed on a GPU except
the nondominated selection procedure, and the implementation was quite complex.
The speedups of the parallel MOEA ranged from 5.62 to 10.75 times.

J. P. Arun et al.[8] presented a faster parallel MOPSO based on a master-slave
model. They compared the performance of CUDA and OpenCL implementations
with a sequential implementation of MOPSO through simulations. Results showed
that the performance was improved by 90 percent using parallel implementations.
They considered population sizes from 1000 to 2000 and low dimensions. Master
archives were developed inside the CPU. Therefore, the performance decreases for
large swarms and high dimensional problems.
In most of the serial and parallel implementations, they fixed the number of
dimensions and a swarm at small size because the time complexity of archive handling
is proportional to the sizes. If they consider a large number of iterations for best
quality Pareto fronts, in the case of high dimensionality and a large swarm the
computational speed will decrease significantly. We have demonstrated that our
proposed implementations can handle both of cases with good Pareto fronts which
are very close to the true Pareto fronts.

5.5 Summary
With the evolution of big data era and the fast development of distributed
parallel computing technologies, many complicated problems can be transformed into
multi-objective large scale and high dimensional problems. In this circumstance,
we have developed the PSO algorithm into MOPSO for large swarms and high
dimensional problems. This is the first approach to implement MOPSO for large
swarms and high dimensional problems. Our GPU MOPSO and CPU MOPSO
found good Pareto fronts of the four test functions which are very close to the
true Pareto fronts. In our GPU MOPSO, by using the master-slave model, the
optimization tasks can be allocated from the master to large amounts of slaves, which
can effectively improve our implementation. We have achieved shorter execution

79

CHAPTER 5. GPU-BASED PARALLEL MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR
LARGE SWARMS AND HIGH DIMENSIONAL PROBLEMS

time. The proposed implementation is 157 times faster than our CPU MOPSO.
The proposed GPU MOPSO significantly reduces execution time compared to the
previous implementation. In our future work, we want to investigate the parallel
implementation of the multi-objective particle swarm optimization with more than
two or many objectives. We also want to improve the present MOPSO performance
and Pareto fronts on a GPU.

80

Chapter 6

Conclusion

During my PhD, I worked in the realm of nature inspired optimization techniques
using particle swarm optimization (PSO) for single and multi-objective optimization
(MOPSO) problems. I studied the most efficient way to implement PSO and MOPSO
using both CPU and GPU. This kind of optimization has a huge potential to
solve many kinds of problems where a large number of data is analyzed to drive
the best solution. The effective implementation of the PSO algorithm as a single
objective optimizer is enticing to extend its uses in other areas. One of such
areas is multi-objective optimization. Multi-objective problems are very common in
real-world optimization fields, of which the objectives to be optimized are normally
in conflict with each other. In my research, I tried to develop a new parallelized
implementation of the multi-objective particle swarm optimization (GPU MOPSO)
for large swarm and high dimensional optimization problems. Performance of MOPSO
is dependent upon an archiving technique and leader selection. I implemented an
effective and quality archiving technique. This technique starts with the first particle
selection and finishes with the Pareto optimal set construction from the final archive.
After generating the final archive, we randomly pick out a leader from the final
archive for new velocity and positions. A master slave model is used in MOPSO
Implementation where CPU handles a master and a GPU handles slaves. In my
GPU MOPSO, by using master slave model, the optimization tasks can be allocated
from the master to large amounts of slaves, which can effectively improve the running
competency. We have achieved short execution time. The proposed implementation
is 157 times faster than our CPU MOPSO.

Moving forward, I am foreseeing that my prior knowledge and hands on
experiences in GPU programming and swarm intelligence can be directly applied
for surgical robotics and swarm robotics-both are used for medical treatment and
rescue operation. My vision of such applications, e.g. in diagnosis of cancer and
similar endogenous diseases are supported by the community. Apart from swarm
robotics, many more unmet clinical needs are left to be improved and I find that the
health sector is one of the most challenging areas to adopt information technology

81

CHAPTER 6. CONCLUSION

due to the complexity of our body and the concern of risking lives. Current medical
system relies on a human doctor (MD) to provide the best diagnosis and treatment
for the patients. However, workload, stress and other human factors can lead to an
imperfect decision towards diagnosis. Some efforts have been made to replace MDs
which are far from perfect. However, as Barabara Engelhardt, one of the leaders in
AI and Genetics, says, “Build Methods to focus clinicians and screen patients, not
MDs. Doctors are not stupid and AI is not magic”, instead of replacing human, an
additional intelligent system with archive of patients history can help doctors further
to reach quicker and more accurate decision and thus saving both time and risk of
life. Archiving patient history, handling big data in a secured manner, building an
intelligent system utilizing patient history-everywhere I can see myself to be able to
contribute. I enjoy outgrowing my limit, shedding old shell to grow further in more
challenging field. My knack for taking new challenges with open arms and diverse
experiences always helped me to think out of the box and I strongly believe, I will be
a valuable member for any Innovation program.

82

Bibliography

[1] J. Kennedy and R. C. Eberhart, Particle Swarm Optimization, IEEE
International Conference on Neural Networks 4 (1995) 1942-1948.

[2] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley
(2005).

[3] J. Kołodziejczyk Survey on Particle Swarm Optimization accelerated on
GPGPU, International Journal of Scientific Engineering and Research 5(12)
(2014) 2229-5518.

[4] M. M. Hussain, H. Hattori, and N. Fujimoto, A CUDA Implementation of
the Standard Particle Swarm Optimization, 18th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (2016) 219-226.

[5] M. M. Hussain and N. Fujimoto, Effect of the Pseudorandom Number Generators
on the Standard Particle Swarm Optimization on a GPU, International
Conference on Computational Science and Computational Intelligence (CSCI)
(2018).

[6] J. Moore and R. Chapman, Application of Particle Swarm to Multiobjective
Optimization, department of Computer Science and Software Engineering,
Auburn University (1999).

[7] B. Cao, J. Zhao, Z. Lv, X. Liu, S. Yang, X. Kang, and K. Kang, Distributed
Parallel Particle Swarm Optimization for Multi-Objective and Many-Objective
Large-Scale Optimization, IEEE Access 5 (2017) 8214-8221.

[8] J. P. Arun, M. Mishra, and S. V. Subramaniam, Parallel Implementation of
MOPSO on GPU Using OpenCL and CUDA, 18th International Conference on
High Performance Computing (HiPC) (2011) 1-10.

[9] Y. Zhou and Y. Tan, GPU-Based Parallel Multiobjective Particle Swarm
Optimization, International Journal of Artificial Intelligence 7, A11 (2011).

[10] X. Hu, Particle Swarm Optimization, www.swarmintelligence.org (2006).

83

BIBLIOGRAPHY

[11] D. Bratton and J. Kennedy, Defining a Standard for Particle Swarm
Optimization, IEEE Swarm Intelligence Symposium (2007) 120-127.

[12] J. C. Bansal, P. K. Singh, and M. Saraswat, Inertia Weight Strategies in Particle
Swarm Optimization, Third World Congress on Nature and Biologically Inspired
Computing (2011) 633-640.

[13] V. Kumar and S. Minz, Multi-Objective Particle Swarm Optimization: An
Introduction, Smart Computing Review 4(5) (2014) 335-353.

[14] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, Handling Multiple Objectives
With Particle Swarm Optimization, IEEE Transactions On Evolutionary
Computation 8 (3) (2004) 256-279.

[15] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley
(2009).

[16] E. Zitzler, K. Deb and L.Thiele, Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation 8 (2) (2000) 173-195.

[17] NVIDIA, CUDA Toolkit Documentation 10.1.168, http://docs.nvidia.com/cuda
(2019).

[18] K. E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha, Fast Computation
of Generalized Voronoi Diagrams Using Graphics Hardware, 26th Annual
Conference on Computer Graphics and Interactive Techniques (1999) 277-286.

[19] Z. W. Luo, H. Liu, and X. Wu, Artificial Neural Network Computation on
Graphic Process Unit, IEEE International Joint Conference on Neural Networks
1 (2005) 622-626.

[20] W. Liu and B. Vinter, An Efficient GPU General Sparse Matrix-Matrix
Multiplication for Irregular Data, 28th IEEE International on Parallel and
Distributed Processing Symposium (2014) 370-381.

[21] G. Dafeng and W. Xiaojun, Real-time Visual Hull Computation Based on GPU,
IEEE International Conference on Robotics and Biomimetics (ROBIO) (2015)
1792-1797.

[22] A. P. Yazdanpanah, A. K. Mandava, E. E. Regentova, V. Muthukumar, and
G. Bebis, A CUDA Based Implementation of Locally-and Feature-Adaptive
Diffusion Based Image Denoising Algorithm, 11th International Conference on
Information Technology: New Generations (ITNG) (2014) 388-393.

[23] NVIDIA, CUDA C Best Practices Guide 10.1.168,
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html (2019).

84

BIBLIOGRAPHY

[24] L. Howes and D. Thomas, Efficient Random Number Generation and
Application Using CUDA, GPU Gems 3, Chapter 37, http://developer.nvidia.
com/gpugems/GPUGems3/gpugems3_pref01.html (2016).

[25] P. L’ecuyer, Tables of Maximally Equidistributed Combined LFSR Generators,
Mathematics of Computation 68 (225) (1999) 261-269.

[26] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (2nd Edition) (1969).

[27] G. Marsaglia, Xorshift RNGs, Journal of Statistical Software 8 (2003) 1-6.

[28] F. Panneton and P. L’Ecuye, Particle Swarm Optimization, IEEE International
Conference on Neural Networks 4 (1995) 1942-1948.

[29] J. Kaur, S. Singh and S. Singh, Parallel Implementation of PSO Algorithm Using
GPGPU, Second International Conference on Computational Intelligence and
Communication Technology (CICT) (2016).

[30] NVIDIA, cuRAND, https://docs.nvidia.com/cuda (2019).

[31] NVIDIA, Thrust, http://docs.nvidia.com/cuda/thrust/index .html (2019).

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, The MIT Press (2009).

[33] NVIDIA, CUB Documentation ,https://nvlabs.github.io /cub/index.html
(2013).

[34] NVIDIA, CUDA Programming Guide 10.1.168,
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (2019).

[35] D. A. VanVeldhuizenr, J. B. Zydallis and G. B. Lamont, Considerations
in Engineering Parallel Multiobjective Evolutionary Algorithms, IEEE
Transactions on Evolutionary Computation 7 (2) (2003) 144-173.

[36] Y. Zhou and Y. Tan, GPU-based Parallel Particle Swarm Optimization, 11th
IEEE Congress on Evolutionary Computation (2009) 1493-1500.

[37] R. M. Calazan, N. Nedjah, and L. D. M. Mourelle, Parallel GPU-based
Implementation of High Dimension Particle Swarm Optimizations, IEEE Fourth
Latin American Symposium on Circuits and Systems (LASCAS) (2013) 1-4.

[38] V. K. Reddy and L. S. S. Reddy, Performance Evaluation of Particle Swarm
Optimization Algorithms on GPU Using CUDA, International Journal of
Computer Science and Information Technologies 5(1) (2012) 65-81.

85

BIBLIOGRAPHY

[39] L. Mussia, F. Daoliob, and S. Cagnoni, Evaluation of Parallel Particle Swarm
Optimization Algorithms within the CUDA™ Architecture, Information Sciences
on Interpretable Fuzzy Systems 181 (2011) 4642-4657.

[40] W. Li and Z. Zhang, A CUDA-based Multichannel Particle Swarm Algorithm,
International Conference on Control, Automation and Systems Engineering
(CASE) (2011) 1-4.

[41] R. M. Calazan, N. Nedjah, and L. D. M. Mourelle, A Cooperative Parallel
Particle Swarm Optimization for High-Dimension Problems on GPUs, BRICS
Congress on Computational Intelligence and 11th Brazilian Congress on
Computational Intelligence (2013) 356-361.

[42] H. Zhu, Y. Guo, J. Wu, and J. Gu, Paralleling Euclidean Particle Swarm
Optimization in CUDA, 4th International Conference on Intelligent Networks
and Intelligent Systems (ICINIS) (2011) 93-96.

[43] E. H. M. Silva and C. J. A. B. Filho, PSO Efficient Implementation on GPUs
Using Low Latency Memory, IEEE Latin America Transactions 13(5) (2015)
1619-1624.

[44] O. Bali, W. Elloumi, P. Krömer, and A. M. Alimi, GPU Particle Swarm
Optimization Applied to Travelling Salesman Problem, IEEE 9th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)
(2015) 112-119.

[45] X. Yang, Test Problems in Optimization, Cornell University Library (2010).

[46] NVIDIA, GeForce GTX 980 for Desktop,
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980.

[47] K. Masuda and K. Kurihara, A Constrained Global Optimization Method
Based on Multi-Objective Particle Swarm Optimization, Electronics and
Communications in Japan 95 (1) (2012) 43-54.

[48] K. E. Parsopoulos and M. N. Vrahatis, Recent Approaches to Global
Optimization Problems through Particle Swarm Optimization, Natural
Computing (1) (2002) 235-306.

[49] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization Method
in Multiobjective Problems, ACM Symposium on Applied Computing (2002)
603-607.

[50] NVIDIA, NVIDIA TITAN V, https://www.nvidia.com/en-us/titan/titan-v.

86

BIBLIOGRAPHY

[51] Intel, Intel Xeon E3-1220 v5, https://ark.intel.com/content
/www/us/en/ark/products/88172/ intel-xeon-processor-e3-1220-v5-8m-cache-3-
00-ghz.html.

[52] NVIDIA, GeForce 9800 GT, https://www.geforce.com/hardware
/desktop-gpus/geforce-9800gt.

[53] K. E. Parsopoulos, D.K. Tasoulis, and M. N. Vrahatis, Multiobjective
Optimization Using Parallel Vector Evaluated Particle Swarm Optimization,
IASTED International Conference on Artificial Intelligence and Applications 2
(2004) 823-828.

[54] M. L. Wong , Parallel Multi-objective Evolutionary Algorithms on Graphics
Processing Units, 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference (2009) 2515-2522.

87

BIBLIOGRAPHY

88

Publications of the Author

Refereed Journal Paper
1. Md. Maruf Hussain and Noriyuki Fujimoto : GPU based Parallel

Multi-objective Particle Swarm Optimization for Large Swarm and High
Dimensional Problems, Parallel Computing, Vol.92, 19 pages, Elsevier, Impact
Factor 1.281, accepted, https://doi.org/10.1016/j.parco.2019.102589 (2020)

Refereed International Conference Papers
1. Md. Maruf Hussain and Noriyuki Fujimoto : Effect of the Pseudorandom

Number Generators on the Standard Particle Swarm Optimization on a
GPU, Proc. of the 2018 International Conference on Computational Science
and Computational Intelligence (CSCI), pp.1–6, IEEE Computer Society
Conference Publishing Services, to appear (2020)

2. Md. Maruf Hussain and Noriyuki Fujimoto : Parallel Multi-objective Particle
Swarm Optimization for Large Swarm and High Dimensional Problems, Proc.
of the 2018 IEEE Congress on Evolutionary Computation (CEC), pp.1–10, DOI:
10.1109/CEC.2018.8477848 (2018)

3. Md. Maruf Hussain, Hiroshi Hattori, and Noriyuki Fujimoto : A CUDA
Implementation of the Standard Particle Swarm Optimization, Proc. of 18th
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), pp.219–226, IEEE Computer Society Conference Publi-
shing Services, DOI: 10.1109/SYNASC.2016.043 (2016)

89

