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Abstract. The present study investigates amplitude death in an oscillator network with asymmetric con-
nection delays and a tree graph topology. A frequency domain analysis reveals that the local steady-state
stability is dominated by the sum of the connection delays between connected oscillators. Based on this
observation, we show that the local steady-state stability can be reduced to that with symmetric connec-
tion delays, as long as the sum of the connection delays between connected oscillators satisfies a certain
condition. Numerical simulations verify the analytical results.

PACS. XX.XX.XX No PACS code given

1 Introduction

Mutual interactions among oscillators cause two major
oscillation quenching phenomena: oscillation death (OD)
and amplitude death (AD) [1–3]. Oscillation death is the
emergence of a stable heterogeneous steady state by inter-
actions, whereas AD is the stabilization of a homogeneous
steady state in coupled oscillators. Since AD can elimi-
nate unwanted oscillations in many practical systems, it
has been actively investigated not only from an academic
perspective [4–18], but also from an engineering point of
view [19–24].

The connection delay in the interactions plays a cru-
cial role in the occurrence of AD [25]. Since connection
delay is inherent in real-world networks, AD in delayed-
coupled oscillators has been intensively investigated both
analytically and experimentally [5–12,16–18,20–23]. Most
studies on AD consider only symmetric connection delays:
τij = τji holds for any i and j, where τij is the connec-
tion delay from oscillator j to oscillator i (see Fig. 1).
In real-world networks, however, such as neural networks
[26], the connection delays are usually not symmetric, and
are instead asymmetric (i.e., τij ̸= τji).

To the best of our knowledge, there have been few
efforts to deal with AD induced with asymmetric connec-
tion delays, because such delays complicate the analytical
treatment of the stability. Amplitude death induced with
asymmetric connection delays has been numerically ob-
served [26,27]. Although these studies [26,27] confirm the
occurrence of AD in various network topologies, they do
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Fig. 1. Example of asymmetric delayed-coupled oscillators
with a tree graph topology (N = 8).

not provide a sufficient analytical discussion. A previous
study [28] considered two oscillators with recurrent cou-
pling of asymmetric connection delays (i.e., τ12 ̸= τ21),
and reported analytical results showing that the stability
of the steady state depends on the sum of the connection
delays (i.e., τ12+τ21). However, it is difficult to extend the
results of this previous study [28] to more general network
topologies.

The goal of the present study is to show that the ana-
lytical results [28] with asymmetric connection delays can
be extended to networks if their topology is restricted to a
tree graph. In the tree graph, the stability of steady state
depends on the sum of the connection delays τij + τji be-
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(a) (b)

Fig. 2. Block diagrams of linear system given by Eqs. (4) and (5): (a) oscillator i, (b) entire system.

tween connected oscillators. This allows us to prove that
the stability of the steady state with asymmetric connec-
tion delays is reduced to that with symmetric connection
delays if the network topology is a tree graph and the
sums of the connection delays, τij and τji, are identical
for any combination of i and j. The analytical results are
numerically confirmed through examples.

2 Mathematical model

This section introduces asymmetric delayed-coupled os-
cillators with a tree graph topology, and investigates the
stability of the steady state by linear stability analysis
based on frequency domain analysis.

2.1 Delayed-coupled oscillators

We herein consider N delayed-coupled identical oscillators
(see Fig. 1):

ẋi(t) = F (xi(t)) + bui(t),

yi(t) = cxi(t),
(1)

where xi(t) ∈ Rm×1 is the state variable of oscillator
i ∈ {1, . . . , N} at time t ≥ 0. The nonlinear function
F : Rm×1 → Rm×1 of each oscillator is assumed to have at
least one equilibrium point x∗ : 0 = F (x∗). The vectors
b ∈ Rm×1 and c ∈ R1×m are the input and output coef-
ficient vectors, respectively. Here, yi(t) ∈ R is the output
signal of oscillator i. The input signal ui(t) ∈ R is given
by

ui(t) = k


 1

di

N∑
j=1

aijyj(t− τij)

− yi(t)

 , (2)

where k ∈ R denotes the coupling strength, yj(t − τij) is
the delayed output signal from oscillator j, and τij denotes
the connection delay from oscillator j to oscillator i.

The network topology is governed by the adjacency
matrix {A}ij := aij as follows. Oscillators i and j are

connected if aij = aji = 1, otherwise aij = aji = 0. There
is no self-delayed feedback, i.e., aii = 0. The degree of

oscillator i is defined as di :=
∑N

j=1 aij . Equation (2) de-

scribes a diffusive coupling1. In Eq. (2), there is a negative
feedback term, and the delayed signal is divided by the de-
gree di so that the input signal ui(t) becomes zero when
yj(t − τij) = cx∗ and yi(t) = cx∗, ∀i, j. The network is
assumed to have a tree graph topology (see, e.g., Fig. 1)
[31], which is connected, acyclic, and undirected. In tree
graphs, there exists a unique path between every two os-
cillators. The network has N nodes and (N − 1) edges,

i.e.,
∑N

i=1

∑N
j=i aij = N − 1.

Coupled oscillators (1) and (2) have the following ho-
mogeneous steady state:[

xT
1 (t) · · ·xT

N (t)
]T

=
[
x∗T · · ·x∗T

]T
. (3)

Note that AD is a phenomenon in which oscillator state
variables converge to a homogeneous steady state2. Throug-
hout the present paper, we analyze the local stability of
steady state (3). Linearizing Eqs. (1) and (2) in steady
state (3) yields

∆ẋi(t) = J∆xi(t) + b∆ui(t),

∆yi(t) = c∆xi(t),
(4)

where ∆xi(t) := xi(t)− x∗, J := {dF (x)/dx}x=x∗ , and

∆ui(t) = k


 1

di

N∑
j=1

aij∆yj(t− τij)

−∆yi(t)

 . (5)

Steady state (3) is stable if and only if the linearized sys-
tem given by Eqs. (4) and (5) is stable.

1 This type of diffusive coupling is used in many previous
studies [8,21,26,29,30].

2 The stabilization of the homogeneous steady state is not
sufficient, but is necessary for AD to be induced, because AD
does not occur when the initial state variables are located out-
side the basin of attraction for the stabilized homogeneous
steady state.
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2.2 Frequency domain analysis

We consider the stability of the linearized system given by
Eqs. (4) and (5) based on a frequency domain analysis. Let
L[·] be the Laplace transform operator. By applying the
Laplace transform to both sides of Eq. (4), we obtain the
transfer function of oscillator i in steady state (3), which
relates the input signal Ui(s) := L[∆ui(t)] to the output
signal Yi(s) := L[∆yi(t)] as follows:

G(s) :=
Yi(s)

Ui(s)
= c (sIm − J)

−1
b, (6)

where Im is an m×m identity matrix. The Laplace trans-
form of Eq. (5) is expressed as

Ui(s) = k
(
Ûi(s)− Yi(s)

)
, (7)

where

Ûi(s) :=
1

di

N∑
j=1

aijYj(s)e
−sτij , (8)

is the Laplace transform of the delayed signals from the
other oscillators. From Eqs. (6)-(8), the linear system given
by Eqs. (4) and (5) can be described by the block diagram
shown in Fig. 2(a). Considering the negative feedback loop
in Fig. 2(a), the output signal Yi(s) can be written as

Yi(s) = Ĝ(s)Ûi(s), (9)

where Ĝ(s) := kG(s)/(1 + kG(s)) is the transfer function
that includes the negative feedback term in Eq. (7). Tak-
ing all oscillators into account, Eqs. (8) and (9) can be
respectively rewritten as

Û(s) = E(s)Y (s), (10)

Y (s) = Ĝ(s)Û(s), (11)

where Û(s) :=
[
Û1(s) · · · ÛN (s)

]T
, Y (s) :=

[
Y1(s) · · ·YN (s)

]T
,

and

E(s) :=


0 a12

d1
e−sτ12 · · · a1N

d1
e−sτ1N

a21

d2
e−sτ21

. . .
. . .

...
...

. . .
. . . a(N−1)N

dN−1
e−sτ(N−1)N

aN1

dN
e−sτN1 · · · aN(N−1)

dN
e−sτN(N−1) 0

 .

(12)
Equations (10) and (11) indicate that the entire sys-

tem of Eqs. (4) and (5) can be expressed by the closed-loop
system shown in Fig. 2(b). The stability of this closed-loop
system is governed by the roots of the following charac-
teristic function3:

g(s) = {Dg(s) + kNg(s)} ĝ(s), (13)

3 The characteristic function is obtained by adding an addi-
tional input to the signal Û(s) in the block diagram of Fig. 2(b)
and deriving the transfer function from the additional input to
the output Y (s).

whereDg(s) := det (sIm − J),Ng(s) := c adj (sIm − J) b,
and

ĝ(s) := det
[
IN − Ĝ(s)E(s)

]
. (14)

As a consequence, steady state (3) is stable (i.e., AD
occurs) if and only if g(s) is stable. In general, however,
the stability analysis of g(s) is difficult due to asymmetric
connection delays. Note that if the connection delays are
symmetric and identical, τij = τji ≡ τ, ∀i, j, then matrix

E(s) in ĝ(s) can be expressed as E(s) = D−1Ae−sτ with
adjacency matrixA andD := diag(d1, . . . , dN ). Since ma-
trix D−1A is known to be diagonalizable [29], g(s) can
be separated into simple characteristic quasi-polynomials,
i.e., we can easily analyze its stability.

For asymmetric connection delays, we cannot separate
g(s). Instead of diagonalization of the matrix, we use a
feature of the tree graph and derive an important fact
about the stability of steady state (3).

Lemma 1 Consider the oscillator network given by
Eqs. (1) and (2) with a tree graph. The stability of steady
state (3) depends only on the sum of the connection de-
lays, τij + τji, for all combinations of (i, j) satisfying
aij = 1.

Proof The proof will use a feature of the tree graph. See
Appendix A for more details. ⊓⊔

Lemma 1 indicates that the sum of the connection de-
lays between connected oscillators affects the stability of
steady state (3). We now provide an example for Lemma 1.
Figure 3 depicts the two networks with different connec-
tion delays, i.e., (a) asymmetric connection delays and (b)
symmetric connection delays. Although the connection de-
lays are different, both networks have the same sum of
connection delays τ12+ τ21 = 2 and τ13+ τ31 = 2. Accord-
ing to Lemma 1, we can say that the networks have the
same stability of steady state (3). This relation between
asymmetric and symmetric connection delays can be sum-
marized as the following main theorem.

Theorem 1 The stability of steady state (3) in a net-
work given by Eqs. (1) and (2) with asymmetric con-
nection delays is equal to that in the network given
by Eqs. (1) and (2) with symmetric connection delays
τij ≡ τ, ∀i, j, if the network topology is a tree graph and
asymmetric connection delays satisfy

τij+τji = 2τ, ∀(i, j)∈
{
(i, j) | i, j ∈ {1, . . . , N}, aij = 1

}
.

(15)

Proof This is obvious from Lemma 1. The proof is omit-
ted. ⊓⊔

Theorem 1 indicates that the stability of steady state (3)
in an oscillator network coupled by asymmetric connection
delays can be reduced to that in an oscillator network
coupled by symmetric connection delays if the network
topology is a tree graph and the sums of the connection
delays, τij and τji, between any connected oscillators i and
j are identical.
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Fig. 3. An example of two networks with a tree graph topology,
which has the same stability of steady state (3): (a) asymmetric
delayed-coupled network, (b) symmetric delayed-coupled net-
work.

Furthermore, Theorem 1 can be considered as an ex-
tension of the result reported in a previous study [28],
which showed that, for a pair of oscillators (i.e., N = 2),
the stability of steady state (3) depends only on τ12+ τ21.

3 Numerical examples

The validity of Theorem 1 is confirmed through numerical
examples. We use Rössler oscillators, which are expressed
by Eq. (1) as

F (x) =

 −x(2) − x(3)

x(1) + ax(2)

b+ x(3)
(
x(1) − c

)
 , b =

10
0

 , c =

10
0

T

,

(16)
where the parameters are set to a = 0.2, b = 0.2, and
c = 5.7. The Rössler oscillator has the two equilibrium
points:

x∗
± :=

[
x
(1)∗
± , x

(2)∗
± , x

(3)∗
±

]T
= [aP±, −P±, P±]

T
, (17)

where P± :=
(
c±

√
c2 − 4ab

)
/(2a). Since x∗

+ satisfies the
odd number property [30], we only consider the stability
of x∗

−.

3.1 Tree graph

Let us consider the tree graph topology illustrated in Fig. 1.
First, we analyze the stability for symmetric and identical
connection delays τij ≡ τ, ∀i, j. The stability region on the
connection parameter (k, τ) space is shown in Fig. 4(a).
The curves denote a solution of g(iλ) = 0 with i :=

√
−1

and λ ∈ R. When the parameter set (k, τ) crosses the
thick (thin) curves as k increases, then a pair of roots for
g(s) = 0 traverse the imaginary axis from right to left
(from left to right). All of the roots of g(s) = 0 have a
negative real part when the parameter set (k, τ) is in the
stability region.

We now focus on a connection delay τ = τ∗ := 1.8 as
an example, which is illustrated by the red dotted line in
Fig. 4(a)4. Let us consider asymmetric connection delays

4 The validity of Theorem 1 has been also numerically con-
firmed using other connection delay τ∗ values.
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Fig. 4. Stability region and the largest real part of roots of
g(s) = 0 for delayed-coupled Rössler oscillators, the topology
of which is illustrated in Fig. 1.
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Fig. 5. Time-series data for delayed-coupled Rössler oscilla-
tors at (a) k = kA and (b) k = kB . Both of the upper sides
denote symmetric connection delays τ = τ∗, which correspond
to points A and B in Fig. 4(a), while the lower sides denote
the asymmetric connection delays (18).

satisfying Eq. (15) with τ = τ∗, i.e., τij + τji = 2τ∗ = 3.6,
∀i, j, as follows:

T =



∗ 0.2 ∗ ∗ ∗ ∗ ∗ ∗
3.4 ∗ 3.2 ∗ ∗ ∗ ∗ ∗
∗ 0.4 ∗ 1.3 0.6 ∗ ∗ ∗
∗ ∗ 2.3 ∗ ∗ ∗ ∗ ∗
∗ ∗ 3.0 ∗ ∗ 3.5 1.5 1.8
∗ ∗ ∗ ∗ 0.1 ∗ ∗ ∗
∗ ∗ ∗ ∗ 2.1 ∗ ∗ ∗
∗ ∗ ∗ ∗ 1.8 ∗ ∗ ∗


, (18)

where {T }ij := τij . Here, the symbol ∗ denotes no con-
nection. According to Theorem 1, delayed-coupled oscil-
lators with asymmetric connection delays (18) have the
same stability of steady state (3) as those with symmetric
connection delays of τ = τ∗ := 1.8.

In order to confirm this, the largest real part of roots
of g(s) = 0 for symmetric (blue solid line) and asym-
metric (red dotted line) connection delays with varying
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coupling strength k is shown in Fig. 4(b). We can see
that symmetric and asymmetric connection delays have
the same largest real part. In particular, for both connec-
tion delays, the largest real part is negative in the range
of k ∈ (0.27, 1.23), which agrees well with the red dotted
line in Fig. 4(a). Therefore, from Fig. 4(b), we can con-
firm that the stability of steady state (3) with symmetric
connection delays τ = τ∗ is equivalent to that with asym-
metric connection delays (18) satisfying relation (15).

Figures 5(a) and 5(b) show the time-series data of the

first variables x
(1)
i (t) at k = kA := 0.6 and k = kB := 2.0,

respectively, which correspond to the cross symbols in
Fig. 4. The upper sides denote symmetric connection de-
lays τ = τ∗ and the lower sides denote asymmetric con-
nection delays (18). All of the oscillators are uncoupled
until t = 50 and are then coupled at t = 50. The vari-
ables quench (i.e., the occurrence of AD) at k = kA for
both symmetric and asymmetric connection delays, but
still oscillate at k = kB as shown in Fig. 5(b)5.

3.2 Cyclic graph

This subsection deals with networks having a cyclic graph,
which has a cyclic path, and that are not covered by Theo-
rem 1. Let us consider the networks shown in Fig. 6. Both
networks shown in Figs. 6(b) and 6(c) satisfy Eq. (15)
with τ = 5. Figure 7 shows the largest real part of roots
of g(s) = 0 for the networks of Fig. 6 with varying coupling
strength k. The networks in Figs. 6(a) and 6(b) have differ-
ent real parts. Note that, for the network in Fig. 6(a), g(s)
is unstable for any k, whereas for the network of Figs. 6(b),
g(s) is stable for the range of k ∈ (0.37, 2.70). Therefore, if
the network topology includes a cyclic graph, the stability
of steady state (3) with asymmetric connection delays is
not always same as that with symmetric connection de-
lays, even when Eq. (15) is satisfied.

On the other hand, interestingly, the largest real part
for the networks of Figs. 6(a) and 6(c) are exactly same,
i.e., they have the same stability of steady state (3) al-
though the network topology is not a tree graph. Here,
we briefly discuss the reason for this. Let {o1, o2, . . . , on}
be the directed path from oscillator o1 to oscillator on
(oi ∈ {1, . . . , N}). For the network in Fig. 6(c), the sum of
the connection delays in a closed path {2, 3, 4, 2} is equal
to that in the closed path of the counter direction, i.e.,
τ32 + τ43 + τ24 = 15 and τ42 + τ34 + τ23 = 15. Note that
this relation holds for symmetric connection delays (i.e.,
the network in Fig. 6(a)). In contrast, for the network
in Fig. 6(b), the sum of connection delays in the path
{2, 3, 4, 2} is 22.8, and that in the counter direction is 7.2.
This difference would cause the stability to differ for the
networks in Figs. 6(b) and 6(c) and to be the same for
the networks in Figs. 6(a) and 6(c). Furthermore, we have

5 For symmetric connection delays, all of the variables con-
verge to the synchronized state s(t) := x1(t) = · · · = xN (t).
For asymmetric connection delays, a synchronized state can-
not be described by s(t) due to the asymmetricity; thus, the
variables do not converge to s(t).

Fig. 6. Cycle graph (N = 4)
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Fig. 7. Largest real part of roots for the networks shown in
Fig. 6

numerically confirmed that the above consideration can
be also observed for the following two networks: an N = 6
oscillators network with two cycles and an N = 9 oscil-
lators network with three cycles. The analytical proof of
this consideration in general networks is our future task.

4 Conclusion

The present study investigated AD in asymmetric delayed-
coupled oscillators with a tree graph topology. We found
that the stability depends on the sum of the connection de-
lays between connected oscillators. Therefore, we reported
that the stability of the steady state with asymmetric
connection delays can be reduced to that with symmet-
ric connection delays if the sums of the connection delays
between connected oscillators are identical. The analytical
results were confirmed through numerical simulations.

A Proof of Lemma 1

This proof uses the following information regarding a tree
graph:

(i) Every tree with two or more nodes has at least two
nodes of degree one (Corollary 2.2 in [31]);

(ii) A subgraph of a tree is a forest6 (Remarks 4.2.1 in
[32]);

6 A forest is a graph without cycles.
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Fig. 8. Sketches of networks Ga, Gb, and Gc

(iii) Each component of a forest is a tree [32].

From fact (i), a tree with N ≥ 2 always has a node
of degree one. Without loss of generality, let oscillator N
be an oscillator of degree one, which is connected only to
oscillator (N − 1) (see Fig. 8(a)). This network is referred

hereinafter to as network Ga. Then, the matrix Ê(s) :=

IN − Ĝ(s)E(s) in Eq. (14) is rewritten as7

Ê(s) =
{Ê(s)}1,N−1 0

Ec(s)
...

...

{Ê(s)}N−2,N−1 0

{Ê(s)}N−1,1 · · · {Ê(s)}N−1,N−2 1 {Ê(s)}N−1,N

0 · · · 0 {Ê(s)}N,N−1 1

 , (19)

where Ec(s) is the (N − 2)× (N − 2) upper-left subma-

trix of the matrix Ê(s). Since the degree of oscillator N
is one, all of the elements in the Nth row (column) of ma-

trix (19) are zero, except for {Ê(s)}N,N−1 ({Ê(s)}N−1,N )

and {Ê(s)}N,N = 1.

Expanding ĝ(s) along the Nth row of Ê(s) yields

ĝ(s) = detEb(s)− {Ê(s)}N,N−1

· det


0

Ec(s)
...

0

{Ê(s)}N−1,1 · · · {Ê(s)}N−1,N−2 {Ê(s)}N−1,N

,
(20)

Eb(s) :=
{Ê(s)}1,N−1

Ec(s)
...

{Ê(s)}N−2,N−1

{Ê(s)}N−1,1 · · · {Ê(s)}N−1,N−2 1

 . (21)

7 Since Dg(s) + kNg(s) in Eq. (13) does not depend on
the network topology or connection delays, we consider only
ĝ(s) := detÊ(s) in Eq. (14).

Furthermore, expanding the determinant of the 2nd term
in Eq. (20) along the (N − 1)th column, we have

ĝ(s) = detEb(s)− {Ê(s)}N,N−1{Ê(s)}N−1,NdetEc(s)

= detEb(s)−
Ĝ2(s)

dNdN−1
e−s(τN(N−1)+τ(N−1)N)detEc(s).

(22)

Let us focus on detEb(s) and detEc(s) in Eq. (22). From
Eqs. (19) and (21), we see that detEb(s) corresponds to
a characteristic quasi-polynomial for network Gb, which
is constructed by removing oscillator N from network Ga

(see Fig. 8(b)). In the same manner, detEc(s) corresponds
to a characteristic quasi-polynomial for network Gc which
is constructed by removing oscillators N and (N−1) from
network Ga (see Fig. 8(c)). Note that both networks Gb

and Gc are subgraphs of Ga. Thus, based on (ii) and (iii),
the networks are forests, and their components are trees.
In addition, the second term of Eq. (22) contains the sum
of connection delays between the oscillator of degree one
and the oscillator connected to the previous oscillator in
network Ga [i.e., (τN(N−1) + τ(N−1)N )].

As a consequence, by expanding a quasi-polynomial
of a network with a tree graph (i.e., detÊ(s)) along an
oscillator of degree one, we obtain the two characteris-
tic quasi-polynomials (i.e., detEb(s) and detEc(s)). Since
these characteristic quasi-polynomials correspond to net-
works whose components are tree graphs, they can be ex-
panded by focusing on an oscillator of degree one. Fur-
thermore, expanding the characteristic quasi-polynomials
yields the sum of connection delays between an oscillator
of degree one and an oscillator connected to the previ-
ous oscillator in the exponent (see Eq. (22)). As a con-
sequence, by repeating the expansion, we obtain the sum
of the connection delays between all connected oscillators.
Therefore, we can recursively prove that the stability of
steady state (3) depends on the sum of the connection
delays between connected oscillators. ⊓⊔
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