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Abstract 

The mixed-integer linear programming (MILP) method has been applied widely to 

optimal design of energy supply systems.  A hierarchical MILP method has been 

proposed to solve such optimal design problems efficiently.  In addition, a method of 

reducing model by time aggregation has been proposed to search design candidates 

accurately and efficiently at the upper level.  In this paper, the hierarchical MILP 

method and model reduction by time aggregation are applied to the multiobjective 

optimal design.  The methods of clustering periods by the order of time series, by the 

 k -medoids method, and based on an operational strategy are applied for the model 

reduction.  As a case study, the multiobjective optimal design of a gas turbine 



2 

cogeneration system is investigated by adopting the annual total cost and primary 

energy consumption as the objective functions, and the clustering methods are 

compared with one another in terms of the computation efficiency.  It turns out that the 

model reduction by any clustering method is effective to enhance the computation 

efficiency when importance is given to minimizing the first objective function, but that 

the model reduction only by the  k -medoids method is effective very limitedly when 

importance is given to minimizing the second objective function. 

 

Keywords:  Energy supply, Multiobjective optimal design, Mixed-integer linear 

programming, Hierarchical optimization, Time aggregation, Clustering 

 

 

1. Introduction 

For the purpose of attaining the highest performance of energy supply systems, it is 

important to rationally select equipment from many alternatives, and determine 

capacities and numbers of selected equipment in consideration of their operational 

strategies such as on/off status of operation and load allocation corresponding to 

seasonal and hourly variations in energy demands.  As one of the ways to achieve this 

purpose, mathematical programming methods, and especially the mixed-integer linear 

programming (MILP) method have been utilized widely [1].  This is because the MILP 

method can consider discrete characteristics for selection and on/off status of operation 

of equipment, and can also treat nonlinear performance characteristics of equipment by 

piecewise linear approximations.  This is also because commercial MILP solvers have 



3 

become more efficient, which has enabled one to solve large scale practical 

optimization problems.   

In many cases, equipment capacities have been treated relatively simply to solve 

the optimal design problems relatively easily, which cannot express real situations 

regarding performance characteristics and capital costs of equipment.  For example, 

only the types of equipment have been determined under fixed capacities [2, 3];  the 

types and numbers of equipment have been determined under fixed capacities [4–6];  

the types and capacities of equipment have been determined, but the capacities have 

been treated as continuous variables [7–11];  similar models have been used, but the 

dependence of performance characteristics of equipment on their capacities or part load 

levels have not been taken into account [12, 13].  On the other hand, an optimal design 

method has been proposed in consideration of discreteness of equipment capacities [14–

16].  Although this method can treat real situations regarding performance 

characteristics and capital costs of equipment, it makes optimal design problems more 

complex, and even commercial MILP solvers which are recently available may not 

derive the optimal solutions in practical computation times. 

On one hand, an approach to solve optimal design problems with large numbers of 

periods, which are set to consider variations in energy demands, efficiently is to utilize 

structural features of the problems.  An MILP method utilizing the hierarchical 

relationship between design and operation variables has been proposed to solve optimal 

design problems efficiently [17].  In addition, for the purpose of enhancing the 

computation efficiency especially for the multiobjective optimal design, some strategies 

have been proposed to reduce the number of design candidates generated at the upper 

level and the number of optimal operation problems solved at the lower level [18].  
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This method has also been extended to search  K -best solutions efficiently in the 

optimal design [19], and many design alternatives have been evaluated by searching  K

-best solutions in the multiobjective optimal design [20].  Through case studies in 

these works, it has turned out that the multiobjective optimal design problem is much 

more difficult and its computation time is much longer as compared with the 

single-objective optimal design problem. 

On the other hand, an approach to solve optimal design problems with large 

numbers of periods efficiently is to derive approximate optimal solutions by reducing 

the numbers of periods.  This time aggregation approach has been used widely [21], 

and some approximate solution methods for reducing the numbers of periods have been 

proposed by selecting representative days [22–28] and aggregating periods [29–33] 

based on energy demands using clustering methods such as  k -means,  k -medoids, etc.  

In some of these works, several time aggregation methods including the clustering ones 

have been compared [25, 27, 29].  In some of the works, values of some variables have 

first been determined with time aggregation, and then values of the other variables have 

been determined without time aggregation.  A two level approach has been proposed: 

discrete design decision has first been made with time aggregation, and then the other 

decision has been made without time aggregation [28].  A similar approach has been 

adopted to bound the error and evaluate upper and lower bounds for the optimal value 

of the objective function [30, 31].  These bounding methods have been extended so 

that it can be applied to the optimal design of energy supply systems with energy 

storage units for short- and long-term storage cycles [32, 33].  Many of the models for 

optimal design used in these works have adopted discrete and continuous design 

variables as well as discrete and continuous operation variables [24–26, 30–33].  
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However, simpler models have also been applied by considering discrete and 

continuous design variables as well as only continuous operation variables [28, 29], and 

by considering only continuous design and operation variables [27].  In addition, 

energy storage units have been included in addition to energy conversion units in many 

of the models [25–29, 32, 33].  Although these approximate solution methods are 

applicable to any optimal design problem regardless of MILP solvers, they sacrifice 

solution exactness and affect both design and operation solutions.  Thus, it is necessary 

to investigate how the optimal solutions of the optimal design problems with reduced 

numbers of periods are close to those with the original ones.  However, it is essentially 

impossible to clarify this because these approximate solution methods are used since it 

is difficult to derive the optimal solutions of the optimal design problems with the 

original numbers of periods for the reference. 

The combination of the aforementioned two approaches may be feasible to solve 

optimal design problems with large numbers of periods efficiently.  As a novel strategy 

to enhance the computation efficiency in the aforementioned hierarchical MILP method, 

a method of reducing model by time aggregation has been proposed to search design 

candidates efficiently at the upper level.  In addition, the previous strategies to enhance 

the computation efficiency have been modified in accordance with this novel strategy.  

This method has been realized only by clustering periods and averaging energy 

demands for clustered periods, while it guarantees to derive the optimal solutions 

because of features of the model reduction.  As an initial trial, a simple method of 

clustering periods by the order of time series has been applied, and its effectiveness of 

the method has been clarified in a case study on the single-objective optimal design [34].  

In addition, an method of clustering periods based on an operational strategy has also 
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been proposed and applied to the same case study, and it has turned out that this method 

is more effective than the simple one [35].  However, these methods have not been 

applied to the multiobjective optimal design. 

In this paper, the aforementioned hierarchical MILP method and model reduction 

by time aggregation are applied to the multiobjective optimal design.  In applying the 

model reduction, the methods of clustering periods by the order of time series and based 

on an operational strategy are applied as conventional ones.  In addition, a method of 

clustering periods by the -medoids method is also applied as a novel one.  As a case 

study, the multiobjective optimal design of a gas turbine cogeneration system with a 

practical configuration is investigated, and the clustering methods are compared with 

one another in terms of the computation efficiency. 

 

 

2. Summary of formulation of multiobjective optimal design problem [18] 

To consider seasonal and hourly variations in energy demands, a typical year is 

divided into  M  periods, and energy demands are estimated at each period.  Each 

period is identified by the subscript or argument  m      (m = 1, 2, !, M ) .  Energy 

demands    y(m)  are estimated certainly at each period.  A super structure for an 

energy supply system is created to match energy demand requirements.  The super 

structure is composed of all the units of equipment considered as candidates for 

selection, and a real structure is created by selecting some units of equipment from the 

candidates.  Furthermore, some units of equipment are operated to satisfy energy 

demands at each period.  Here, it is assumed that there are no temporally coupling 

constraints on the equipment operation.  The selection, capacities, and numbers of 

 k
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equipment are considered as design variables.  Maximum demands of utilities such as 

purchased electricity and city gas are also considered as design variables, and it is 

assumed that they are selected among discrete values.  These are expressed by binary 

and integer variables  ! .  The number of equipment at the on status of operation as 

well as the load allocation of equipment and consumptions of utilities are considered as 

operation variables.  The number of equipment at the on status of operation is 

expressed by integer variables    !(m) , and the load allocation of equipment and 

consumptions of utilities by continuous ones    x(m) .  The annual total cost   z1  and the 

annual primary energy consumption   z2  are adopted as the objective functions to be 

minimized. 

For simplicity, the weighting method is used for the multiobjective optimization, 

and the weighted sum of the two objective functions is adopted as the combined 

objective function to be minimized.  Under the aforementioned definition, the 

multiobjective optimal design problem is formulated as 
 

 

        

min.     z = f0(!)+ fm("(m), x(m), y(m))!t(m)
m=1

M

!
sub. to  g0(!)" 0
          gm(!, "(m), x(m), y(m))" 0  (m = 1, 2, !, M )
          hm(!, "(m), x(m), y(m)) = 0  (m = 1, 2, !, M )
          ! # "n1

          "(m)# "n2  (m = 1, 2, !, M )
          x(m)# #n3  (m = 1, 2, !, M )

$

%

&&&&&&&&&&&&

'

&&&&&&&&&&&&

 (1) 

where   f0  and  fm  denote the terms composed of the design and operation variables, 

respectively, in the combined objective function, and are expressed as 
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f0 = (w1/z1°)!(!)
fm = (w1/z1°)"m("(m), x(m), y(m))
        + (w2/z2°)#m("(m), x(m), y(m))   (m = 1, 2, !, M ) 

!

"

####

$
####

 (2) 

where  !  is the annual capital cost of equipment plus the annual demand charge of 

utilities, and  !  and  !  are the energy charge and primary energy consumption of 

utilities per hour at each period.    w1  and   w2  are weights for   z1  and   z2 , 

respectively, which are related with each other by    w1 + w2 = 1 , and    z1°  and    z2°  are 

reference values of   z1  and   z2 , respectively.  In Eq. (1),    !t(m)  is the duration per 

year of each period.    g0  denotes the inequality constraints which relate the design 

variables, and means that the restrictions concerning the selection, capacities, and 

numbers of equipment are considered as constraints to be satisfied.      gm  and   hm  

denote the inequality and equality constraints, respectively, which relate the design and 

operation variables, and mean that performance characteristics of equipment, 

relationships between maximum demands and consumptions of utilities, and energy 

balance relationships are considered as constraints to be satisfied.  In addition,   n1 ,   n2 , 

and   n3  are the numbers of the variables in  ! ,    !(m) , and    x(m) , respectively. 

Refer to reference [17] for a concrete optimal design problem formulated for a 

simple energy supply system.  

 

 

3. Summary of solution by hierarchical MILP method and model reduction [34] 

3.1. Solution method 

The optimal design problem of Eq. (1) has the hierarchical relationship between 

the design and operation variables, as shown in Fig. 1.  Namely, if the values of the 
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design variables  !  are assumed tentatively, the constraints     gm  and   hm  become 

independent at each period, and the values of the operation variables    !(m) and    x(m)  

can be optimized independently at each period.  Thus, a hierarchical MILP method is 

used together with model reduction, as shown in Fig. 2.   

At the upper level, the integer operation variables    !(m)  are first relaxed to 

continuos ones.  The resultant problem is named the relaxed optimal design problem, 

although it is not shown here.  In addition,  M  periods are categorized into  L  

clusters, and energy demands are averaged in each cluster for model reduction by time 

aggregation as follows: 
 

 
        
y'(l) = y(m)!t(m)

m!Al

" !t(m)
m!Al

"    (l = 1, 2, !, L)  (3) 

where  Al  is the set which includes the indices of periods in the  l th cluster.  The 

resultant problem is named the relaxed and reduced optimal design problem, and is 

expressed as follows:  
 

 

         

min.     z = f0(!)+ f' l("'(l), x'(l), y'(l))
l=1

L

! !t(m)
m"Al

!
sub. to  g0(!)# 0
          g' l(!, "'(l), x'(l), y'(l))# 0  (l = 1, 2, !, L)
          h' l(!, "'(l), x'(l), y'(l)) = 0  (l = 1, 2, !, L)
          ! " "n1

          "'(l)" #n2  (l = 1, 2, !, L)
          x'(l)" #n3  (l = 1, 2, !, L)

$

%

&&&&&&&&&&&&

'

&&&&&&&&&&&&

 (4) 

where   ( )'  denotes the variables, objective function, and constraints after model 

reduction by time aggregation.  The binary and integer design variables  !  are 

selected as branching variables, and their values are assumed tentatively.  Then, a 
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design candidate is generated.  This process is conducted by searching a feasible 

solution in the relaxed and reduced optimal design problem of Eq. (4).   

At the lower level, under the values of the design variables  ! , the values of the 

operation variables    !(m)  and    x(m)  can be determined by solving the following 

optimal operation problems: 
 

 

       

min.      fm(!(m), x(m), y(m))
sub. to  gm(", !(m), x(m), y(m))! 0
          hm(", !(m), x(m), y(m)) = 0
          !(m)" !n2

          x(m)" "n3

#

$

%%%%%%%

&

%%%%%%%

 (m = 1, 2, #, M )  (5) 

The value of the combined objective function  z  is assessed based on the values of   f0  

and  fm , which are evaluated based on the values of the design and operation variables 

assumed tentatively and determined optimally, respectively.  A design candidate can 

be an incumbent solution, and the corresponding value of the combined objective 

function can be an upper bound for the optimal value of the combined objective 

function.  Thus, it is used for the bounding procedure in searching other design 

candidates at the upper level.  If the value of the combined objective function at a 

branching node at the upper level exceeds the upper bound, the corresponding branch 

can be cut.   

 

3.2. Features of method 

The purpose of the relaxed optimal design problem is not to find the optimal 

design solution and evaluate the optimal value of the combined objective function, but 

to search design candidates and evaluate lower bounds for the values of the combined 

objective function for the design candidates.  Even the relaxed and reduced optimal 
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design problem can be used for this purpose in place of the relaxed one.  This is why a 

lower bound obtained by a continuous relaxation or linear programming problem of Eq. 

(4) at each branching node in the branch and bound method is smaller than or equal to 

that of the relaxed optimal design problem, which has been mathematically proved 

previously [34].  This means that Eq. (4) is a relaxation of the relaxed optimal design 

problem.  As a result, even the use of the relaxed and reduced optimal design problem 

in place of the relaxed one never cut the optimal design solution, and the optimal design 

solution can be obtained certainly.  This is a very valuable feature for model reduction 

by time aggregation.  In addition, this model reduction by time aggregation can be 

used in combination with any clustering method.  However, smaller lower bounds 

increase not only the number of design candidates generated at the upper level but also 

the number of optimal operation problems solved at the lower level.  This may 

deteriorate the computation efficiency at both the levels.  Thus, it is important to 

reduce decreases in the lower bounds to avoid an excessive increase in the number of 

the design candidates for a high computation efficiency.  Decreases in the lower 

bounds, and thus the computation efficiency depend on the clustering method.   

 

 

4. Clustering of periods 

As aforementioned, the hierarchical MILP method with model reduction can be 

combined with any clustering method.  However, it is important to reduce decreases in 

the lower bounds for the values of the combined objective function.  For this purpose, 

it is important to cluster periods appropriately.  In this paper, the following three 

methods are applied, and it is investigated how they affect the computation efficiency in 
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the multiobjective optimal design.  Figure 3 shows the process flows in the clustering 

methods.   

 

4.1. Clustering by order of time series 

A simple clustering is conducted by categorizing  M  periods into  L  clusters by 

the same number of periods per cluster, or   J = M / L  regularly in time series [34].  

Then, the set  Al  is expressed as follows: 
 

     Al = {(l !1)J + 1, (l !1)J + 2, !, lJ}   (l = 1, 2, !, L)  (6) 

Although this clustering does not require any computation time for clustering, it is 

necessary to give the number of clusters  L  in advance.  This clustering has a higher 

possibility of aggregating periods for which energy demands differ largely with an 

increase in  J .  Then, the lower bounds for the values of the combined objective 

function obtained by Eq. (4) are likely to be much smaller than those by the relaxed 

optimal design problem, which may deteriorate the computation efficiency.   

 

4.2. Clustering by k-medoids method 

The  k -medoids method has been proposed as a general clustering method [36], 

and it has been applied to clustering periods for the optimal design of energy supply 

systems [22, 25–27, 29].  In this paper, the  k -medoids method is selected among 

similar ones to cluster periods in consideration of energy demands.  A representative 

element is chosen as a medoid, the distance between the medoid and another element is 

evaluated in each cluster, and the clustering is conducted to minimize the sum of the 

distances for all the clusters and elements. 
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The distance between the periods  i  and  j  is calculated by the following Euclid 

distance based on energy demands: 
 

       !dij = ||y(i)!y(j) ||2    (i, j = 1, 2, !, M )  (7) 

Based on the values of the distances, the following optimization problem is solved to 

categorize  M  periods into  L  clusters: 
 

 

      

min.     D = !dijvij
j=1

M

!
i=1

M

!

sub. to  ui
i=1

M

! = L

          vij " ui   (i, j = 1, 2, !, M )

          vij
i=1

M

! = 1   (j = 1, 2, !, M )

         ui # {0, 1}   (i = 1, 2, !, M )
         vij # {0, 1}   (i, j = 1, 2, !, M )

$

%

&&&&&&&&&&&&&&&

'

&&&&&&&&&&&&&&&

 (8) 

where  ui  is the binary variable whose value is set at 1 only when period  i  is chosen 

as a medoid in any cluster, and at 0 otherwise,  vij  is the binary variable whose value is 

set at 1 only when period  j  is included in the cluster in which period  i  is included as 

a medoid, and at 0 otherwise, and  D  is the sum of all the distances, or the objective 

function to be minimized.  The clustering is conducted based on the following equation 

using the values of  ui  and  vij  obtained by the optimization calculation: 
 

 

    
j ! A

un
n=1

i

"
   (ui = 1; vij = 1; i, j = 1, 2, !, M ) (9) 

It takes an extra computation time to solve the optimization problem of Eq. (8), it 

is necessary to give the number of clusters  L  in advance, and it is necessary to 

normalize the values of different types of energy demands properly to evaluate the 
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distances rationally.  However, since the clustering is conducted in consideration of 

energy demands, the lower bounds for the values of the combined objective function 

obtained by Eq. (4) are likely to be close to those by the relaxed optimal design problem, 

which may not deteriorate the computation efficiency.  In addition, since this 

clustering is independent from design candidates, it may be robust in any case. 

 

4.3. Clustering based on operational strategy 

A method of clustering periods has been proposed to avoid a large difference 

between the lower bounds for the values of the combined objective function by Eq. (4) 

and the relaxed optimal design problem without model reduction [35].  Periods are 

categorized into clusters based on the number of equipment at the on status of operation 

obtained as the optimal solution by solving the relaxed optimal design problem in 

advance.  The reason for using this method is as follows:  if the optimal basic solution 

by Eq. (4) does not change from that by the relaxed optimal design problem, the optimal 

value of the objective function by Eq. (4) is equal to that by the relaxed optimal design 

problem;  the basic solution is considered to be related closely with the number of 

equipment at the on status of operation;  although many design candidates different 

from the optimal solution are generated, they are considered to be close to the optimal 

solution.  The concrete procedure to cluster periods is shown below.   

The integer operation variables for the numbers of all the types of equipment at the 

on status of operation at each period are expressed as follows: 
 

 
      !(m) = (!1(m), !2(m), !, !n2

(m))T   (m = 1, 2, !, M )  (10) 

where  !  is the number of each type of equipment at the on status of operation at each 
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period.  Since the integer operation variables are relaxed into continuous ones, their 

optimal values are not necessarily integer ones.  Thus, these optimal values are utilized 

to cluster periods after they are converted into integer values by ceiling functions as 

follows:  
 

 
      !(m)!" #$  = ( !1(m)!" #$ , !2(m)!" #$ , !, !n2

(m)!" #$)
T    (m = 1, 2, !, M )  (11) 

where   ( )!" #$  denotes the ceiling function.  If the numbers of all the types of equipment 

at the on status of operation are the same at two periods  m  and  m' , these periods are 

categorized into the same cluster.  This condition for clustering is expressed as 

follows: 
 

      !(m)!" #$ = !(m')!" #$   (%m & Al , %m' & Al , m ' m' , l = 1, 2, !, L) (12) 

Else, if the numbers of any type of equipment at the on status of operation are different 

at two periods  m  and  m' , these periods are categorized into different clusters.  This 

condition for clustering is expressed as follows:  
 

 
     
!(m)!" #$ % !(m')!" #$    (&m ' Al , &m' ' Al' , l = 1, 2, !, L(1; 
                         l' = l + 1, l + 2, !, L)

 (13) 

Although it takes an extra computation time to solve the relaxed optimal design 

problem, it is possible to determine the number of clusters  L  uniquely and 

automatically.  This clustering is based on the reason why the lower bounds for the 

values of the combined objective function obtained by Eq. (4) are likely to be close to 

those by the relaxed optimal design problem, which may not deteriorate the 

computation efficiency.  However, if many design candidates generated are far from 

the optimal solution obtained by the relaxed optimal design problem, this clustering 
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may not be effective. 

 

 

5. Case study 

5.1. Input data 

A gas turbine cogeneration system for district energy supply shown in Fig. 4 is 

investigated in a case study.  The super structure for the cogeneration system is defined 

for the optimal design.  It is composed of four gas turbine generators (GT), four waste 

heat recovery boilers (BW), four gas-fired auxiliary boilers (BG), four electric 

compression refrigerators (RE), four steam absorption refrigerators (RS), a device for 

receiving electricity (EP).  It is assumed that when multiple units are installed for each 

type of equipment, their capacities are same, and that the gas turbine generators and 

waste heat recovery boilers are selected together as cogeneration units.  Pumps for 

supplying cold water (PC) are common to all the possible structures, and only their 

power consumption is considered.  A part of the formulation of the optimal design 

problem is shown in Appendix A. 

Table 1 shows the capacities and performance characteristic values of candidates 

of equipment for selection.  These values are based on the data prepared by an 

industrial association.  Although the performance characteristic values are shown only 

at the rated load level, changes in efficiencies and coefficients of performance at part 

load levels are also taken into account as shown by the formulation in Appendix A.  

The maximum demands of electricity and city gas purchased from outside utility 

companies are also determined in the design, and are selected among discrete values by 

1.0 MW and 0.5×103 m3/h, respectively.  The capacity of the device for receiving 
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electricity is also selected among discrete values by 1.0 MW correspondingly.  Table 2 

shows the capital unit costs of equipment as well as the unit costs for demand and 

energy charges of electricity and city gas.  The equipment costs are also based on the 

data prepared by an industrial association.  In evaluating the annual total cost, the 

capital recovery factor is set at 0.964 with the interest rate 0.05, and the life of 

equipment 15 y.  In evaluating the annual primary energy consumption, the coefficients 

for converting electricity and city gas consumptions to their primary energy ones are set 

at 2.58 kWh/kWh and 11.57 kWh/m3, respectively. 

Two hotels and four office buildings with the total floor area of 383.7×103 m2 are 

selected as the buildings which are supplied with electricity, cold water, and steam by 

the cogeneration system.  To take account of seasonal and hourly variations in energy 

demands, a typical year is divided into three representative days in winter, mid-season, 

and summer whose numbers of days per year are set at 122, 121, and 122 d/y, 

respectively, and each day is further divided into 24 sampling time intervals of 1 h.  

Thus, the year is divided into  M  = 72 periods.  The energy demands used here are 

based on the data estimated actually for the target buildings in a district energy supply 

project, and the time discretization is also based on this estimation.   

The weight for the annual total cost   w1  is changed in the range from 0.2 to 1.0.  

This is because in the case of the weight   w1  < 0.2, the computation time becomes too 

long to obtain the  K -best solutions shown below for reference.  In addition, the 

reference values of the annual total cost and primary energy consumption are set at    z1°  

= 1.4512×109 yen/y and    z2°  = 257.59 GWh/y, respectively, which are obtained by 

minimizing   z1  and   z2 , respectively.   

All the optimization calculations by the hierarchical MILP method are conducted 
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in combination of the previous strategies to enhance the computation efficiency: 

additional bounding procedures at both the upper and lower levels, and ordering of 

optimal operation problems at the lower level.  To investigate the effect of each of the 

three clustering methods, the optimization calculations are conducted without the model 

reduction and with the model reduction by the corresponding clustering method.  

When the clustering by the order of time series or the  k -medoids method is used, the 

number of clusters  L  is given in advance and is changed as a parameter.  When the 

clustering based on the operational strategy is used, the number of clusters  L  is 

determined uniquely and automatically. 

All the optimization calculations are conducted using a commercial MILP solver 

IBM ILOG CPLEX Optimization Studio Ver. 12.6.1 on a MacBook Pro with Intel Core 

i7 processor (4 cores and 2.4 GHz) [37].  To confirm the effectiveness of the 

hierarchical MILP method with and without the model reduction, the conventional 

optimization calculation is also conducted using a commercial MILP solver 

GAMS/CPLEX Ver. 12.6.0 directly on the same computer [38]. 

 

5.2. Results and discussion 

Figure 5 shows the trade-off relationship between the two objective functions, or 

the annual total cost and primary energy consumption, obtained by the hierarchical 

MILP method.  This figure include not only the Pareto optimal solutions denoted by 

red points but also the corresponding  K -best solutions placed in the upper right-hand 

region, which have been obtained in the previous paper by setting the maximum number 

of the  K -best solutions and the maximum relative difference in the value of the 

combined objective function between the  K -best solutions and optimal one at 1 000 
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and 1.0 %, respectively [20].  In the case of the weight   w1  ≥ 0.6, the numbers of the 

 K -best solutions are small, and the values of the two objective functions are 

concentrated in narrow regions.  However, in the case of   w1  < 0.6, the numbers of the 

 K -best solutions increase drastically, and the values of the two objective functions are 

dispersed in wide regions.  Therefore, discussion is focused on the cases of   w1  = 0.6, 

0.5, and 0.4 in the following.  Table 3 shows the optimal values of the design variables 

in these cases.  The numbers of gas turbine cogeneration units and gas-fired auxiliary 

boilers as well as the maximum demand of purchased electricity change between cases 

  w1  = 0.5 and 0.4. 

Figures 6 (a) to (c) show the convergence characteristics of the upper and lower 

bounds for the optimal value of the combined objective function in the cases of the 

weight   w1  = 0.6, 0.5, and 0.4, respectively.  Note that the combined objective 

function is converted by multiplying the first equation in Eq. (1) by    z1° .  These figures 

include the results obtained by the conventional optimization calculation using the 

commercial solver directly, and by the hierarchical MILP method without and with the 

model reduction.  The number of clusters  L  = 36 is selected for the clustering by the 

order of time series or the  k -medoids method, while the number of clusters  L  = 9 is 

determined uniquely and automatically for the clustering based on the operational 

strategy.  In the conventional optimization calculation, the upper and lower bounds do 

not coincide with each other even in 7 200 s.  The gaps between them are 0.23, 0.93, 

and 2.03 % in the cases of   w1  = 0.6, 0.5, and 0.4, respectively.  The hierarchical 

MILP method makes the coincidence of the upper and lower bounds in shorter 

computation times.  In the case of   w1  = 0.6, the performance of the hierarchical 

MILP method with the model reduction is much higher than that without the model 
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reduction.  In the case of   w1  = 0.5, the performance of the hierarchical MILP method 

with the model reduction is still higher than that without the model reduction.  In the 

case of   w1  = 0.4, the performance of the hierarchical MILP method with the clustering 

by the  k -medoids method is slightly higher than that without the model reduction.  

However, the performance of the hierarchical MILP method with the clustering by the 

order of time series becomes lower than that without the model reduction, and that with 

the clustering based on the operational strategy becomes much lower than that without 

the model reduction.  This is because with a decrease in   w1 , the number of the  K

-best solutions becomes large drastically, and decreases in lower bounds for the values 

of the combined objective function by the model reduction increase the number of 

design candidates generated at the upper level.  This means that the clustering based on 

the operational strategy is effective to evaluate lower bounds for design candidates close 

to the optimal solution, but is not for design candidates far from the optimal solution.  

Figures 7 (a) to (c) show the computation time in relation to the number of clusters 

for periods  L  in the cases of   w1  = 0.6, 0.5, and 0.4, respectively.  For the clustering 

by the order of time series, the case of  L  = 36 is the best in the cases of   w1  = 0.6 and 

0.5, which is different from the result obtained in the single-objective optimal design, 

where the case of  L  = 18 is the best [34].  However, even the case of  L  = 36 is 

worse than that without the model reduction in the case of   w1  = 0.4.  This is also 

because of the aforementioned features of the number of the  K -best solutions and 

decreases in lower bounds.  For the clustering by the  k -medoids method, the cases of 

 L  ≤ 36 are better than that without the model reduction in the cases of   w1  = 0.6 and 

0.5.  In addition, the cases of  L  ≤ 36 are slightly better than that without the model 

reduction in the case of   w1  = 0.4.  However, the computation time is unstable in the 
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cases of  L  ≤ 36, and thus it may be difficult to determine the number of clusters for 

periods  L  properly in advance.  For the clustering based on the operational strategy, 

the computation time is comparable to that by the  k -medoids method in the cases of 

  w1  = 0.6 and 0.5.  However, it becomes longer drastically in the case of   w1  = 0.4.   

Figures 8 (a) to (c) show the average decrease in lower bounds for the values of the 

combined objective function between the cases with and without the model reduction in 

relation to the number of clusters for periods  L  in the cases of   w1  = 0.6, 0.5, and 0.4, 

respectively.  Note that the combined objective function is converted by multiplying 

the first equation in Eq. (1) by    z1° .  Since the design candidates generated at the upper 

level differs in both the cases, this average decrease in lower bounds is obtained by 

averaging the decreases in lower bounds for all the design candidates common to both 

the cases.  For the clustering by the order of time series, the average decrease in lower 

bounds increases largely with a decrease in  L .  This is because periods for which 

energy demands differ largely may be clustered.  However, the average decrease in 

lower bounds in the case of  L  = 18 is smaller than that in the case of  L  = 24.  This 

is because the former case is more suitable than the latter one from the viewpoint of 

minimizing the decreases in lower bounds.  It is easily understood that this result 

affects that shown in Fig. 7.  For the clustering by the  k -medoids method, the average 

decrease in lower bounds remains vary small in the cases of  L  ≥ 24.  It is also easily 

understood that this result affects that shown in Fig. 7.  However, the average decrease 

in lower bounds increases in the cases of  L  < 24, which makes the computation time 

unstable, as shown in Fig. 7.  For the clustering based on the operational strategy, 

although  L  is smaller than those by the  k -medoids method, the average decrease in 

lower bounds is comparable to those by the  k -medoids method in the cases of   w1  = 
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0.6 and 0.5.  However, the average decrease in lower bounds increases drastically in 

the case of   w1  = 0.4.  This is because the clustering based on the operational strategy 

uses only the optimal solution of the relaxed optimal design problem, which increases 

the decreases in lower bounds for many design candidates far from the optimal solution.  

This result reflects that shown in Fig. 7.   

In consideration of this result, the clustering based on the operational strategy is 

tried again using not only the optimal solution but also another design candidate.  

Since the influence of gas turbine cogeneration units on the operational strategy may be 

the largest, the operational strategies are assessed not only for the optimal solution but 

also for the 2nd best solution with different specifications for gas turbine cogeneration 

units.  Then, the clustering of periods is conducted for each operational strategy, and 

both the clusters for periods are merged with each other.  The computation time and 

the average decrease in lower bounds obtained by this procedure are included in Figs. 7 

(c) and 8 (c), respectively.  They become comparable to those by the  k -medoids 

method.   

 

 

6. Conclusions 

In this paper, the hierarchical MILP method and the model reduction by time 

aggregation for the optimal design of energy supply systems have been applied to the 

multiobjective optimal design.  In applying the model reduction, the methods of 

clustering periods by the order of time series, by the  k -medoids method, and based on 

the operational strategy have been applied.  As a case study, the multiobjective optimal 

design of a gas turbine cogeneration system with a practical configuration has been 
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investigated, and the clustering methods have been compared with one another in terms 

of the computation efficiency.  The following main results have been obtained: 

   • When importance is given to minimizing the annual total cost, the model reduction 

with any clustering method is effective to enhance the computation efficiency.  

The clustering by the order of time series is the least effective.  The clustering by 

the  k -medoids method is effective, but its effectiveness depends on the number of 

clusters.  Although the number of clusters is determined uniquely and 

automatically for the clustering based on the operational strategy, it is effective 

similarly to that by the  k -medoids method.  

   • When importance is given to minimizing the annual primary energy consumption, 

the model reduction is effective very limitedly to enhance the computation 

efficiency.  The clustering by the order of time series is not effective.  The 

clustering by the  k -medoids method is slightly effective only for large numbers of 

clusters.  The clustering based on the operational strategy deteriorates the 

computation efficiency drastically.  This may be recovered using multiple 

operational strategies, but its effectiveness may be very limited. 

As a future work, it is important to make the model reduction effective to enhance 

the computation efficiency in all the cases.  To attain this objective, it is obviously 

necessary to reduce decreases in lower bounds for the values of the combined objective 

function for the design candidates evaluated by the relaxed and reduced optimal design 

problem at the upper level.  This may not be so easy, and may be a challenging work.   
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Appendix A 

A part of the formulation of the optimal design problem is given for the gas turbine 

cogeneration system investigated in the case study. 

For gas turbine generators, for example, the restrictions concerning the selection, 

capacities, and numbers are expressed by 
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where the capacity of the gas turbine generators is selected from its   KGT  candidates.  

In addition, the number of the kth capacity is determined within its maximum   NGTk .  

The selection and number of the kth capacity are designated by the binary variable 

   !GTk  and the integer variable    !GTk , respectively.  The inequalities in Eq. (A1) 

constitute a part of   g0  in Eq. (1).   

For example, the performance characteristics for gas turbine generators are 

expressed by  
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where flow rates of input and output energy of the gas turbine generators are related 

linearly.   EGT  is the electric power generated,   Q
x
GT  is the exhaust heat generated, 

  E
a
GT  is the auxiliary power consumption, and   FGT  is the city gas consumption.  

These are continuous variables.    !GT  is the integer variable for the number of 

equipment at the on status of operation.  Here, it is assumed that   !GT  units are 

operated at the same load level, and the sums of the flow rates of input and output 

energy are expressed by the continuous variables.  The quadratic terms    !GTkFGT  and 

   !GTk"GT  are linearized accurately with additional continuous variables and inequality 

constraints by considering    !GTk  is binary [39].    pGTk  and   qGTk , etc. are the slopes 

and intercepts, respectively, of the linear relationships between the flow rates of input 

and output energy for a unit at the on status of operation, and   FGTk  and   FGTk  are the 

lower and upper limits for city gas consumption, respectively, for a unit at the on status 

of operation.  The performance not only at the rated load but also at the part load can 

be expressed by adjusting the values of   pGTk  and   qGTk , etc.  The inequalities and 

equalities in Eq. (A2) constitute a part of     gm  and   hm  in Eq. (1), respectively.   
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For example, the relationship between maximum demand and consumption, and 

the energy balance relationship for electricity are expressed by 
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where   Eelec  is the electric power purchased from an electric power company,   Eelec  is 

its maximum demand,   Edem  is the electricity demand,   ERE  and   EPC  are the 

electric power consumed by electric compression refrigerators and pumps, respectively, 

and   E a  is the electric power consumed by auxiliary machinery for the equipment 

shown by the subscript.  The inequality and equality in Eq. (A3) also constitute a part 

of     gm  and   hm  in Eq. (1), respectively.  

The annual total cost and annual primary energy consumption as the objective 

functions to be minimized are expressed by  
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where   EEP  is the capacity of the receiving device for purchased electricity,   Fgas  is 

the amount of city gas purchased from a gas company,   Fgas  is its maximum demand, 

 C  and  c  are the capital cost and capital unit cost of each type of equipment, 

respectively,  R  is the capital recovery factor,  !  and  !  are the unit costs for 
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demand and energy charges of each utility, respectively, and  !  is the conversion 

coefficient from the purchased amount of each utility to the primary energy 

consumption.  The first to third lines in Eq. (A4) constitute the first line in Eq. (2), 

while the fourth and fifth lines in Eq. (A4) constitute the second and third lines in Eq. 

(2).   

 

 

Nomenclature 

 A : set for indices of periods in cluster 

 C :  capital cost of equipment,  yen 

 c :  capital unit cost of equipment,  yen/kW 

 D : sum of Euclid distances 

   !d  :  Euclid distance 

 E :  electric power,  kWh/h 

 F :  city gas consumption,  m3/h 

 f : part of objective function 

 g : vector for inequality constraints 

 h : vector for equality constraints 

 J :  number of periods per cluster 

 K :  number of candidates for capacities 

 L :  number of clusters for periods 

 M :  number of periods 

 N :  maximum number of equipment 

 p :  slope of linear relationship between flow rates of input and output energy,   
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  kWh/m3 

 Q :  heat flow rate,  kWh/h 

 q :  intercept of linear relationship between flow rates of input and output energy,   

  kWh/h 

 R :  capital recovery factor 

   !t  : duration per year of period,  h/y 

 u : binary variable for expressing selection of period as medoid 

 v : binary variable for expressing selection of period and medoid in same cluster 

 w : weight for objective functions 

 x : vector for continuous operation variables 

 y : vector for energy demands 

 z :  objective function,  yen/y, kWh/y 

  !  :  annual capital cost of equipment plus the annual demand charge of utilities 

  yen/y 

  !  :  binary design variable for selection of equipment 

  !  :  number of equipment at on status of operation 

  !  :  vector for integer operation variables 

  !  : integer design variable for number of equipment 

   !  :  vector for binary and integer design variables 

  !  : unit cost for demand charge of utilities,  yen/(kW·month), yen/(m3/h·month) 

  !  :  primary energy consumption of utilities per hour,  kWh/h 

   !  :  conversion coefficient for primary energy consumption,  kWh/kWh, kWh/m3 

   !  :  energy charge of utilities per hour,  yen/h 

  !  :  unit cost for energy charge of utilities,  yen/kWh, yen/m3 
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 ( )' : reduction by time aggregation 

  ( )°  : reference value 

  ( )  :  upper limit, equipment capacity, or utility maximum demand 

  ( )  :  lower limit 

   ( )!" #$ : ceiling function 

 

Subscripts and arguments 

 dem : demand 

 elec : purchased electricity 

 gas : purchased city gas 

i, j, m :  indices of periods (in part related with operation) 

 k : index of candidates for capacities 

 l : index of clusters for periods 

 0 :  part related with design 

 1, 2 : two objective functions 

 

Superscripts 

 a :  auxiliary machinery 

  n1 ,   n2 ,   n3 :  numbers of variables in  ! ,  ! , and x, respectively 

 T :  transposition of vector 

 x :  exhaust heat 

 

Equipment symbols (subscripts) 

 BG : gas-fired auxiliary boiler 
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 BW : waste heat recovery boiler 

 EP : device for receiving electricity 

 GT : gas turbine generator 

 PC : pump 

 RE : electric compression refrigerator 

 RS : steam absorption refrigerator 
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Table 1  Capacities and performance characteristic values of candidates of equipment 

for selection 

 

 

  

Equipment Capacity/performance* Candidate 

Gas turbine 
cogeneration 
unit 

 #1 #2 #3 #4 
Max. power output  MW 1.29 1.60 2.00 2.40 
Max. steam output  MW 5.69 3.34 4.10 4.57 
Power generating efficiency 0.140 0.173 0.169 0.179 
Heat recovery efficiency 0.617 0.362 0.347 0.341 

 #5 #6 #7 #8 
Max. power output  MW 2.93 3.50 3.54 4.36 
Max. steam output  MW 6.44 6.97 6.89 8.92 
Power generating efficiency 0.256 0.271 0.273 0.273 
Heat recovery efficiency 0.563 0.540 0.531 0.559 

 #9 #10   
Max. power output  MW 5.23 5.32   
Max. steam output  MW 8.91 9.05   
Power generating efficiency 0.301 0.306   
Heat recovery efficiency 0.513 0.521   

Gas-fired 
auxiliary 

 #1 #2 #3 #4 
Max. steam output  MW 5.24 6.55 7.86 9.82 
Thermal efficiency 0.92 0.92 0.92 0.92 

Electric 
compression 

 #1 #2 #3 #4 
Max. cooling output  MW 2.82 3.52 4.22 5.28 
Coefficient of performance 4.57 4.73 4.76 5.04 

Steam 
absorption 
refrigerator 

 #1 #2 #3 #4 
Max. cooling output  MW 3.46 5.18 6.91 8.64 
Coefficient of performance 1.20 1.20 1.20 1.20 

*At rated load level     
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Table 2  Capital unit costs of equipment, and unit costs for demand and energy charges 

of utilities 

 

 
  

Equipment/utility Unit cost 
Gas turbine generator 230.0 103 yen/kW 
Waste heat recovery boiler 9.6 103 yen/kW 
Gas-fired auxiliary boiler 6.6 103 yen/kW 
Electric compression refrigerator 34.4 103 yen/kW 
Steam absorption refrigerator 30.1 103 yen/kW 
Receiving device 56.3 103 yen/kW 

Electricity 
Demand charge 1740 yen/(kW month) 

Energy charge 10.77 yen/kWh (Summer) 
9.79 yen/kWh (Others) 

City gas Demand charge 2033 yen/(Nm3/h month) 

Energy charge 30.88 yen/Nm    3  
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Table 3  Optimal values of design variables 

 

 

  

 
Weight  w1 

Candidate, number, and capacity of equipment Utility maximum 
demand 

GT, BW BG RE RS EP 
MW 

Electricity 
MW 

City gas 
103 Nm3/h 

0.6  #10  3 #1  1 4.0 4.0 4.5 
0.5  #10  3 #1  1 4.0 4.0 4.5 
0.4  #10  2 #1  2 10.0 10.0 3.5 

#1  1 #3  4 
#1  1 #3  4 
#1  1 #3  4 
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Fig. 1  Hierarchical relationship between design and operation variables 
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Fig. 2  Solution process by hierarchical MILP method and model reduction 
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(a) Clustering by order of time series 

 

  
(b) Clustering by  k -medoids method 

 

  
(c) Clustering based on operational strategy 

 

Fig. 3  Process flows in clustering methods 
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Fig. 4  Configuration of gas turbine cogeneration system 
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Fig. 5  Trade-off relationship between two objective functions 
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(a)   w1  = 0.6 

 

 
(b)   w1  = 0.5 

 

Fig. 6  Changes in upper and lower bounds for optimal value of combined objective 

function 
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(c)   w1  = 0.4 

 

Fig. 6  Changes in upper and lower bounds for optimal value of combined objective 

function 
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(a)   w1  = 0.6 

 

 
(b)   w1  = 0.5 

 

Fig. 7  Effect of number of clusters on computation time 
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(c)   w1  = 0.4 

 

Fig. 7  Effect of number of clusters on computation time 
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(a)   w1  = 0.6 

 

 
(b)   w1  = 0.5 

 

Fig. 8  Effect of number of clusters on average decrease in lower bounds for values of 

combined objective function 
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(c)   w1  = 0.4 

 

Fig. 8  Effect of number of clusters on average decrease in lower bounds for values of 

combined objective function 
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