

学術情報リポジトリ

pH-Sensitive branched β -glucan-modified liposomes for activation of antigen presenting cells and induction of antitumor immunity

メタデータ	言語: eng
	出版者:
	公開日: 2021-10-06
	キーワード (Ja):
	キーワード (En):
	作成者: Yanagihara, Shin, Kasho, Nozomi, Sasaki,
	Koichi, Shironaka, Naoto, Kitayama, Yukiya, Yuba, Eiji,
	Harada, Atsushi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/00017522

1 pH-Sensitive branched β-glucan-modified liposomes for activation of antigen

2 presenting cells and induction of antitumor immunity

3

4 Shin Yanagihara, Nozomi Kasho, Koichi Sasaki, Naoto Shironaka, Yukiya

5 Kitayama, Eiji Yuba*, Atsushi Harada*

- 6 Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture
- 7 University, 1–1 Gakuen–cho, Naka–ku, Sakai, Osaka 5998531, Japan
- 8 *Correspondence: yuba@chem.osakafu-u.ac.jp and harada@chem.osakafu-u.ac.jp
- 9 Tel.: +81-72-254-9330; Fax: +81-72-254-9330

11 Abstract

12 Induction of cellular immunity is important for effective cancer immunotherapy. 13 Although various antigen carriers for cancer immunotherapy have been developed to 14 date, balancing efficient antigen delivery to antigen presenting cells (APCs) and their activation via innate immune receptors, both of which are crucially important for 15 16 induction of strong cellular immunity, remains challenging. For this study, branched β-17 glucan was selected as an intrinsically immunity-stimulating and biocompatible 18 material. It was engineered to develop multifunctional liposomal cancer vaccines 19 capable of efficient interactions with APCs and subsequent activation of the cells. 20 Hydroxy groups of branched β -glucan (Aqua β) were modified with 3-methylglutaric 21 acid ester and decyl groups, respectively, to provide pH-sensitivity and anchoring 22 capability to liposomal membrane. Modification efficiency of Aquaß derivatives to the 23 liposomes was significantly high compared with linear β -glucan (curdlan) derivatives. 24 Aquaß derivative-modified liposomes released their contents in response to weakly acidic pH. As a model antigenic protein, ovalbumin (OVA)-loaded liposomes modified 25 26 with Aquaß derivatives interacted efficiently with dendritic cells, and induced 27 inflammatory cytokine secretion from the cells. Subcutaneous administration of Aquaß 28 derivative-modified liposomes suppressed the growth of E.G7-OVA tumor significantly

29	compared with curdlan derivative-modified liposomes. Aqua β derivative-modified
30	liposomes induced the increase of CD8 ⁺ T cells, and polarized macrophages to
31	antitumor M1-phenotype within the tumor microenvironment. Therefore, pH-sensitive
32	Aquaß derivatives can be promising materials for liposomal antigen delivery systems to
33	induce antitumor immune responses efficiently.
34	
35	Keywords: liposome; polysaccharide; β -glucan; dendritic cell; cellular immunity;

36 tumor microenvironment

37 1. Introduction

38 Cancer immunotherapy has gained much attention as a promising therapeutic approach for cancers since the success of immune checkpoint inhibitors [1]. To obtain 39 40 therapeutic effects against cancer, the induction and activation of cell-based immunity (cellular immunity) are crucially important because cytotoxic T lymphocytes (CTLs) 41 42 attack antigen-expressing tumor cells directly and specifically [2,3]. However, cancer-43 specific CTLs are not induced effectively in most patients. In addition, the CTL activity 44 is suppressed under immunosuppressive microenvironments of tumor tissues [4]. 45 Therefore, engineering approaches are desired to control the immune responses 46 artificially for induction of cellular immunity and to cancel immunosuppressive environments within tumors. 47 48 To induce cancer-specific cellular immunity, exogenous antigens should be 49 presented onto major histocompatibility complex (MHC) class-I molecules of antigen 50 presenting cells (APCs) in a process designated as "cross-presentation" [5-7]. For 51 induction of cross-presentation, the control of antigen delivery processes, such as 52 antigen uptake by endocytosis through specific receptors expressed on APCs (such as 53 mannose receptors) and cytosolic transport of antigen, is extremely important [5-8]. 54 Cytosolic release of antigens can be achieved by mimicking viral entry into cells using

55	membrane fusion with plasma membrane or endosomal membrane [9,10]. To date,
56	various virus-derived fusogenic protein-based or synthetic molecule-based membrane
57	fusion systems have been developed to achieve efficient cytosolic delivery of antigens
58	[9,10].
59	In addition to the control of antigenic intracellular pathways, activation of innate
60	immune pathways is crucially important to induce antigen-specific cellular immunity.
61	For example, when pathogens invade the body, dendritic cells (DCs) are activated via
62	pattern recognition receptors such as toll-like receptors (TLRs) to induce adaptive
63	immunity against pathogens effectively [11-15]. Importantly, activated DCs decrease
64	the uptake capability of antigens [16,17]. Therefore, to induce antigen-specific immune
65	response effectively, it is desirable to accumulate antigen delivery functions and
66	adjuvant functions for activation of innate immunity into a single carrier. However,
67	precise control of antigen delivery processes and adjuvant functions using artificial
68	immunity-inducing system remains challenging because the intracellular fate of both
69	antigen and adjuvant molecules should be controlled accurately to achieve a cooperative
70	effect.
71	We have previously synthesized various carboxylated polyglycidols or
72	polysaccharides and modified them onto antigen-loaded liposomes to achieve cytosolic

73	release of antigens within APCs [18-21]. Carboxylated polyglycidols or polysaccharides
74	possess a hydrophobic nature after protonation of carboxy groups at acidic pH, which
75	induced destabilization of liposomal and endosomal membrane after internalization to
76	the cells, leading to cytosolic delivery of the antigen [18-21]. In addition, carboxylated
77	polyglycidols with a hyperbranched structure were found to have enhanced liposome
78	uptake by DCs compared with carboxylated polyglycidols having a linear structure [19].
79	This finding suggests that the bulky branched backbone structure of polymers can
80	improve interaction with immune cells. Curdlan, a linear β -glucan, is known to induce
81	activation of APCs via recognition by Dectin-1 on DCs and macrophages [22,23]. We
82	demonstrated that liposomes modified with 3-methylglutarylated curdlan (MGlu-Curd-
83	A, Fig. 1) can deliver model antigens into cytosol of DCs and thereby induce activation
84	of these cells [24]. After subcutaneous injection to tumor-bearing mice, ovalbumin
85	(OVA)-loaded, MGlu-Curd-A-modified liposomes induced OVA-specific cellular
86	immunity and tumor regression more effectively than OVA-loaded liposomes modified
87	with either 3-methylglutarylated dextran or mannan [24].
88	The backbone structure of carboxylated polymers dramatically affects multiple
89	aspects of liposome-based antigen delivery systems such as cellular uptake, activation
90	of innate immunity and adaptive immunity. Based on our previous observations

91	revealing that hyperbranched polyglycidol derivatives demonstrated superior
92	performance compared with their linear counterparts, here we sought to use β -glucan
93	"Aqua β " (Fig. 1) instead of curdlan to develop a liposome-based antigen delivery
94	system with further enhanced therapeutic effects. Aqua β has a branched structure. It is
95	known to promote secretion of inflammatory cytokines from APCs [25-27]. We
96	synthesized MGlu unit-introduced Aqua β derivatives and evaluated the therapeutic
97	potential of Aquaβ derivative-modified liposomes containing OVA both in vitro and in
98	<i>vivo</i> . Results show that the difference in backbone structure of β -glucan increased
99	modification efficiency of polysaccharide derivatives to the liposomes and improved the
100	immunity-inducing functions considerably, especially in the infiltration of ${ m CD8^+}$ cells
101	into tumor tissue and the modulation of the macrophage composition in a tumor
102	microenvironment.

Figure 1. Design of antigen-loaded liposomes modified with pH-sensitive β-glucan

105 derivatives as cancer immunity-inducing systems.

- 107 **2. Materials and Methods**
- 108 2.1. Materials

109	β -1,3-1,6-glucan (Aqua β , Mw: 100 kDa, the degree of branching is 0.71 calculated
110	from ¹ H NMR) was kindly donated by Osaka Soda Co., Ltd. (Osaka, Japan). Egg yolk
111	phosphatidylcholine (EYPC) were kindly donated by NOF Co. (Tokyo, Japan). 3-
112	Methylglutaric anhydride, curdlan from Alcaligenes faecalis (Mw: 294 kDa), ovalbumin
113	(OVA), fetal bovine serum (FBS), p-xylene-bis-pyridinium bromide (DPX), DNase I,
114	and dextran sulfate sodium salt from Leuconostoc spp. were purchased from Sigma-
115	Aldrich (St. Louis, MO.). Collagenase D was obtained from Roche (Basel,
116	Switzerland). 1-Aminodecane, pyranine and Triton X-100 were obtained from Tokyo
117	Chemical Industries Ltd. (Tokyo, Japan). 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl
118	morpholinium chloride (DMT-MM), phenol and phospholipid C test-Wako were from
119	Wako Pure Chemical Industries Ltd. (Osaka, Japan). 1,1'-Dioctadecyl-3,3,3',3'-
120	tetramethylindocarbocyanine perchlorate (DiI) was from Life Technologies (Carlsbad,
121	CA). Fixable Viability Dye eFluor® 520 was obtained from eBioscience (San Diego,
122	CA). Sulfuric acid and calcium chloride (CaCl ₂) were from nacalai tesque (Kyoto,
123	Japan). Coomassie (Bradford) Protein Assay Kit was form Thermo Fisher Scientific

124 K.K. (Tokyo, Japan). Sodium hydrogen carbonate was purchased from Kishida

125 Chemical Co., Ltd. (Osaka, Japan). Cellulose tubing for dialysis (MWCO: 12,000-

126 14,000) was obtained from Viskase Companies, Inc. (Lombard, IL).

127 2.2. Synthesis of β -glucan derivatives

141
$$0.9 (d, J = 6.0 Hz, -CO-CH_2-CH(CH_3)-CH_2-), 2.0 (dd, J = 9.9, 14.3 Hz, -CO-CH_2-CH_2-), 2.0 (dd, J = 9.9, 14.3 Hz, -CO-CH_2-CH_2-), 2.0 (dd, J = 9.9, 14.3 Hz, -CO-CH_2-CH_2-), 2.0 (dd, J = 9.9, 14.3 Hz, -CO-CH_2-), 2.0 (dd, J = 9.9, 14.3 Hz, -C$$

142 CH(CH₃)-CH₂-), 2.2-2.3 (m, -CO-CH₂-CH(CH₃)-CH₂-), 3.4-4.1 (br, glucose 2H, 3H,

143 4*H*, 5*H*, 6*H*), 4.7-5.1 (m, *H*DO, β1,3-linked 1*H*) [29] (Fig. S2c).

144	As anchor moieties for fixation of MGlu-Aqua β and MGlu-Curd onto liposome
145	membranes, 1-aminodecane was combined with carboxy groups of MGlu-Aqua β and
146	MGlu-Curd. Each polymer was dissolved in water. A given amount of 1-aminodecane
147	shown in Table S2 was reacted with carboxy groups of the polymer using DMT-MM at
148	room temperature for 24 h with stirring. The obtained polymers were purified through a
149	dialysis against water with dialysis membrane (MWCO: 12,000-14,000) for more than 3
150	days until no water permeation within dialysis membrane takes place. The product was
151	recovered by freeze-drying. ¹ H NMR for hydrolyzed MGlu-Aqua β -A (400 MHz, D ₂ O +
152	NaOD): δ 0.8-1.0 (m, -CO-CH ₂ -CH(CH ₃)-CH ₂ -, CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 1.1-1.7 (br,
153	-CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 2.0 (dd, J = 9.9, 14.3 Hz, -CO-CH ₂ -CH(CH ₃)-CH ₂ -), 2.2-
154	2.3 (m, -CO-CH ₂ -CH(CH ₃)-CH ₂ -), 3.2-4.3 (m, glucose 2H, 3H, 4H, 5H, 6H), 4.5 (d, J =
155	7.6 Hz, β1,6-linked 1 <i>H</i>), 4.7-5.1 (m, <i>H</i> DO, β1,3-linked 1 <i>H</i>) (Fig. S2b). ¹ H NMR for
156	hydrolyzed MGlu-Curd-A (400 MHz, D ₂ O + NaOD): δ 0.8-1.0 (m, -CO-CH ₂ -CH(CH ₃)-
157	CH ₂ -, CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 1.1-1.7 (br, -CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 2.0 (dd, J =
158	9.9, 14.3 Hz, -CO-CH ₂ -CH(CH ₃)-CH ₂ -), 2.2-2.3 (m, -CO-CH ₂ -CH(CH ₃)-CH ₂ -), 3.4-4.1

- 159 (m, glucose 2H, 3H, 4H, 5H, 6H), 4.5 (d, β1,6-linked 1H), 4.7-5.1 (m, HDO, β1,3160 linked 1H) (Fig. S2c).
- 161 2.3. Preparation of β -glucan derivative-modified liposomes

162	A given amount (5-10 mg) of EYPC dissolved in chloroform was added to round-
163	bottom flask. After evaporation of chloroform, β -glucan derivatives (lipid/polymer =
164	7/3, w/w) dissolved in methanol were added to the flask and the solvent was evaporated.
165	The remaining organic solvent was further removed under vacuum. Obtained mixed
166	thin film of EYPC and β -glucan derivatives was dispersed in phosphate-buffered saline
167	(PBS) for phenol-sulfuric acid method or OVA/PBS solution (4 mg/mL) for other
168	experiments by a brief sonication, and the liposome suspension was further hydrated by
169	freezing and thawing and was extruded through a polycarbonate membrane with a pore
170	size of 200 nm. The liposome suspension was purified with ultracentrifugation for 1 h at
171	4 °C twice.

172 2.4. Characterization of liposomes

Diameters and zeta potentials of the liposomes (0.1 mM of lipid concentration)
were measured using a Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire,

175 UK). Data were obtained as an average of more than three measurements on different176 samples.

177	The concentrations of lipid and OVA in liposome suspension were measured using
178	phospholipid C test-Wako and Coomassie Protein Assay Reagent, respectively.
179	Polysaccharide contents per lipid were measured by using phenol-sulfuric acid method.
180	To 200 μL aqueous solution of β -glucan derivative-modified liposomes, 200 μL of 5%
181	phenol aqueous solution and 1 mL of 98% sulfuric acid were sequentially added. The
182	mixture was vortexed and then incubated for 1 h. For a calibration curve, mixtures of 0-
183	500 μ g/mL of β -glucan derivatives and EYPC suspension at an equal concentration to
184	tested β -glucan derivative-modified liposomes were prepared. Absorption spectra (400-
185	600 nm) for samples were measured and polysaccharide contents were calculated from
186	the secondary differentiation of absorbance at 497 nm.
187	Pyranine-loaded liposomes were prepared as described above except that mixture of
188	polymer and EYPC was dispersed in aqueous 35 mM pyranine, 50 mM DPX, and 25
189	mM phosphate solution (pH 7.4). Liposomes encapsulating pyranine (lipid
190	concentration: 2.0 \times 10 ⁻⁵ M) were added to PBS of varying pH at 37 °C and
191	fluorescence intensity at 512 nm of the mixed suspension was followed with excitation

192 at 416 nm using a spectrofluorometer (Jasco FP-6500). The release percentage of

193 pyranine from liposomes was defied as:

194 Release(%) =
$$(F_t - F_i)/(F_f - F_i) \times 100$$

195 where F_i and F_t mean the initial and intermediary fluorescence intensities of the

196 liposome suspension, respectively. $F_{\rm f}$ is the fluorescent intensity of the liposome

- 197 suspension after the addition of TritonX-100 (final concentration: 0.1%).
- 198 2.5. Cellular association of liposomes
- 199 DiI-labeled liposomes were prepared as described above except that a mixture of

200 polymer and lipid containing DiI (0.1 mol%) was dispersed in PBS containing OVA.

201 DC2.4 cells, a murine dendritic cell line, $(7.5 \times 10^4 \text{ cells})$ cultured for 2 days in a 24-

202 well plate were washed twice with HBSS and then incubated in serum-free medium

- 203 (0.25 mL). DiI-labeled liposomes (1 mM lipid concentration, 0.25 mL) were added
- 204 gently to the cells and then incubated for 4 h at 37 °C. After incubation, the cells were
- 205 washed with HBSS three times. Fluorescence intensity of these cells was determined via
- 206 a flow cytometric analysis (CytoFlex, Beckman Coulter, Inc.). Relative fluorescence
- 207 intensity for each liposome was calculated using fluorescence intensity for the cells
- 208 treated with unmodified liposomes. For an inhibition assay, 10 µg/mL dextran sulfate
- 209 was pre-incubated with cells for an hour. Then, DiI-labeled liposomes were added to the

cells. After 4 h incubation, fluorescence intensity of these cells was measured asdescribed above.

- 212 2.6. Cytokine production from dendritic cell line
- 213 DC2.4 cells (3×10^5 cells) cultured for 2 days in a six-well plate were washed with
- 214 HBSS twice and then incubated in serum-free RPMI-1640 medium. β-glucan
- 215 derivatives in PBS (final concentration: 0.5 mg/mL) or OVA-loaded liposomes (final
- 216 lipid concentration: 0.5 mM corresponding to 0.4 mg/mL lipid) were added gently to the
- 217 cells, followed by incubation for 24 h at 37 °C. After incubation, supernatants were
- 218 collected, and cytokine (IL-12 and IL-1β) production was measured using an enzyme-
- 219 linked immunosorbent assay kit (ELISA Development Kit, PeproTech EC Ltd.)
- according to the manufacturer's instruction.

221 2.7. Mice

- 222 Seven-week-old female C57BL/6 mice (H-2^b) were purchased from Oriental Yeast
- 223 Co., Ltd (Tokyo, Japan). All animal experiments were approved by the Institutional
- animal experimentation committee in Osaka Prefecture University (Approval No. 19-1,
- 225 20-1) and were performed in compliance with the institutional guidelines of animal care
- and use.

227 2.8. Induction of antitumor immunity

228	E.G7-OVA cells, OVA-expressing T-lymphoma, $(5.0 \times 10^5 \text{ cells/mouse})$ were
229	subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with
230	isoflurane. On days 8 and 14, 100 μ g of OVA-loaded liposomes were subcutaneously
231	injected into the right backs of the mice under anesthesia with isoflurane. Tumor sizes
232	were monitored from the day of tumor inoculation. Mice immunized with PBS were
233	used as a control to confirm the development of tumors following the first inoculation
234	of E.G7-OVA cells. Mice were sacrificed when tumor volumes became over 2,000
235	mm ³ . All treated groups contained five mice.
236	2.9. Analysis of immune cell composition in the tumor
237	E.G7-OVA cells (5.0×10^5 cells/mouse) were subcutaneously inoculated into the
237 238	E.G7-OVA cells (5.0×10^5 cells/mouse) were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On day 6, 100 µg of OVA-
237 238 239	E.G7-OVA cells (5.0×10^5 cells/mouse) were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On day 6, 100 µg of OVA- loaded liposomes were subcutaneously injected into the right backs of the mice under
237238239240	E.G7-OVA cells (5.0×10^5 cells/mouse) were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On day 6, 100 µg of OVA- loaded liposomes were subcutaneously injected into the right backs of the mice under anesthesia with isoflurane. On day 12, mice were sacrificed and, tumor tissues were
 237 238 239 240 241 	E.G7-OVA cells $(5.0 \times 10^5$ cells/mouse) were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On day 6, 100 µg of OVA- loaded liposomes were subcutaneously injected into the right backs of the mice under anesthesia with isoflurane. On day 12, mice were sacrificed and, tumor tissues were excised. Tumor were cut into small pieces and digested by incubating in sodium
 237 238 239 240 241 242 	E.G7-OVA cells $(5.0 \times 10^5$ cells/mouse) were subcutaneously inoculated into the left back of C57BL/6 mice under anesthesia with isoflurane. On day 6, 100 µg of OVA- loaded liposomes were subcutaneously injected into the right backs of the mice under anesthesia with isoflurane. On day 12, mice were sacrificed and, tumor tissues were excised. Tumor were cut into small pieces and digested by incubating in sodium pyruvate-free DMEM medium supplemented with 1.2 mM CaCl ₂ , 2 mg/mL

244	tumor was prepared by gentle mashing and passing through a 70 μ m mesh
245	Cellstrainer TM (Falcon®). Erythrocytes were removed by incubating the cell pellet for 5
246	min in ammonium chloride buffer (7.47 mg/mL NH ₄ Cl, 2.06 mg/mL
247	Tris(hydroxymethyl)aminomethane, pH 7.4) at 4 °C. Tumor cells were seeded into 96-
248	well plates with 1.0×10^6 cells/well and washed in PBS. To discriminate between live
249	and dead cells, the cells were incubated for 30 min on ice with Fixable Viability Dye
250	eFluor® 520 (diluted 1:1000 in PBS), and washed with FACS buffer (PBS containing
251	2% FBS) twice. The cells were incubated with 5 μ g/mL CD16/CD32 monoclonal
252	antibody (eBioscience) for 20 min at 4 °C to block Fc receptors, and then washed twice.
253	To analyze T cell populations, the cells were stained with anti-CD8-PE (eBioscience,
254	53-6.7), anti-CD3&-PerCP-Cy5.5 (BD Bioscience, 145-2C11) and anti-CD4-PE/Cy7
255	(BD Bioscience, RM4-5) for 20 min at 4 °C. For analysis of macrophage populations,
256	the cells were stained with anti-CD206-PE (BioLegend, C068C2), anti-CD11b-PerCP-
257	Cy5.5 (BD Pharmingen TM , M1/70) and anti-I-A ^b -PE/Cy7 (BioLegend, AF6-120.1)
258	antibodies for 20 min at 4 °C. (each diluted 1:200 in FACS buffer). After washing twice,
259	cell populations were analyzed via a flow cytometric analysis.

260 2.10. Statistical analysis

261	Statistically significant differences between experimental groups were determined
262	using Prism software (v8, GraphPad). Where one-way ANOVA followed by Tukey's
263	HSD post hoc test was used, variance between groups was found to be similar by
264	Brown-Forsythe test. The symbols *, **, ***, and **** indicate <i>P</i> values less than 0.05,
265	0.01, 0.001, and 0.0001, respectively.

267 **3. Results**

268 **3.1.** Synthesis of β-glucan derivatives and modification onto the liposomes

Synthesis of pH-sensitive Aquaβ derivatives was performed as shown in Fig. S1,
and Tables S1 and S2. Hydroxy groups of Aquaβ were reacted with 3-methylglutaric
anhydrides to introduce carboxylic esters (MGlu groups). Decyl groups were further

- 272 introduced *via* amide bonds as an anchor moiety to fix Aquaβ derivatives onto
- 273 liposomal membrane. pH-Sensitive curdlan derivatives were synthesized according to
- 274 our previous report [24]. For ¹H NMR analysis of obtained compounds, broad peaks
- appeared corresponding to MGlu groups (0.9 and 1.9–2.3 ppm) and decyl groups (0.8–
- 276 1.7 ppm) along with sugar moieties (3.2–4.7 ppm) (Fig. S2a), indicating the
- 277 introduction of MGlu groups and decyl groups to β-glucans. The percentage of MGlu

278	groups (MGlu%) and anchor groups (anchor%) of β -glucan derivatives were calculated
279	from the peak area ratio of sugar moieties and MGlu groups or decyl groups after
280	hydrolysis by NaOD (Tables S2 and S3, Figs. S2b and S2b). The β -glucan derivatives
281	bearing various percentages of MGlu groups with comparable anchor% were
282	successfully synthesized (Tables S1 and S2). Each β -glucan derivative was designated
283	as MGluX-Curd-AY or MGluX-Aqua β -AY, where X and Y respectively represent
284	MGlu% and anchor% per hydroxy groups. The MGlu and anchor densities per 100
285	β 1,3-linked sugar units for both Aqua β and curdlan derivatives were also calculated
286	(Table S2). The MGlu and anchor densities of Aqua β derivatives were relatively high
287	compared with those of curdlan derivatives because of MGlu and anchor groups
288	introduced to branched sugar units of Aquaβ.
289	Using hydration of mixed thin film composed of EYPC and β -glucan derivatives,
290	the β -glucan derivatives were introduced onto liposomes. Table 1 shows the size and
291	zeta potentials of the prepared liposomes: all liposomes had 100-200 nm of average
292	size, corresponding to the pore size of polycarbonate membrane used for extrusion. It
293	was confirmed by TEM observation that the liposome structure with lipid bilayer was
294	maintained even after the modification of β -glucan derivatives (Fig. S3). Liposomes
295	prepared from the mixture of EYPC and β -glucan derivatives exhibited large absolute

296	values of negative zeta potentials compared with EYPC liposomes without polymer
297	modification, suggesting that β -glucan derivatives were modified onto liposomal
298	membranes. The amounts of β -glucan derivatives per lipid were evaluated using the
299	phenol-sulfuric acid assay, which is a standard quantitative assay of sugar [30,31]. The
300	modification efficiency of Aqua β and curdlan derivatives were compared using β -
301	glucan derivative-modified liposomes without OVA loading (Fig. 2). It was obvious
302	that Aqua β derivatives exhibit higher modification efficiency than curdlan derivatives,
303	and this might be due to the difference in the anchor density of β -glucan derivatives
304	(Table S2). β -glucan derivatives with relative high anchor density, i.e. Aqua β
305	derivatives, were fixed to liposomes with high efficiency. As a model antigenic protein,
306	OVA was encapsulated into each liposome. The amounts of OVA per lipid (g/mol)
307	were 100-250 and encapsulation efficiency of OVA was 17-40%, which is comparable
308	level with our previous reports using carboxylated chondroitin sulfate derivative-
309	modified liposomes and carboxylated hyperbranched polyglycidols [21,32].

311 Figure 2. The modification efficiency of β-glucan derivatives to liposomes.

312 Correlation of modification amounts with feeding amounts of β-glucan derivatives

313 on liposomes was shown. Modification amounts of β -glucan derivatives on

314 liposomes were measured by the phenol-sulfuric acid method. Each point is the

315 mean \pm SD (*n* = 3).

Table 1. Characterization of β -Glucan Derivative-Modified Liposomes

Liposome	size (nm)	PDI	ζ-potential (mV)	OVA/lipid (g/mol)	Encapsulation efficiency (%)
Unmodified	175 ± 15	0.17 ± 0.02	$\textbf{-7.90} \pm 2.8$	253 ± 96	39.6 ± 15
MGlu70-Aquaβ-A6	126 ± 14	0.23 ± 0.04	$\textbf{-42.3}\pm8.0$	143 ± 43	22.4 ± 6.7
MGlu56-Aquaβ-A4	119 ± 3.1	0.20 ± 0.02	$\textbf{-42.3} \pm 5.4$	116 ± 19	18.1 ± 3.0
MGlu38-Aquaβ-A3	127 ± 13	0.17 ± 0.01	$\textbf{-46.0} \pm 10$	107 ± 25	16.7 ± 3.9
MGlu21-Aquaβ-A2	148 ± 21	0.25 ± 0.06	$\textbf{-40.1} \pm 5.0$	186 ± 8.8	29.1 ± 1.4
MGlu71-Curd-A6	210 ± 32	0.16 ± 0.08	$\textbf{-45.3}\pm2.4$	111 ± 25	17.4 ± 3.9
MGlu62-Curd-A4	139 ± 27	0.21 ± 0.01	$\textbf{-31.0}\pm12$	204 ± 2.5	31.9 ± 0.4
MGlu37-Curd-A4	154 ± 6.6	0.14 ± 0.02	-41.1 ± 3.4	114 ± 28	17.8 ± 4.4
MGlu13-Curd-A4	103 ± 8.0	0.17 ± 0.01	$\textbf{-27.6} \pm \textbf{6.6}$	118 ± 10	18.5 ± 1.6

318 Destabilization of Aquaß derivative-modified liposomes in response to decrease in 319 pH to acidic pH was evaluated using liposomes encapsulating both a fluorescent dye 320 (pyranine) and its quencher (DPX). The increase in fluorescence intensity derived from 321 pyranine released from the liposomes at varying pHs was monitored (Fig. 2). Although 322 the release of pyranine from unmodified EYPC liposomes never exceeded 20% of the 323 total amounts at any evaluated pH range, Aquaß derivative-modified liposomes could 324 release pyranine in response to acidic pH as same with curdlan derivative-modified liposomes (Figs. 3, S4 and S5). 325

327	Figure 3. pH-Sensitivity of liposomes modified with Aqua β derivatives. pH-
328	Dependence of pyranine release from liposomes modified with or without Aqua β
329	derivatives after 30 min incubation are shown. Lipid concentration was 2.0×10^{-5} M.
330	Each point is the mean \pm SD ($n = 3$).
331	
332	3.2. Adjuvant property of Aquaß derivative-modified liposomes and their cellular
333	interaction
334	Adjuvant effects of Aqua β derivatives without modification onto liposomes were
335	evaluated and compared with those of curdlan derivatives by measuring secretions of
336	inflammatory cytokines from the dendritic cell line (DC2.4 cell) (Figs. 4a and 4b). After
337	24 h incubation of DC2.4 cells with β -glucan derivatives, inflammatory cytokines in
338	cell culture supernatant were quantified by ELISA assay. Aqua β with high MGlu%
339	(MGlu63, 75) induced significantly higher amounts of IL-12 and IL-1 β secretion than
340	parental Aqua β and Aqua β derivatives with low MGlu%, although there was no clear
341	correlation between cytokine production and MGlu% for curdlan derivatives. In
342	particular, MGlu75-Aqua β showed significantly high IL-1 β secretion compared with the
343	other β -glucan derivatives. Adjuvant effects of liposomes modified with β -glucan

344	derivatives were also evaluated (Figs. 4c and 4d). In both of IL-12 and IL-1 β secretions,
345	there observed significantly high secretion for liposomes modified with Aqua β
346	derivatives having high MGlu% compared with the other liposomes. The results suggest
347	that liposomes modified with Aqua β derivatives having high MGlu% activated DCs
348	more effectively than liposomes modified with curdlan derivatives did.
349	The effect of feeding amounts of β -glucan derivatives to DC2.4 cells was evaluated
350	in the amount of IL-12 secreted from the cells (Fig. 4e). Focusing on MGlu70-Aquaβ-
351	A6 and MGlu37-Curd-A4, there observed a similar tendency to the relationship
352	between the feeding amount and the fixed amount of β -glucan derivatives to liposomes
353	shown in Fig. 2. However, in the comparison of β -glucan derivative-modified liposomes
354	with similar amounts of the fixed β -glucan derivatives, Aqua β derivative-modified
355	liposomes promoted IL-12 secretion from DC2.4 cells more than curdlan derivative-
356	modified liposomes did (Fig. 4e). When β -glucan derivatives-modified liposomes were
357	prepared at the feeding of 0.11 mg / 1 mg lipid of MGlu70-Aqua β -A6 and that of 0.43
358	mg / 1 mg lipid of MGlu37-Curd-A4, the obtained liposomes showed an identical fixed
359	amount of β -glucan derivatives (Fig. 2). As these β -glucan derivatives-modified
360	liposomes were compared, IL-12 secretion of MGlu70-Aquaβ-A6-modified liposomes
361	showed 10 times higher than that of MGlu37-Curd-A4-modified liposomes (Fig. 4e).

362	Figure S6 depicts the correlation between IL-12 production and MGlu group amounts
363	on the liposomes, which is calculated from MGlu% of each β -glucan derivative and its
364	modification amount on the liposomes. In comparison of 0.08–0.1 mol/mol MGlu group
365	amounts per lipid, MGlu70-Aquaβ-A6-modified liposomes showed much higher IL-12
366	production from the cells than MGlu37-Curd-A4- and MGlu71-Curd-A6-modified
367	liposomes did, suggesting that high MGlu density of Aquaß derivative-modified
368	liposomes derived from branching structure of Aquaß promoted the activation of DC2.4
369	cells. These results indicate that Aqua β has superior DC activation capability as a
370	backbone of carboxylated polysaccharides to curdlan.

372	Figure 4. Adjuvant properties of β -glucan derivatives and β -glucan derivative-
373	modified liposomes. Cytokine secretion from DC2.4 cells treated with (a, b) Aqua β or
374	β -glucan derivatives (0.5 mg/mL), or (c, d) unmodified liposomes or liposomes
375	modified with β -glucan derivatives (0.4 mg/mL lipids) for 24 h. (e) IL-12 production
376	from DC2.4 cells treated with β -glucan derivatives-modified liposomes that were
377	prepared with various feeding amounts of β -glucan derivatives. Inset represents an
378	enlarged image for the results of MGlu-Curd-A-modified liposomes. Statistical analyses
379	were conducted using analysis of variance (ANOVA) with Tukey's test. $*P < 0.05$;
380	** <i>P</i> <0.01; *** <i>P</i> <0.001; **** <i>P</i> <0.0001.

382	Interactions (association and/or uptake) of Aquaß derivative-modified liposomes with
383	DC2.4 cells were compared with those of curdlan derivative-modified liposomes.
384	DC2.4 cells were treated with fluorescently labeled liposomes, and fluorescence
385	intensity of the cells were then evaluated using flow cytometry. In the case of Aqua β
386	derivative-modified liposomes, all kinds of liposomes showed higher interaction than
387	unmodified liposomes irrespective of MGlu% (Fig. 5a). On the other hand, the
388	interaction of curdlan derivative-modified liposomes with the cells increased with an
389	increase in MGlu% of curdlan derivatives. The interaction of liposomes with the cells in
	26

390	the coexistence of dextran sulfate, which is known to interact with scavenger receptors
391	[33], was also evaluated in order to discuss the mechanisms of cellular interaction with
392	β -glucan derivative-modified liposomes. Although there was almost no change in
393	fluorescence intensity of the cells treated with MGlu13-Curd-A4- and MGlu37-Curd-
394	A4-modified liposomes even in the coexistence of dextran sulfate, the cellular
395	interactions of MGlu62-Curd-A4- and MGlu71-Curd-A6-modified liposomes were
396	inhibited by the presence of dextran sulfate (Fig. 5b). This result suggests that MGlu
397	units introduced into curdlan in high percentages were recognized by scavenger
398	receptors. Interestingly, the inhibitory effect of dextran sulfate on the interaction of
399	Aqua β derivative-modified liposomes with the cells was an opposite with that of
400	curdlan derivative-modified liposomes. Dextran sulfate strongly suppressed the
401	interaction of liposomes modified with Aquaß derivatives having low MGlu%.
402	However, the cellular interactions of Aqua β derivatives-modified liposomes in the
403	coexistence of dextran sulfate was improved with an increase in MGlu%, and MGlu70-
404	Aquaβ-A6-modified liposomes showed the enhancement of cellular interaction by
405	dextran sulfate (Fig. 5b). These results suggest that the recognition mechanism by DCs
406	differs between curdlan derivatives- and Aquaß derivatives-modified liposomes.

408 Figure 5. Cellular association of liposomes modified with β -glucan derivatives. (a) 409 Fluorescence intensity for DC2.4 cells treated with DiI-labeled liposomes modified with 410 or without β -glucan derivatives for 4 h. (b) DC2.4 cells were treated with DiI-labeled 411 liposomes in the presence of dextran sulfate as an inhibitor of scavenger receptors. The 412 vertical line shows the percentage of fluorescence intensity (FI) with inhibitor to FI 413 without inhibitor.

415 **3.3.** Induction of antitumor immunity by Aquaβ derivative-modified liposomes

- 416 Antitumor effects of Aquaβ derivative-modified liposomes were evaluated using
- 417 tumor-bearing mice. After OVA-expressing tumor cells (E.G7-OVA cells) were
- 418 inoculated to mice, OVA-loaded liposomes modified with β-glucan derivatives or PBS

419	were administered subcutaneously to tumor-bearing mice on Days 8 and 14 after tumor
420	inoculation. In the case of mice treated with PBS, tumor volumes increased rapidly and
421	reached endpoints within 30 days (Figs. 6 and S7). On the other hand, Aqua β
422	derivative-modified liposomes suppressed tumor growth in all-treated mice more
423	significantly than PBS (Fig. 6 and S7). Suppression of tumor growth was not observed
424	in some mice administered with curdlan derivative-modified liposomes (Figs. 6 and S7).
425	This result suggests that Aqua β derivative-modified liposomes have a higher therapeutic
426	effect on the E.G7-OVA cancer model than curdlan derivative-modified liposomes.
427	After the first injection of the liposomes, some mice showed a mild decrease of body
428	weight (about 5%), but they recovered quickly 2 days after the first injection (Fig. S8).
429	Decline of body weight was not observed after second injection of liposomes.
430	Therefore, toxicities of liposomes are apparently not severe. Aquaß derivative-modified
431	liposomes did not show any cytotoxicity to the fibroblast in vitro (Fig. S9a), suggesting
432	that these liposomes show no remarkable cytotoxicity to the resident cells at injection
433	site. We have also investigated antigen-specific immune responses by measuring IFN- γ
434	production from splenocytes of the mice immunized with OVA-loaded liposomes. As
435	shown in Fig. S9b, no IFN-γ production was detected in the absence of <i>in vitro</i> antigen
436	(OVA) stimulation. In contrast, splenocytes of the mice immunized with Aqua β

Figure 6. Antitumor effects of OVA-loaded liposomes modified with β-glucan

个

 Λ_{15}

Days after tumor inoculation

447 inoculation. Arrows indicate the days of sample injection. All treated groups included 448 five mice. Statistical analyses comprised analysis of variance (ANOVA) with Tukey's 449 test. **P<0.01 compared with PBS (on day 16).

450

451 **3.4.** Analysis of immune cell composition after immunization of β-glucan 452 derivative-modified liposomes 453 We investigated whether administration of Aquaß derivative-modified liposomes 454 changed the composition of intratumoral immune cells, or not. Since MGlu37-Curd-A4-455 and MGlu71-Curd-A6-modified liposomes showed almost identical antitumor effect, 456 MGlu71-Curd-A6-modified liposomes were used as a comparison for Aquaß derivative-457 modified liposomes. Tumors were harvested at 6 days after administration of OVA-458 loaded liposomes modified with β -glucan derivatives to tumor-bearing mice. The 459 immune cell population in tumors was analyzed using flow cytometry. The frequency of 460 intratumoral CD4⁺ T cell population did not change in any of the administered mice, but 461 the frequency of intratumoral CD8⁺ T cells increased significantly in mice administered 462 with Aquaß derivative-modified liposomes compared with PBS-administered mice (Fig. 463 7). In addition, the frequency of CD8⁺ T cells in mice administered with MGlu38-

469 Figure 7. T-lymphocyte analysis in a tumor. E.G7-OVA cells were inoculated to 470 C57BL/6 mice. Then PBS or liposomes were subcutaneously immunized to these mice 471 on Day 6. Cell suspension was obtained from tumor on Day 12 followed by flow 472 cytometric analysis. Graphs depict the frequency of (a) CD4⁺ cells within CD3⁺ Tlymphocytes and (b) CD8⁺ cells within CD3⁺ T-lymphocytes in live cells of tumor 473 474 tissue (mean \pm SEM; n = 9 (PBS), 5 (MGlu38-Aqua β -A3) and 10 (MGlu70-Aqua β -A6 and MGlu71-Curd-A6)). Statistical analyses were done using analysis of variance 475 476 (ANOVA) with Tukey's test. **P*<0.05; ***P*<0.01.

478	We next analyzed the intratumoral macrophage population using flow cytometry.
479	The frequency of macrophages expressing MHC-II (M1-phenotype with antitumor
480	character) increased only in mice treated with MGlu38-Aquaβ-A3-modified liposome
481	(Fig. 8a). The proportion of macrophages expressing CD206 (M2-phenotype with pro-
482	tumor character) tended to decrease more in mice treated with all β -glucan derivative-
483	modified liposomes than in mice treated with PBS. Particularly, the percentage of
484	intratumoral M2 macrophages in mice treated with MGlu70-Aquaβ-A6-modified
485	liposomes was decreased significantly compared with mice treated with PBS (Fig. 8b).
486	The ratio of M1 and M2 macrophages calculated from the results in Figs. 8a and 8b
487	tended to be higher in Aqua β derivative-modified liposome-administered mice than
488	PBS-administered mice (Fig. 8c). This result was further confirmed by
489	immunofluorescence staining of tumor section. As shown by yellow dots in Fig. S10a,
490	administration of Aqua β derivative-modified liposome tended to increase MHC-II ⁺
491	CD11b ⁺ cells within tumor tissue compared with PBS or MGlu71-Curd-A6-modified
492	liposomes. Furthermore, administration of all β -glucan derivative-modified liposome
493	decreased CD206 ⁺ CD11b ⁺ cells within tumor tissue compared with PBS-treated groups
494	(Fig. S10b). These results suggest that administration of Aquaß derivative-modified

495 liposomes can polarize macrophages in tumors to the tumor-suppressive M1-

496 phenotypes.

499 C57BL/6 mice. Then PBS or liposomes were immunized subcutaneously to the mice on

501	cytometric analysis. Graphs depict the frequency of (a) M1 macrophages (MHC II^+
502	CD11b ⁺), (b) M2 macrophages (CD206 ⁺ CD11b ⁺) and (c) M1/M2 ratio (mean \pm SEM;
503	$n = 9$ (PBS), 5 (MGlu38-Aqua β -A3) and 10 (MGlu70-Aqua β -A6 and MGlu71-Curd-
504	A6)). Statistical analyses were done using analysis of variance (ANOVA) with Tukey's
505	test. * <i>P</i> <0.05.

4. Discussion

508	Activation of cancer antigen-specific CTLs, more specifically the infiltration of CTLs
509	into tumor tissue, is important for success of immunotherapy [2,3]. To activate CTLs
510	efficiently, promotion of cross-presentation of antigenic proteins by APC is necessary,
511	as is activation of APC [5-7]. Cross-presentation is facilitated primarily by inducing
512	transfer of antigenic proteins to cytosol of APCs. Antigenic proteins are degraded in
513	cytosol and are presented on MHC-I molecules as epitope peptides [5-7]. The functional
514	polymers having carboxylated units are protonated in response to weakly acidic pH in
515	endosomes of APCs. The polymer then become hydrophobic, which causes membrane
516	fusion or destabilization of liposomes and endosomal membrane. Therefore, they are
517	often used to promote the transfer of antigenic proteins to cytosol [34,35].

518	To induce antigen-specific immune responses effectively, accumulation of an
519	adjuvant and an antigen in a single carrier, and their simultaneous delivery to APCs are
520	ideal. In our previous study, highly functional antigen carriers were developed by
521	modifying antigen-loaded liposomes with carboxylated curdlan derivatives [24]. These
522	liposomes simultaneously achieved an efficient uptake of antigenic proteins by APCs,
523	antigen release into cytosol, and activation of APCs through innate immunity pathways
524	[24].
525	In this study, we sought to improve the immunity-activation ability of liposomes by
526	changing the backbone structure of carboxylated polysaccharides from linear β -glucan
527	(curdlan) to branched β -glucan (Aqua β). Aqua β was derivatized using a method
528	described previously (Fig. S1). Modification of β -glucan derivatives to the liposomes
529	was confirmed by zeta potential measurement and the quantification of polysaccharide
530	contents in liposome solution (Fig. 2). Aquaß derivative-modified liposomes exhibited
531	an identical pH-sensitive content release property with curdlan derivative-modified
532	liposomes (Figs. 3, S4 and S5). It is particularly interesting that the modification
533	efficiency of Aquaβ derivatives was much higher than that of curdlan derivatives (Fig.
534	2). This difference might be explained from the difference in the anchor density (Table
535	S2). β -glucan is known to form triple helix structure in an aqueous solution [36,37],

536	whereas our previous data using congo red suggested that introduction of MGlu units to
537	curdlan interfered the triple helix formation of curdlan derivatives [24]. Since both of
538	curdlan derivatives and Aqua β derivatives used in this study might also take random
539	coil structure in an aqueous solution, an increase in the anchor density by introducing
540	anchor groups into branched monosaccharide units of Aqua β would increase the
541	possibility of decyl group insertion into liposomal membrane via hydrophobic
542	interaction, resulting in efficient fixation of Aquaß derivatives onto liposomes compared
543	with linear curdlan derivatives.
544	β -glucan derivatives induced secretion of inflammatory cytokines from DC2.4 cells.
545	Their modifications onto liposomes further increased the amounts of secreted cytokines,
546	even though the amounts of β -glucan derivatives added to the cells in later experiments
547	were rather low: the concentrations of β -glucan derivatives in Figs. 4a-b and 4c-d were
548	calculated as 0.5 mg/mL and 0.06–0.13 mg/mL, respectively. Modification of β -glucan
549	derivatives onto liposomes might exert a multivalent effect of β -glucan derivatives and
550	induce a strong activation signal via receptors on DCs [38]. When compared between
551	liposomes modified with an almost identical amount of curdlan derivatives or Aqua β
552	derivatives (Fig. 4e), Aquaß derivative-modified liposomes induced cytokine secretion
553	from DCs more effectively than curdlan derivative-modified liposomes did. The results

554	suggest that the backbone structure of β -glucan derivatives affects the adjuvant ability
555	of the β -glucan derivative-modified liposomes. Furthermore, high MGlu density of
556	Aquaß derivative-modified liposomes derived from branching structure of Aquaß might
557	also contribute the remarkable activation of DCs (Fig. S6). Liposomes modified with
558	Aqua β derivatives with low MGlu% showed higher cellular association than that of
559	liposomes modified with curdlan derivatives with low MGlu% (Fig. 5a). This might
560	result from high MGlu density of Aqua β derivative-modified liposomes compared with
561	curdlan derivative-modified liposomes. The results suggest that conventional curdlan
562	derivative-modified liposomes were taken up mainly via scavenger receptors (Fig. 5b),
563	which is consistent with our previous report using curdlan derivative-modified
564	liposomes [24]. The cellular uptake of Aquaβ derivative-modified liposomes was also
565	fundamentally inhibited by the addition of dextran sulfate, but the effect diminished as
566	the MGlu% of Aquaß derivatives increased (Fig. 5b). Surprisingly, in MGlu70-Aquaß-
567	A6-modified liposomes, the addition of dextran sulfate promoted intracellular uptake.
568	Taken together, the detailed mechanisms by which the cells recognize Aqua β
569	derivatives remain elusive. Additional experiments using other inhibitors for Dectin-1
570	or TLRs, or knockout of these receptors are necessary to reveal interaction mechanisms
571	between Aquaβ derivatives and the cells.

572	In our previous report, administration of curdlan derivative-modified liposomes
573	induced significant suppression of tumor growth [24]. By contrast, in this study, OVA-
574	loaded, curdlan derivative-modified liposomes did not suppress tumor growth in some
575	mice (Fig. S7). We infer that this is true because we performed liposome administration
576	at a later stage of tumor growth (likely to be more immunosuppressive) than in
577	experiments in our previous report [24]. Average tumor volume at first injection in
578	current study was $324 \pm 19.9 \text{ mm}^3$, which is 6.8-times larger than that of our previous
579	study (47.5 \pm 10.8 mm ³). In such a later-stage tumor, antitumor immunity induced by
580	curdlan derivative-modified liposomes might not be sufficient to induce significant
581	tumor regression. Even in a late-stage tumor, administration of Aqua β derivative-
582	modified liposomes significantly suppressed the growth of large E.G7-OVA tumors in
583	all mice compared with PBS and curdlan derivative-modified liposomes (Figs. 6 and
584	S7). After subcutaneous injection, Aquaβ derivative-modified liposomes that have high
585	modification efficiency of polysaccharide derivatives might be taken up by APCs and
586	promote inflammatory cytokine secretions from these cells, which resulted in effective
587	activation of antitumor cellular immune responses compared with curdlan derivative-
588	modified liposomes. $CD8^+$ T cells induced by immunization of Aqua β derivative-
589	modified liposomes migrated to the tumor tissue effectively (Fig. 7b), which contributed

590	the significant suppression of tumor growth directly. Macrophages in a tumor are
591	polarized to tumor-suppressive M1-phenotype by stimulation with IFN- γ [39,40].
592	Consequently, IFN- γ secretion from CD8 ⁺ T cells infiltrated to the tumor might also
593	induce the polarization of tumor-associated macrophages to M1-phenotyes and increase
594	M1/M2 ratio in the tumor (Figs. 8 and S10), which canceled immunosuppression within
595	tumor and assisted suppression of tumor growth in the treatment of Aqua β derivative-
596	modified liposomes.

5. Conclusion

599	For this study, carboxylated Aqua β derivatives, which has a branched structure as a
600	backbone, were synthesized to enhance the antitumor efficacy of antigen-loaded
601	liposomes. Modification efficiency of Aquaß derivatives to the liposomes was
602	significantly higher than that of conventional curdlan derivatives. Aqua β derivatives-
603	modified liposomes released their cargo in response to weakly acidic pH, which
604	corresponds to an endosomal/lysosomal environment. OVA-loaded, Aqua β derivatives-
605	modified liposomes interacted effectively with a DC cell line and induced secretion of
606	inflammatory cytokines. Furthermore, the liposomes increased the percentage of

607	intratumoral CD8 ⁺ T cells and polarized intratumoral macrophages to M1-phenotype,
608	resulting in significant growth suppression of large E.G7-OVA tumor in mice. Results
609	obtained from this study underscore the importance of the selection of backbone
610	structure to induce strong cellular immunity and to obtain the enhanced therapeutic
611	effects. The results demonstrate that Aqua β derivative-modified liposomes can be
612	promising materials for liposomal vaccines to achieve efficient delivery of antigens,
613	activation of DCs and antigen-specific immunity.
614	
615	Acknowledgments
616	This research was funded by Grants-in-aid for Scientific Research from the
617	Ministry of Education, Science, Sports, and Culture in Japan, grant number
618	(15H03024). The authors thank Takumi Tsujimura and Misaki Kitagawa (Osaka
619	Prefecture University) for their kind support on animal experiments. The authors
620	appreciate Dr. Maki Ohashi (Sanyo Fine Co., Ltd.) for his kind support on Aquaβ
621	providing.

623 CRediT author statement

622

624	Shin Yanagihara: Data curation, Formal analysis, Investigation, Methodology,
625	Writing - original draft, Nozomi Kasho: Data curation, Formal analysis, Investigation,
626	Methodology, Koichi Sasaki: Data curation, Formal analysis, Investigation,
627	Methodology, Writing - original draft, Naoto Shironaka: Investigation, Methodology,
628	Yukiya Kitayama: Data curation, Formal analysis, Writing - review & editing, Eiji
629	Yuba: Conceptualization, Data curation, Formal analysis, Funding acquisition,
630	Investigation, Methodology, Project administration, Supervision, Validation, Writing -
631	original draft, Writing - review & editing, Atsushi Harada: Data curation, Formal
632	analysis, Project administration, Supervision, Validation, Writing - review & editing.

633 References

- 634 1. S. Khan, D.E. Gerber, Semin. Cancer Biol., 2020, 64, 93-101.
- 635 2. R. Khazen, S. Müller, F. Lafouresse, S. Valitutti, S. Cussat-Blanc, Sci. Rep., 2019, 9,
- 636 1208.
- 637 3. N. Varadarajan, B. Julg, Y.J. Yamanaka, H. Chen, A.O. Ogunniyi, E. McAndrew,
- 638 L.C. Porter, A. Piechocka-Trocha, B.J. Hill, D.C. Douek, F. Pereyra, B.D. Walker,
- 639 J.C. Love, J. Clin. Invest., 2011, **121**, 4322-4331.
- 640 4. S. Rosenberg, J. Yang, N. Restifo, *Nat Med*, 2004, **10**, 909–915.
- 5. N.I. Ho, L.G.M. Huis in 't Veld, T.K. Raaijmakers, G.J. Adema, *Front. Immunol.*,
 2018, 9, 2874.
- 643 6. A. Rodriguez, A. Regnault, M. Kleijmeer, P. Ricciardi-Castagnoli, S. Amigorena,
 644 *Nat. Cell Biol.*, 1999, 1, 362–368.
- 645 7. O. Joffre, E. Segura, A. Savina, S. Amigorena, *Nat. Rev. Immunol.*, 2012, 12, 557646 569.
- 647 8. S. Burgdorf, A. Kautz, V. Bohnert, P.A. Knolle, C. Kurts, *Science*, 2007, **316**, 612648 616.
- 649 9. A. Ahmad, J.M. Khan, S. Haque, *Biochimie*, 2019, 160, 61-75.
- 650 10. J. Zepeda-Cervantes, J.O. Ramírez-Jarquín, L. Vaca, *Front. Immunol.*, 2020, 11,
 651 1100.
- 11. J. Sheen, M.G. Strainic, J. Liu, W. Zhang, Z. Yi, M.E. Medof, P.S. Heeger, J.
- 653 *Immunol.*, 2017, **199**, 278-291.

- 12. S. Saijo, N. Fujikado, T. Furuta, S. Chung, H. Kotaki, K. Seki, K. Sudo, S. Akira, Y.
- Adachi, N. Ohno, T. Kinjo, K. Nakamura, K. Kawakami, Y. Iwakura, *Nat. Immunol.*,
 2007, 8, 39-46.
- 657 13. P.R. Taylor, D.M. Reid, S. Heinsbroek, G.D. Brown, S. Gordon, S. Wong, *Eur. J.*658 *Immunol.*, 2005, **35**, 2163-2174.
- 659 14. C. Zilker, D. Kozlova, V. Sokolova, H. Yan, M. Epple, K. Überla, V. Temchura,
 660 *Nanomedicine*, 2017, **13**, 173-182.
- 661 15. X. Dong, J. Liang, A. Yang, Z. Qian, D. Kong, F. Lv, ACS Appl. Mater. Interfaces,
 662 2019, 11, 4876-4888.
- 663 16. F. Aosai, M.S. Rodriguez Pena, H.S. Mun, H. Fang, T. Mitsunaga, K. Norose, H.K.
 664 Kang, Y.S. Bae, A. Yano, *Cell stress & chaperones*, 2006, 11, 13–22.
- 665 17. J. Banchereau, R. Steinman, *Nature*, 1998, **392**, 245-252.
- 666 18. E. Yuba, C. Kojima, A. Harada, Tana, S. Watarai, K. Kono, *Biomaterials*, 2010, **31**,
 667 943-951.
- 19. E. Yuba, A. Harada, Y. Sakanishi, K. Kono, J. Controlled Release, 2011, 149, 72-80.
- 669 20. E. Yuba, N. Tajima, Y. Yoshizaki, A. Harada, H. Hayashi, K. Kono, *Biomaterials*,
 670 2014, **35**, 3091-3101.
- 671 21. M. Okubo, M. Miyazaki, E. Yuba, A. Harada, *Bioconjugate Chem.*, 2019, **30**, 1518672 1529.
- 673 22. S. Saijo, N. Fujikado, T. Furuta, S. Chung, H. Kotaki, K. Seki, K. Sudo, S. Akira, Y.
- Adachi, N. Ohno, T. Kinjo, K. Nakamura, K. Kawakami, Y. Iwakura, *Nat. Immunol.*,
 2007, 8, 39-46.
- 676 23. H.L. Rosenzweig, J.S. Clowers, G. Nunez, J.T. Rosenbaum, M.P. Davey, *Inflamm*.
 677 *Res.*, 2011, **60**, 705-714.

- 678 24. E. Yuba, A. Yamaguchi, Y. Yoshizaki, A. Harada, K. Kono, *Biomaterials*, 2017, 120,
 679 32-45.
- 680 25. H. Kono, N. Kondo, K. Hirabayashi, M. Ogata, K. Totani, S. Ikematsu, M. Osada,
 681 *Carbohydr. Polym.*, 2017, **174**, 876-886.
- 682 26. D. Muramatsu, K. Kawata, S. Aoki, H. Uchiyama, M. Okabe, T. Miyazaki, H. Kida,
 683 A. Iwai, *Sci. Rep.*, 2014, 4, 777.
- 684 27. D. Fujikura, D. Muramatsu, K. Toyamane, K. Toyomae, S. Chiba, T. Daito, A. Iwai,
- T. Kouwaki, M. Okamoto, H. Higashi, H. Kida, H. Oshiumi, *J. Biochem.*, 2018, 163,
 31-38.
- 687 28. Y. Kimura, M. Sumiyoshi, T. Suzuki, T. Suzuki, M. Sakanaka, *Int.*688 *Immunopharmacol.*, 2007, 7, 963-972.
- 689 29. I. Popescu, I.M. Pelin, G.L. Ailiesei, D.L. Ichim, D.M. Suflet, *Carbohydr. Polym.*,
 690 2019, 224, 115157.
- 691 30. S.S. Nielsen (Ed.), Food Analysis Laboratory Manual. Food Science Text Series,
- 692 Springer, Cham (2017), 2017, 137-142.
- 693 31. T. Masuko, A. Minami, N. Iwasaki, T. Majima, S. Nishimura, Y. C. Lee, *Anal.*694 *Biochem.*, 2005, **339**, 69-72.
- 695 32. Y. Yoshizaki, E. Yuba, N. Sakaguchi, K. Koiwai, A. Harada, K. Kono, *Biomaterials*,
 696 2017, 141, 272-283.
- 697 33. N. Platt, H. Suzuki, Y. Kurihara, T. Kodama, S. Gordon, *Proc. Natl. Acad. Sci. U.S.A.*,
 698 1996, **93**, 12456-12460.
- 34. M.A. Aghdam, R. Bagheri, J. Mosafer, B. Baradaran, M. Hashemzaei, A.
 Baghbanzadeh, M. de la Guardia, A. Mokhtarzadeh, J. Controlled Release, 2019,
- 701 **315**, 1-22.

- 702 35. E. Yuba, J. Mater. Chem. B, 2020, 8, 1093.
- 703 36. K. Miyoshi, K. Uezu, K. Sakurai, S. Shinkai, Chem. Biodivers., 2004, 1, 916-924.
- 704 37. H. Kono, N. Kondo, T. Isono, M. Ogata, K. Hirabayashi, *Int. J. Biol. Macromol.*,
 705 2020, **154**, 1382-1391.
- 38. H. Duan, M. Donovan, A. Foucher, X. Schultze, S. Lecommandoux, *Sci. Rep.*, 2018,
 8, 14730.
- 39. R.D. Stout, C. Jiang, B. Matta, I. Tietzel, S.K. Watkins, J. Suttles, J. Immunol., 2005,
- 709 **175**, 342-349.
- 710 40. K.J. Mylonas, M.G. Nair, L. Prieto-Lafuente, D. Paape, J.E. Allen, J. Immunol., 2009,
- 711 **182**, 3084-3094.