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Abstract The present study deals with the basins of
the equilibrium points embedded within the normal
forms of Bogdanov-Takens bifurcation with delayed feed-

back control. It is numerically shown that the unstable
periodic orbit that coexists with the equilibrium point
stabilized by delayed feedback control is associated with

the basin of the stabilized point. The relation between
the periodic orbit and the basin indicates that for en-
larging the basin, a homoclinic bifurcation for the or-

bit and a saddle point can provide useful information
for the design of delayed feedback controllers. These
results are experimentally confirmed in a real direct-

current bus circuit that has dynamics similar to that of
the normal form.

Keywords Basin · Bifurcation · Delayed feedback
control · Direct-current bus circuit

1 Introduction

Nonlinear autonomous systems have limit sets, such as
equilibrium points and periodic orbits. These limit sets
are categorized as stable or unstable, for which the tra-

jectories of the system converge to (diverge from) stable
(unstable) limit sets. It is well known that an infinite
number of unstable periodic orbits (UPOs) are embed-
ded in a chaotic attractor of nonlinear systems. Several
methods for controlling chaos, which stabilize UPOs or
unstable equilibrium points embedded within a chaotic
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attractor, have been proposed for suppressing chaotic
unpredictable behavior [2]. Delayed feedback control
(DFC) [3], an attractive method for controlling chaos,

has received considerable attention in terms of science
and engineering applications. Because the control sig-
nal of DFC is proportional to the difference between

the current system state and the delayed one, DFC has
the following features: the control law does not require
knowledge of the location of the target; a target state

can be tracked even when the target location slowly
changes; the control signal vanishes when the stabiliza-
tion of target state is achieved. These features are of sci-
entific and practical interest and thus numerous modifi-

cations and experimental implementations of DFC have
been presented (for a review, see [4,5]).

The stability of periodic orbits or equilibrium points
with DFC has been extensively investigated in the fields
of nonlinear science [6–11] and control theory [12–15].

Most studies on stability have examined only the local
stability of periodic orbits or equilibrium points using
linear stability analysis. It is well accepted that delayed

feedback controllers can be designed such that the peri-
odic orbits or equilibrium points of nonlinear oscillators
are locally stable [13–17]. A global stability analysis is
necessary for elucidating the behavior of DFC systems
far from the orbits or points. In particular, the basins
of attraction, which can be obtained from a global sta-
bility analysis, provide useful information on the ro-
bustness of DFC systems against external disturbances.
Hence, from a practical point of view, information on
the basins in DFC systems is important for the design
of delayed feedback controllers. However, it is not easy
to handle the basins of DFC systems due to their initial
conditions in infinite-dimensional phase space (see Ap-
pendix A). Thus, information on designing controllers

to expand basins is limited.
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To reduce the infinite-dimensional initial conditions
of time-delayed systems to finite-dimensional conditions,
several studies have proposed restrictions for the phase
space, such as those based on constant values [18], an
equilibrium point [19], a history of uncontrolled dynam-
ics [20–22], polynomial approximation [23], and a fi-
nite number of orthogonal basis functions [24,25]. These
restrictions provide only partial information regarding
basins1. Basins strongly depend on bifurcation scenar-
ios in DFC systems. For the case where the target state
is a periodic orbit, previous studies have reported ana-
lytical and experimental results on the relation of the
basin to the super- and subcritical Hopf bifurcations of
periodic orbits [21,26,27] (see Sec. 4 for more details).
For the case where the target state is an equilibrium
point, such a relation has rarely been investigated.

The present paper focuses on the basin of an equilib-
rium point in a DFC system. The relation between the
partial information of the basin and a bifurcation sce-
nario is investigated numerically. The DFC system con-

sists of the normal form of Bogdanov-Takens bifurca-
tion [28] and a simple delayed feedback controller. Note
that this normal form has dynamics similar to that of a
direct-current (DC) bus circuit [29–34], which has been

extensively investigated as a fundamental circuit in the
field of power electronics. The main contributions of the
present paper are as follows: 1) it is shown that a UPO

created by a subcritical Hopf bifurcation, which coex-
ists with the equilibrium point stabilized with DFC,
strongly depends on the size of the basin; 2) it is found

that a homoclinic bifurcation for the UPO and a sad-
dle point is important in the design of delayed feedback
controllers that increase the size of the basin; 3) these
numerical results are experimentally confirmed using a
real DC bus circuit.

The rest of this paper is organized as follows. Section

2 describes the normal form of Bogdanov-Takens bifur-
cation with a simple delayed feedback controller. It is
numerically shown that the size of the basin with three
typical restricted initial conditions [18–22] increases with
an increase in the size of the coexisting UPO. Further,
it is shown that the homoclinic bifurcation curve in the
control parameter space (i.e., feedback gain vs. delay
time) divides the space into a region with a large basin
and a region with a small basin. In Sec. 3, the results
of Sec. 2 are numerically confirmed using a DC bus
model with DFC. In addition, the size of the basin with
three restricted initial conditions is experimentally in-
vestigated using a real DC bus circuit. Section 4 reviews

related work. Finally, conclusions are given in Sec. 5.

1 See Subsec. 2.2 for more details.

2 Normal form of Bogdanov-Takens
bifurcation

This section investigates the bifurcations and basins of
the normal form of Bogdanov-Takens bifurcation [28]
with DFC.

2.1 Normal form with DFC

This subsection describes the normal form of Bogdanov-
Takens bifurcation with DFC and analyzes its stability.
The normal form [28] with DFC is given by
ẋ1(t) = x2(t),

ẋ2(t) = β1 + β2x1(t) + x1(t)
2 + αx1(t)x2(t)

+ k {x2(t− τ)− x2(t)} .
(1)

System (1) has two variables, namely x1(t) ∈ R and
x2(t) ∈ R. Throughout this paper, the parameters β1,
β2, and α are fixed as follows:

β1 = 1/2, β2 = −2, α = 1. (2)

For these parameters, a subcritical Hopf bifurcation and
a homoclinic bifurcation, which play an important role
in the basins of the DC bus circuit described in Sec. 3,

occur in system (1). The term k {x2(t− τ)− x2(t)} in
system (1) represents the control signal of DFC with
feedback gain k ∈ R and delay time τ ≥ 0. This system
has the following two equilibrium points:

[x1, x2]
T
= [x∗

1l, x
∗
2l]

T =
[
1− 1/

√
2, 0
]T

,

[x1, x2]
T
= [x∗

1r, x
∗
2r]

T =
[
1 + 1/

√
2, 0
]T

.

(3)

For k = 0 (i.e., without DFC), [x∗
1l, x

∗
2l]

T is an unstable
spiral point and [x∗

1r, x
∗
2r]

T is a saddle point. Because
the Jacobian matrix at the saddle point has one positive
real eigenvalue, DFC never stabilizes the saddle point
due to the well-known odd-number limitation [13,14].
This limitation guarantees that DFC never stabilizes
the equilibrium point at which the Jacobian matrix has

an odd number of real positive eigenvalues. Thus, in
what follows, we deal with only the unstable spiral point
[x∗

1l, x
∗
2l]

T as the target equilibrium point.

To analyze the stability of this point, we investigate
the linearized dynamics of system (1) at [x∗

1l, x
∗
2l]

T, ex-
pressed as[
δẋ1(t)
δẋ2(t)

]
=

[
0 1

−2 + 2x∗
1l x

∗
1l − k

] [
δx1(t)
δx2(t)

]
+

[
0 0
0 k

] [
δx1(t− τ)
δx2(t− τ)

]
,

(4)
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where [δx1, δx2]
T := [x1, x2]

T − [x∗
1l, x

∗
2l]

T denotes the
deviation from [x∗

1l, x
∗
2l]

T. The characteristic equation
of system (4) is expressed as

g(λ, τ) := λ2−
{
x∗
1l−k(1− e−λτ )

}
λ+2−2x∗

1l = 0. (5)

Based on the results of a previous study [13] and
Eq. (5), we can design the control parameters (k, τ)
such that [x∗

1l, x
∗
2l]

T is locally stable.

Theorem 1 [13]
Consider system (1) with parameters (2). If k satisfies
the inequalities,

c1 :=
(
−2 +

√
2
)(6 + 9

√
2

4
+ k

)
< 0,

c2 := c21 − 8 > 0,

ϕ1/ω1 < ϕ2/ω2,

(6)

where

ω1 :=

√
−c1 −

√
c2

2
, ω2 :=

√
−c1 +

√
c2

2
,

ϕi := Arg

 jωik
√
2− ω2

i + jωi

(
k − 1 + 1/

√
2
)
 , i = 1, 2,

then [x∗
1l, x

∗
2l]

T is locally stable for τ belonging to

τ ∈
(
ϕ1 + 2πl

ω1
,
ϕ2 + 2πl

ω2

)
,

l = 0, . . . ,

⌊
ϕ2ω1 − ϕ1ω2

2π(ω2 − ω1)

⌋
.

(7)

⌊y⌋ indicates the largest integer that is not greater than
y ∈ R. Arg(z) is the argument of complex number z
defined as Arg(z) ∈ [0, 2π).

The main result of the previous study [13] was to pro-

vide a design of the control parameters (k, τ) that sta-
bilize linear systems with just two unstable modes. In
contrast to the previous study, Theorem 1 considers
only the two-dimensional unstable linearized system (4)
(i.e., system (1) with fixed parameters (2) at the spiral
point). The present paper deals with a specific case of
the main result in [13].

Figure 1 shows the upper τ (black curves) and lower

τ (red curves) given by Eq. (7). The shaded areas en-
closed by these curves in k–τ space are the sets of (k, τ)
for which [x∗

1l, x
∗
2l]

T is locally stable. It should be men-
tioned that this theorem can provide information only
on the local stability of [x∗

1l, x
∗
2l]

T (i.e., not on its basin
and global stability). The present paper demonstrates
how to determine the control parameters (k, τ) within

the stable sets.

Fig. 1: Stability region of [x∗
1l, x

∗
2l]

T of system (1) with
parameters (2) in k–τ space.

(a) basin (b) Φ1(t)

(c) Φ2(t) (d) Φ3(t)

Fig. 2: Illustrations of (a) a basin of equilibrium point
x∗ and restricted initial functions (b) Φ1(t), (c) Φ2(t),
and (d) Φ3(t), which are defined in Eqs. (8)–(10), re-
spectively.

2.2 Basins with three restricted initial functions

This subsection numerically evaluates the size of the
basin of [x∗

1l, x
∗
2l]

T in system (1). A basin is a set of
initial conditions for which the trajectories converge to
the target equilibrium point. It is well known that for
dynamical systems that include time delays, the basin
is a set of time functions (i.e., initial functions), as
sketched in Fig. 2(a). In other words, the basin is de-

scribed by initial points in infinite-dimensional phase
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(a) with Φ1(t)

(b) with Φ2(t)

(c) with Φ3(t)

Fig. 3: Basins of [x∗
1l, x

∗
2l]

T in system (1) with parameters (2) for τ = 3.0. Sets of initial states x0 for (a) Φ1(t), (b)
Φ2(t), and (c) Φ3(t). Light-blue and red dots respectively indicate those for which trajectories converge and do
not converge on [x∗

1l, x
∗
2l]

T. Black lines around [x∗
1l, x

∗
2l]

T are trajectories of UPOs. Closed and open circles indicate

equilibrium points [x∗
1l, x

∗
2l]

T and [x∗
1r, x

∗
2r]

T, respectively.

space. Thus, it is quite difficult to visualize and deter-
mine the basin of time-delayed systems. To deal with
such basins, the present study evaluates the basin of
[x∗

1l, x
∗
2l]

T with three types of restricted initial function
used in previous studies [18–22] (see Figs. 2(b)–2(d)).

Definition 1 The initial functions Φ1,2,3(t) :
R → R2 are respectively defined as

Φ1(t) := x0, t ∈ [−τ, 0] , (8)

Φ2(t) :=

{
x∗,

x0,

t ∈ [−τ, 0)

t = 0
, (9)

Φ3(t) := Ψ (t,x0), t ∈ [−τ, 0] , (10)

where x0 := x(0) ∈ R2 is the state at time t = 0, x∗ is
the equilibrium point of system (1), and Ψ : R× R2

→ R2 is the trajectory of system (1) without control
(i.e., k = 0) passing through the state x(0) = x0.

The present paper employs these three initial func-
tions [18–22] because they each represent an actual situ-
ation in practical systems with DFC. Figures 2(b)–2(d)
show the initial functions Φ1(t) [18], Φ2(t) [19], and
Φ3(t) [20–22], respectively. Φ1(t) corresponds to the sit-
uation where the equilibrium point jumps from x0 to x

∗

due to a sudden change of a system parameter at t = 0,
where x0 and x∗ are the equilibrium points before and
after the change, respectively. For Φ2(t), the state of
the system on the stable equilibrium point x∗ jumps to
x0 due to an impulsive disturbance at t = 0. For Φ3(t),
DFC starts to work at t = 0 in system (1) operating
without control. Note that for a given state x0, there
exist unique initial functions Φ1(t), Φ2(t), and Φ3(t).

As a result, the basin of system (1), which is the set of
initial functions, can be approximately evaluated by the
sets of x0. Strictly speaking, each set of x0 is a subset
of the basin. Although such subsets provide only par-
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Fig. 4: Bifurcation curves of system (1) with parame-
ters (2) in k–τ space. Closed and open circles represent
parameters (k, τ) used in Figs. 3 and 5, respectively.

tial information regarding the basin, they can be used
to visualize this information in finite-dimensional phase
space. The finite-dimensional information can be easily

visualized and understood.
We now numerically evaluate the basins with the

initial functions Φ1,2,3(t). Figures 3(a)–3(c) show the

basins (i.e., the sets of x0) with Φ1(t), Φ2(t), and Φ3(t),
respectively. The delay time is fixed at τ = 3.0 and
the feedback gain is set to k = 0.18, 0.24, 0.28, and
0.34. The closed and open circles indicate the equilib-

rium points [x∗
1l, x

∗
2l]

T and [x∗
1r, x

∗
2r]

T, respectively. The
black lines around [x∗

1l, x
∗
2l]

T represent the UPOs. The

trajectories of system (1) with x0 = [x1(0), x2(0)]
T
at

the light-blue (red) dots2 converge (do not converge) to
[x∗

1l, x
∗
2l]

T.
To estimate the size of the basin, the index

r :=
Size of basin

Size of space (x1(0), x2(0))
, (11)

is introduced3. This index indicates the size ratio of
the basin. It can be seen from Fig. 3 that the sizes of
the UPO and of the basin increase with an increase in
feedback gain k for all Φ1,2,3(t). In addition, the UPO
merges with the saddle point [x∗

1r, x
∗
2r]

T and disappears
via a homoclinic bifurcation at k ≈ 0.28. It should be
noted that the boundaries of the basins with Φ3(t) are
close to the UPOs (see Fig. 3(c)). This observation im-
plies that the basins strongly depend on the UPOs; this
dependence is numerically and experimentally investi-
gated later. Further, from Fig. 3 with k = 0.34, we see

that the basins are large even after the UPO disappears.

2 The states x0 are set in 50 × 50 grids with x1(0) ∈
[x∗

1l − 3, x∗
1l + 3] and x2(0) ∈ [x∗

2l − 3, x∗
2l + 3]. A light-

blue (red) dot is plotted if the trajectory starting from
the dot converges (does not converge) to [x∗

1l, x
∗
2l]

T. The
criterion for the convergence is given by the inequality∣∣[x1(1000)− x∗

1l, x2(1000)− x∗
2l]

T
∣∣ < 0.01.

3 r is numerically obtained as (number of light-blue dots)/2500.

At this stage, it must be emphasized that if we want
to determine the control parameters (k, τ) such that
the basins are large, we have to numerically calculate a
number of basins for a variety of parameters and restric-
tions, as done in Fig. 3. This calculation is not practical
due to its heavy computation load. Therefore, we now
turn our attention to the bifurcation of UPOs to easily
determine the parameters.

2.3 Bifurcation curves and basins

To determine the relationship between the control pa-
rameters (k, τ) and the size of the basin, we numerically
investigate the bifurcations of system (1) in k–τ space.
The bifurcation curves are plotted in Fig. 4; they were
obtained with the aid of the software DDE-BIFTOOL
[35]. The thick black and thick gray curves represent the
sub- and supercritical Hopf bifurcations, respectively.
These curves are equivalent to the upper and lower τ

given by Eq. (7) (see Fig. 1). The area enclosed by these
curves is the stability region4. The thin gray curve rep-
resents the saddle-node bifurcation of periodic orbits.
The broken curve shows the homoclinic bifurcation.

As can be seen from Fig. 4, with an increase in k

from 0 for delay time τ ∈ [0.89, 3.33] (τ ∈ [3.34, 3.57]),
the unstable spiral point [x∗

1l, x
∗
2l]

T is stabilized via a
subcritical (supercritical) Hopf bifurcation. Here, we fo-
cus on the homoclinic bifurcation with an increase in k

for two cases, namely τ = 3.0 and τ = 1.3. For τ = 3.0
(see the closed circles in Fig. 4), the homoclinic bifur-
cation occurs at k ≈ 0.28. In contrast, for τ = 1.3 (see

the open circles in Fig. 4), the homoclinic bifurcation
does not occur for any k ∈ [0, 1]. The UPOs and the
basins with Φ1,2,3(t) for τ = 1.3 and k = 0.59, 0.79,

and 1.00 are shown in Figs. 5(a)–5(c). Note that the
closed (open) circles in Fig. 4 correspond to the control
parameters (k, τ) in Fig. 3 (Fig. 5). As shown in Fig. 5,
for τ = 1.3, the sizes of the UPO and the basin increase
with an increase in k; however, the rate of increase is
lower than that for τ = 3.0 (see Fig. 3).

We examine the relationship between the size of
basins and the bifurcation curves using numerical sim-
ulations. The contours of the index r with Φ1(t), Φ2(t),
and Φ3(t) are respectively plotted on the bifurcation
curves in k–τ space in Figs. 6(a)–6(c). We now discuss
the bifurcation scenario and the index r with an in-

crease in k. Here, we focus on the index r with Φ3(t)
shown in Fig. 6(c). For τ ∈ [3.34, 3.57], a supercriti-
cal Hopf bifurcation occurs with an increase in k; just
after the bifurcation, r jumps to 0.05. In contrast, for

4 The stability region shown in Fig. 1 has three stable sets.
The present paper deals with the largest set.
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(a) with Φ1(t)

(b) with Φ2(t)

(c) with Φ3(t)

Fig. 5: Basins of [x∗
1l, x

∗
2l]

T in system (1) with param-
eters (2) for τ = 1.3. Sets of initial states x0 for (a)

Φ1(t), (b) Φ2(t), and (c) Φ3(t). Light-blue and red dots
respectively indicate those for which trajectories con-
verge and do not converge on [x∗

1l, x
∗
2l]

T. Black lines
around [x∗

1l, x
∗
2l]

T are trajectories of UPOs. Closed and
open circles indicate equilibrium points [x∗

1l, x
∗
2l]

T and
[x∗

1r, x
∗
2r]

T, respectively.

τ ∈ [0.89, 3.33], a subcritical Hopf bifurcation occurs
with an increase in k; just after the bifurcation, r grad-
ually increases with k. This contrast is consistent with
previous studies on the basins of periodic orbits [21,26,
27]. A further increase in k for τ ∈ [1.54, 3.53] causes a
homoclinic bifurcation. Note that the homoclinic bifur-
cation curve mostly follows the contour line of r = 0.1.

These properties also hold for Figs. 6(a) and 6(b). It
can be concluded from these properties that the homo-
clinic bifurcation curve divides the control parameters
(k, τ) space into a region with a large basin (i.e., right-
hand side of the curve) and a region with a small basin
(i.e., left-hand side of the curve). As a result, the ho-

(a) with Φ1(t)

(b) with Φ2(t)

(c) with Φ3(t)

Fig. 6: Contours of index r defined in Eq. (11) and
bifurcation curves of system (1) with parameters (2) in

k–τ space for (a) Φ1(t), (b) Φ2(t), and (c) Φ3(t).

moclinic bifurcation curve can be used to design control
parameters that make the basin large.

Let us now summarize the procedure for designing
the control parameters.

1. We plot a stability region of the target equilibrium
point in k–τ space using Theorem 1, as shown in
Fig. 1.

2. We numerically plot a homoclinic bifurcation curve

with the aid of the software DDE-BIFTOOL.
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Fig. 7: Fundamental DC bus circuit with DFC. The
delayed feedback controller, represented by the shaded
area, consists of a delay unit and feedback resistor Rk.
Voltage vP(t − Γ ) with delay time Γ ≥ 0 is applied to
feedback resistor Rk. Control current iu(t) is injected
into the bus circuit.

3. We choose the control parameters that are within
the stability region and are located on the right-
hand side of the homoclinic bifurcation curve.

This design procedure has a light computation load,
which is its main advantage.

3 DC bus circuit

This section deals with the basin of an operating point
of a DC bus system. The effectiveness of the parameter

design based on the numerical bifurcation analysis in
the preceding section is experimentally confirmed using
a DC bus circuit.

3.1 Circuit model and bifurcations

DC bus systems are attractive for next-generation power
systems because of their simple control, easy integra-
tion, high efficiency, and high reliability [36–40]. How-
ever, their voltage instability, which is induced by con-
stant power loads (CPLs) that have regulated voltage
converters, is still a challenge. Many studies in the field
of power electronics have attempted to overcome this
instability (see review articles [29–33] and a book [34]).
Our previous study [41] reported the stabilization of a
DC bus circuit with DFC. The stabilization was con-
firmed by circuit experiments [42]. One of our other
studies extended the stabilization with DFC to a DC
bus network [43].

Figure 7 shows a fundamental DC bus circuit with
DFC [41,42]. E represents the voltage source. R, L, and
C respectively denote the equivalent resistance, induc-
tance, and capacitance in power lines and converters.
The line current iL(t) and the supplied voltage vP(t)
are the circuit variables at time t. The CPL consumes

constant power P independent of vP(t); thus, the cur-
rent through the CPL is given by

iP(t) = P/vP(t). (12)

The delayed feedback controller, the shaded area in
Fig. 7, consists of a delay unit and feedback resistor
Rk. Voltage vP(t) is measured and previous voltage
vP(t− Γ ) with delay time Γ ≥ 0 is applied to feedback
resistor Rk. Control current iu(t) is proportional to the
difference between current voltage vP(t) and previous
voltage vP(t− Γ ):

iu(t) =
1

Rk
{vP(t− Γ )− vP(t)}. (13)

The circuit variables and parameters are transformed
as

x1 :=
1

E
vP, x2 :=

L

RCE
iL,

a :=
RP

E2
, b :=

R2C

L
, k :=

R

Rk
, τ :=

Γ

RC
.

(14)

Then, the dynamics of the DC bus circuit with DFC is
rewritten asẋ1(t) =− a

x1(t)
+ bx2(t) + k {x1(t− τ)− x1(t)} ,

ẋ2(t) =− x1(t)− bx2(t) + 1,

(15)

where dimensionless time t represents t/(RC) of real
time t. For a < 0.25, the DC bus circuit without DFC
has the two equilibrium points [x∗

1±, x
∗
2±]

T with

x∗
1± :=

1

2

(
1±

√
1− 4a

)
, x∗

2± :=
1

b

(
1− x∗

1±
)
. (16)

The unstable spiral point [x∗
1+, x

∗
2+]

T is the operating
point of the DC bus circuit [41,42]. The saddle point
[x∗

1−, x
∗
2−]

T cannot be stabilized with DFC due to the
odd-number limitation. In what follows, the parameters
a and b are fixed to

a = 0.189, b = 0.205. (17)

The equilibrium points and the nullclines of system (15)
without control are shown in Fig. 8. The dotted and
solid lines are the nullclines of ẋ1 = 0 and ẋ2 = 0, re-
spectively. The closed and open circles at the intersec-
tions of the nullclines are [x∗

1+, x
∗
2+]

T and [x∗
1−, x

∗
2−]

T,

respectively. It should be noted that our previous study
[41] analytically provided the boundary curves of sta-
bility regions in k–τ space.

Figure 9 shows the bifurcation curves in k–τ space.
The thick solid line denotes the subcritical Hopf bifur-
cation curve, which is the boundary obtained in our pre-
vious study [41]. The broken line is the homoclinic bi-
furcation curve, where a UPO around [x∗

1+, x
∗
2+]

T merges
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Fig. 8: Equilibrium points and nullclines of system (15)
with k = 0, a = 0.189, and b = 0.205.

Fig. 9: Bifurcation curves of system (15) in k–τ space
with a = 0.189 and b = 0.205.

with the saddle point [x∗
1−, x

∗
2−]

T. The gray line in Fig.
9 is explained in Appendix B. We see that the super-
critical Hopf bifurcation that occurs in system (1) does
not occur in system (15). With an increase in k from 0
for τ ∈ [1.07, 8.92], [x∗

1+, x
∗
2+]

T is stabilized via a sub-
critical Hopf bifurcation. A further increase in k for
τ ∈ [2.33, 8.53] causes a homoclinic bifurcation.

We now numerically evaluate the basin of [x∗
1+, x

∗
2+]

T

with Φ1,2,3(t)
5. Figures 10(a)–10(c) show the contours6

of the index r and the bifurcation curves in k–τ space.
As can be seen, the following property of the DC bus
system (15) is similar to that of system (1): the homo-
clinic bifurcation curve divides the control parameter
(k, τ) space into a region with a large basin and a re-

gion with a small basin.

5 Although the functions described by Eqs. (8)–(10) are
defined with respect to system (1), this section uses them
with respect to system (15) instead of system (1).
6 The numerical procedure used for calculating the index is

the same as that for Fig. 6. The states x0 are set in 50 × 50
grids with x1(0) ∈ [0.1, 1.2] and x2(0) ∈ [0.1, 10].

(a) with Φ1(t)

(b) with Φ2(t)

(c) with Φ3(t)

Fig. 10: Contours of index r defined in Eq. (11) and
bifurcation curves of system (15) with a = 0.189 and
b = 0.205 in k–τ space for (a) Φ1(t), (b) Φ2(t), and (c)

Φ3(t).

3.2 Circuit experiments

In this subsection, the numerical results of the pre-
ceding subsection are experimentally confirmed using
a real DC bus circuit. The experimental setup of the
DC bus circuit with DFC in Fig. 7, which was used in
our previous study [42], is shown in Fig. 11. The cir-

cuit parameters are set to E = 16.0 V, R = 22.8 Ω,
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Fig. 11: Experimental setup of the DC bus circuit and
a delayed feedback controller.

Fig. 12: Trajectories of the DC bus circuit from two

initial points with Φ1(t) for (k, τ) = (0.12, 4.5). Trajec-
tories from light-blue and red squares converge and do
not converge on the operating point, respectively.

L = 22.6 mH, C = 8.93 µF, and P = 2.12 W, which
correspond to the dimensionless parameters (17) used

in the preceding subsection. The details of the circuit
and the procedure used for setting the initial functions
on the real circuit are described in Appendix C. The
procedure allows us to set the initial points vP(0) and

iL(0) on the line iL(0) = {E − vP(0)} /R.

The DC bus circuit with DFC can work only for
vP(t) ∈ [6.0, 19.8] V due to the limited operating volt-
age range of the CPL and the controller. Here, safe op-
eration is defined as follows: the voltage vP(t) from an
initial point converges to the equilibrium point without
touching the edges of the range vP ∈ [6.0, 19.8] V (see
the broken lines in Fig. 12). The set of initial points
for safe operation7 is now defined as the basin of the
equilibrium point.

The trajectories from the two initial points
[vP(0), iL(0)]

T = [13.7 V, 0.10 A]T and [15.2 V, 0.04 A]T

7 Note that safe operation does not include the following
case: the voltage vP(t) converges to the equilibrium point but
touches the edges.

(a) (Rk, Γ ) = (95 Ω, 0.500 ms) (i.e., (k, τ) = (0.24, 2.5))

(b) (Rk, Γ ) = (95 Ω, 1.325 ms) (i.e., (k, τ) = (0.24, 6.5))

Fig. 13: Time series of vP(t) with Φ2(t). Dotted and

broken lines represent operating point v∗P = 12.0 V and
the edges of the safe region, respectively.

with Φ1(t) in vP–iL space are shown in Fig. 12. The
squares denote the following eight initial points:

vP(0) ∈ {7.6, 9.1, 10.7, 12.2, 13.7, 15.2, 16.8, 18.3} V.

(18)

Safe operation was (was not) experimentally demon-
strated at the light-blue (red) squares. The gray trajec-

tory from the red square touches the edge of the safe
range and then does not converge on the equilibrium
point (i.e., the operating point). In contrast, the black
trajectory from the light-blue square does not touch the
edge and eventually converges on the point.

The time series with the control parameters on the
left- and right-hand sides of the homoclinic bifurca-
tion curve are shown in Figs. 13(a) and 13(b), respec-
tively. The control parameters are fixed at (Rk, Γ ) =
(95 Ω, 0.500 ms) (i.e., (k, τ) = (0.24, 2.5)) for Fig. 13(a);
they are fixed at (Rk, Γ ) = (95 Ω, 1.325 ms) (i.e., (k, τ) =
(0.24, 6.5)) for Fig. 13(b). The black solid line is the
time series of vP(t). The dotted line denotes the voltage
of the operating point, v∗P = 12.0 V. The broken lines
represent the edges of the safe region vP ∈ [6.0, 19.8] V.

The initial point vP(0) = 7.6 V is chosen from Eq. (18)
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(a) with Φ1(t)

(b) with Φ2(t)

(c) with Φ3(t)

Fig. 14: Number of initial points for safe operation (i.e.,
circled number) in the real DC bus circuit with DFC
and bifurcation curves of system (15) in k–τ space for

(a) Φ1(t), (b) Φ2(t), and (c) Φ3(t).

with Φ2(t) (see Appendix C for details of initial condi-
tions). vP(t) in Fig. 13(a) moves outside the safe region,
whereas that in Fig. 13(b) remains in the safe region.

The basins defined above with initial functions Φ1,2,3(t)
were experimentally obtained for several control param-
eters (k, τ). In Figs. 14(a)–14(c), a circled number in-
dicates the number of initial points for safe operation

(i.e., the number of light-blue squares). For example,

the four light-blue squares shown in Fig. 12 correspond
to 4○ at (k, τ) = (0.12, 4.5) in Fig. 14(a).

It can be seen from Figs. 14(a)–14(c) that the follow-
ing result is valid for all Φ1,2,3: if (k, τ) are fixed at the
right-hand side of the homoclinic bifurcation curve, the
basin tends to be large. This result qualitatively agrees
with the numerical results in Figs. 6 and 10. From this
agreement, it can be concluded that for a type of DFC
system (e.g., a DC bus circuit with DFC), the homo-
clinic bifurcation curve provides useful information for
the design of delayed feedback controllers that make the
system robust against external disturbances.

4 Discussion

This section reviews previous studies [21,26,27] on the
relation of the basin to the super- and subcritical Hopf
bifurcations of periodic orbits. One previous study [26]
dealt with the global properties of periodic orbits stabi-
lized by extended DFC [44]. It was shown that the basin

size of the stabilized orbit depends on the type of Hopf
bifurcation; the size becomes small if the stabilization
occurs via a subcritical Hopf bifurcation. This result

was experimentally confirmed by a non-autonomous elec-
tronic circuit (i.e., a diode resonator with an external
periodic force). In addition, these results [26] were ana-

lytically investigated using bifurcation theory [27]. Fur-
thermore, a previous study [21] dealt with the global
properties of periodic orbits stabilized by a delayed
feedback controller with unstable dynamics [45]. It was

numerically and experimentally demonstrated that for
an autonomous circuit (i.e., van der Pol oscillator), the
basin size of the stabilized periodic orbit depends on
the coupling function used in the controller.

The present paper examined the global properties
of equilibrium points stabilized by simple (i.e., original)
DFC. It was numerically shown that information on

homoclinic bifurcations is useful for the design of the
feedback gain and delay time of a delayed feedback con-
troller for the normal form that has dynamics similar
to that of the DC bus circuit. The numerical results
were experimentally verified using a real DC bus cir-
cuit. Future work will attempt to analytically prove our
numerical and experimental results.

A recent study [46] dealt with the radius of the basin
of an equilibrium point in autonomous nonlinear time-
delayed systems. It was shown that time-forward sim-
ulations with several simple initial functions are useful
for estimating the upper bound on the radius of attrac-
tion. It was also suggested that a bifurcation analysis
of the invariant sets can help one to obtain the upper
bound on the radius.
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5 Conclusion

This paper investigated the basin of an equilibrium
point in the normal form of Bogdanov-Takens bifur-
cation with a simple delayed feedback controller. It was
numerically shown that the basin defined with three re-
stricted initial functions is associated with bifurcation
scenarios and the unstable periodic orbit that coexists
with the equilibrium point stabilized with DFC. This
result indicates that for enlarging the basin, the homo-
clinic bifurcation curve in the control parameter space
provides useful information for the design of delayed
feedback controllers. In addition, the numerical results
were experimentally verified using a DC bus circuit that
has dynamics similar to that of the normal form.
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Appendix A: Solutions of time-delayed dynami-
cal systems

This appendix gives a brief explanation of the solu-
tions of autonomous time-delayed dynamical systems.

For simplicity, we consider a time-delayed system with
single scalar variable x ∈ R and a single constant delay
τ ≥ 0,

ẋ(t) = f (x(t), x(t− τ)) . (19)

The dynamics depends on both the current state x(t)
and the previous state x(t− τ). Therefore, a time func-
tion,

x(t) = ϕ(t), t ∈ [−τ, 0], (20)

is required as an initial condition for the time develop-
ment of time-delayed system (19).

Appendix B: Saddle-node bifurcation of UPOs
in a DC bus circuit with DFC

This appendix explains the bifurcation scenario that in-
cludes the saddle-node bifurcation of UPOs described
by the gray lines in Fig. 9. With an increase in k from 0

Fig. 15: Bifurcation curves (top) and bifurcation dia-
gram (bottom) of system (15) along feedback gain k
with fixed delay τ = 8.0. The top panel shows an en-
larged view of Fig. 9 and the bottom panel shows a bi-
furcation diagram for the x1 component of [x∗

1+, x
∗
2+]

T

and UPOs.

for a fixed delay time τ ∈ [6.52, 10.00], a pair of UPOs
appear at the saddle-node bifurcation curve. As an ex-
ample, the bifurcation scenario with a fixed τ = 8.0 is

shown in Fig. 15. The top panel shows an enlarged view
of the bifurcation curves in Fig. 9; the bottom panel
shows a bifurcation diagram for x1. The red symbols

HPsub, HC, and SN denote the bifurcation points of the
Hopf bifurcation of equilibrium point [x∗

1+, x
∗
2+]

T, the
homoclinic bifurcation of a UPO, and the saddle-node

bifurcation of UPOs, respectively.

We now review the bifurcation scenario in Fig. 15
with an increase in k from 0. The unstable equilibrium
point [x∗

1+, x
∗
2+]

T is stabilized and UPO 1 appears via a
subcritical Hopf bifurcation at k ≈ 0.07 (HPsub). With

a further increase in k, UPO 1 enlarges and then disap-
pears via the homoclinic bifurcation at k ≈ 0.18 (HC).
At k ≈ 0.25, UPO 2 and UPO 3 are created by the
saddle-node bifurcation (SN). The equilibrium point
[x∗

1+, x
∗
2+]

T becomes unstable and UPO 2 disappears
via a subcritical Hopf bifurcation at k ≈ 0.35 (HPsub).

Appendix C: Procedure for setting initial func-

tions

This appendix describes an experimental procedure for
setting three restricted initial functions. The implemen-
tation of the CPL and the delay unit can be found in our
previous study [42]. Figure 16 shows a DC bus circuit
with a delayed feedback controller. Two bipolar power
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Fig. 16: DC bus circuit diagram for circuit used in our
experiments. The delayed feedback controller is repre-
sented by the shaded area. E and v0 are bipolar power
supplies; two switches are opened at time t = 0; the de-
lay unit (PIC18F2550) controls output voltage vout(t)
using the open/close status of the switches.

supplies8, which can output both positive and negative
currents, are used for voltage E and initial voltage v0.
The power supply that supplies v0 is connected to the
DC bus line by a switch. This switch is paired with an-
other switch; they open and close at the same time. The
lower switch is connected to a 5-V power supply. The

delay unit detects whether the switch is open or closed.
The delay unit is implemented using a peripheral in-
terface controller (PIC: PIC18F2550-I/SP, Microchip
Technology). The unit was modified from a previous

one [42] to read the switch’s open/close status and to
handle a voltage range of vP ∈ [6.0, 20.0] V. The out-
put voltage vout(t) of the delay unit can be adjusted in

accordance with programs implemented in PIC.

The experimental procedure used for setting the ini-
tial functions is as follows. First, set v0 to a voltage in

the voltage set (18) and close the switches. Second, af-
ter a sufficient amount of time, open the switches at
t = 0. Third, set the output voltage vout(t) to

Φ1(t) : vout(t) = vP(t− Γ ) t ≥ 0, (21)

Φ2(t) : vout(t) =

{
v∗P t ∈ [0, Γ )
vP(t− Γ ) t ≥ Γ

, (22)

Φ3(t) : vout(t) =

{
vP(t) t ∈ [0, Γ )
vP(t− Γ ) t ≥ Γ

, (23)

where v∗P = 12.0 V corresponds to the equilibrium point
(i.e., the operating point) of vP(t). We can easily see

that vout(t) in Eqs. (21) and (22) realizes the initial
functions Φ1(t) and Φ2(t), respectively. vout(t) in Eq.
(23) realizes Φ3(t) in a shifted time scale. That is, the
DC bus system starts with initial point vout(0) = v0

8 We implemented one bipolar power supply by connect-
ing the constant-voltage (CV) output terminal and the CV
load terminal of a power supply (GPP-4323G, TEXIO). The
other bipolar power supply was realized by combining the CV
output (PW24-1.5AQ, TEXIO) and the CV load (PLZ164W,
KIKUSUI).

and runs without control (i.e., iu = 0) from t = 0 to
t = Γ ; DFC works from t = Γ .
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I., Ibarra, E.: AC and DC technology in microgrids: a
review. Renew. Sustain. Energy Rev. 43, 726–749 (2015)

37. Elsayed, A.T., Mohamed, A.A., Mohammed, O.A.: DC
microgrids and distribution systems: an overview. Electr.
Power Syst. Res. 119, 407–417 (2015)

38. Dragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M.:
DC microgrids—part II: a review of power architectures,
applications, and standardization issues. IEEE Trans.
Power Electr. 31, 3528–3549 (2016)

39. Kumar, D., Zare, F., Ghosh, A.: DC microgrid technol-
ogy: system architectures, AC grid interfaces, grounding
schemes, power quality, communication networks, appli-
cations, and standardizations aspects. IEEE Access 5,
12230–12256 (2017)

40. Prabhala, V.A., Baddipadiga, B.P., Fajri, P., Ferdowsi,
M.: An overview of direct current distribution system ar-
chitectures & benefits. Energies 11, 2463 (2018)

41. Konishi, K., Sugitani, Y., Hara, N.: Analysis of a dc bus
system with a nonlinear constant power load and its de-
layed feedback control. Phys. Rev. E 89, 022906 (2014)

42. Yoshida, K., Konishi, K., Hara, N.: Experimental obser-
vation of destabilization in a DC bus system and its sta-
bilization with delayed feedback control. Nonlinear Dyn.
98, 1645–1657 (2019)

43. Konishi, K., Sugitani, Y., Hara, N.: Dynamics of dc bus
networks and their stabilization by decentralized delayed
feedback. Phys. Rev. E 91, 012911 (2015)

44. Socolar, J.E.S., Sukow, D.W., Gauthier, D.J.: Stabilizing
unstable periodic orbits in fast dynamical systems. Phys.
Rev. E 50, 3245–3248 (1994)

45. Pyragas, K., Pyragas, V., Benner, H.: Delayed feedback
control of dynamical systems at a subcritical Hopf bifur-
cation. Phys. Rev. E 70, 056222 (2004)

46. Scholl, T.H., Hagenmeyer, V., Gröll, L.: On norm-based
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