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Abstract 

Rare earth (RE)-substituted magnesium–zinc ferrite (Mg0.5Zn0.5RExFe2–xO4) 

nanoparticles with different RE elements (Y, La, Ce, Pr, Nd, Gd and Yb) and different RE 

contents (x = 0–0.1) were synthesized via coprecipitation of metal hydroxides as the precursor, 

followed by calcination. Their crystal structures were characterized by X-ray diffraction (XRD) 

analysis, confirming that the RE-substituted Mg–Zn ferrites had a single-phase spinel structure 

at low x values. However, the Ce-substituted ferrites contained CeO2 as a byproduct. Scanning 

electron microscopy (SEM) showed that the particle diameters of the samples decreased from 

approximately 100 to 20 nm as x was increased regardless of the RE elements. The magnetic 

induction heating properties were evaluated using the intrinsic loss power (ILP) determined 

from the temperature rise profiles in an alternating magnetic field and the amplitude and 

frequency of the magnetic field. By using various RE elements, it was found that the increase 

in the magnetic moment of RE ions can increase the magnetization of ferrites, resulting in 

improvements in the ILP at low RE contents, except for Gd substitutions. The increase in RE 

content decreased the ILP due to reductions in crystallinity. The results suggest that the RE 

elements and contents can precisely control the magnetic induction heating properties, and RE-

substituted Mg–Zn ferrite nanoparticles are promising candidates for magnetic hyperthermia 

applications. 
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1. Introduction 

Spinel ferrites have been used for many applications, such as gas sensors [1], 
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microwave devices [2, 3], photocatalysts [4–8] and heating mediators for magnetic 

hyperthermia [9–14], due to their high chemical and thermal stabilities, high specific surface 

area, good magnetic properties and high electrical properties. These are strongly affected by the 

metal composition and crystallinity of ferrites [15–21]. To obtain ferrites with high performance, 

the partial substitution of Fe3+ ions in ferrites with rare earth (RE) ions has been used because 

of the larger ionic radii of RE3+ ions compared with Fe3+ ions, resulting in structural distortions 

and modifications of the magnetic and electrical properties [22–26]. Furthermore, substituting 

with different RE3+ ions may precisely control the properties of ferrites due to not only the 

monotonic change in ionic radii but also the periodical variation in the magnetic moments 

originating from the sequential filling of electrons in 4f shells [27]. Therefore, the effects of RE 

elements and RE contents on the properties of ferrites have been studied by many researchers 

[22–26, 28–34]. 

In recent years, among spinel ferrites, low-cost biocompatible soft magnetic 

magnesium–zinc ferrites (MgyZn1–yFe2O4; y = 0–1) have attracted much attention as heating 

mediators in magnetic hyperthermia treatments [35–37]. This is because of the good induction 

heating properties in an alternating (AC) magnetic field originating from excellent magnetic 

properties, such as magnetization and coercivity. For example, Mg0.2Zn0.8Fe2O4 exhibited good 

induction heating properties compared with conventional simple ferrites such as CuFe2O4, 

MnFe2O4, NiFe2O4, SrFe2O4 and CoFe2O4 [35, 38]. Moreover, Mg–Zn ferrites have good 

biocompatibility and have been studied as candidates for drug carriers for cancer treatments [39, 

40] and as MRI contrast agents [41]. Due to the high performance of Mg–Zn ferrites, RE-

substituted Mg–Zn ferrites can be candidates for a heating mediator in magnetic hyperthermia 

treatments. Therefore, some researchers have studied their magnetic properties [42–51]. 

Ladgaonkar et al. [46] assessed the variations in saturation magnetization in the amount of Fe3+ 

ions substituted with Nd3+ ions in Mg–Zn ferrites, demonstrating that the magnetization 

decreased with increasing Nd contents. Mukhtar et al. [47] examined the effects of the amount 

of Pr substitution in a Mg–Zn ferrite on the saturation magnetization and coercivity, confirming 

that the coercivity was improved by Pr substitution. For practical applications of RE-substituted 

Mg–Zn ferrites as a heating mediator in magnetic hyperthermia treatments, the induction 

heating properties should be precisely controlled. By substituting with various RE ions, the 

magnetic properties of ferrites can finely vary depending on the magnetic moments of the RE 

ions [27], which may lead to fine control of the heating properties. Therefore, it must be 

investigated systematically how various RE substitutions affect not only the magnetic 

properties but also the induction heating behaviors. Although we previously investigated the 

dependence of the induction heating properties on Gd substitution in Mg–Zn ferrites [52, 53], 

to the best of our knowledge, there are no comprehensive studies on the induction heating 

properties of RE-substituted Mg–Zn ferrites using various RE elements. 

Therefore, to provide criteria for the preparation of Mg–Zn ferrites available for 

magnetic hyperthermia, RE-substituted Mg–Zn ferrites MgyZn1–yRExFe2–xO4 (RE = Y, La, Ce, 
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Pr, Nd, Gd and Yb) were synthesized using various RE elements. We systematically examined 

the effects of the RE elements and the RE contents on the induction heating properties and 

discussed the role of RE substitution in the variation in induction heating properties toward the 

potential for easy and fine control of heating in magnetic hyperthermia treatments. 

 

2. Experimental section 

2.1 Synthesis 

RE-substituted Mg–Zn ferrite (MgyZn1–yRExFe2–xO4; RE = Y, La, Ce, Pr, Nd, Gd and 

Yb) nanoparticles with different compositions of x (x = 0, 0.015, 0.03, 0.06 and 0.1) were 

synthesized by calcination of a precursor consisting of metal hydroxides prepared via 

coprecipitation [52]. In this work, we used a Mg–Zn ferrite with y = 0.5 (i.e., Mg0.5Zn0.5Fe2O4) 

as a base material for its good induction heating properties [52]. Metal chloride solutions with 

a concentration of 0.1 M were individually prepared by dissolving MgCl2‧6H2O, FeCl3‧6H2O, 

YCl3‧6H2O, LaCl3‧7H2O, CeCl3‧7H2O, NdCl3‧6H2O, GdCl3‧6H2O, YbCl3‧6H2O (FUJIFILM 

Wako Pure Chemical) and PrCl3‧7H2O (KANTO CHEMICAL) in deionized water. In addition, 

a ZnCl2 solution was prepared by dissolving ZnCl2 (FUJIFILM Wako Pure Chemical) in 0.02 

M HCl solution to completely dissolve ZnCl2. Predetermined amounts of the metal chloride 

solutions corresponding to the RE elements and the RE contents were mixed and stirred for 10 

min with a magnetic stirrer at room temperature. Subsequently, 1 M NaOH solution was quickly 

added to the solution under stirring, and a precipitation composed of a mixture of the metal 

hydroxides was formed. The final molar ratio of OH–/(Mg2+ + Zn2+ + RE3+ + Fe3+) in the 

resulting solution was fixed at 8/3, and the pH was approximately 12 regardless of the RE 

elements and contents. The solution was vigorously stirred for an additional 30 min. The 

precipitates were separated from the solution by centrifugation and washed with water several 

times to remove Na+ and Cl– ions. After that, the collected precipitates were dried at 383 K for 

16 h. The obtained precursor was ground using a mortar and pestle and calcined at 1073 K for 

5 h in air, and Mg0.5Zn0.5RExFe2–xO4 ferrites were formed. 

 

2.2 Characterization 

The phase evolution and crystallinity of the samples were evaluated using a powder 

X-ray diffractometer (XRD; XRD-6100, Shimadzu, Cu-Kα radiation, 30 kV, 30 mA) with a 

monochromator. The average crystallite size D was calculated via Scherrer’s equation (Eq. (1)) 

using the diffraction data measured at 2θ ≈ 30.0°, 35.4° and 62.4°, which corresponded to the 

(220), (311) and (440) planes, respectively. 

D = Kλ/(βcosθ) (1) 

where K is the Scherrer constant, β is the full width at half maximum (FWHM) of the peaks, λ 

is the X-ray wavelength (1.5418 Å), and θ is the diffraction angle. The a-axis lattice constant a 
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was also determined by Eq. (2) from the XRD data measured at the (220), (311) and (440) 

planes, and the average was calculated. 

a = dhkl (h2 + k2 + l2)0.5 (2) 

where h, k and l are the Miller indices (h k l) and dhkl is the interplanar spacing. The morphology 

was observed with a field emission scanning electron microscope (FE-SEM; JSM-6700F, JEOL, 

18.0 kV). The elemental analysis by energy dispersive X-ray spectroscopy (EDX; Epsilon 1, 

Malvern Panalytical) was performed to determine the exact compositions of samples. 

The induction heating properties of magnetic fluids consisting of the sample powder 

(5 mass%) and glycerol (FUJIFILM Wako Pure Chemical) were evaluated [52–54] using an 

AC magnetic field generator. It was composed of a radio frequency power source (T162-5723A, 

THAMWAY), an impedance matching box (T020-5723F, THAMWAY), and a solenoid coil (70 

mm in inner diameter) with 21 turns of copper tube (4-mm outer diameter and 3-mm inner 

diameter). Cooling water flowed inside the copper tube. Briefly, 2.5 g of the magnetic fluid was 

charged in a glass test tube with an outer diameter of 15 mm. Although the nanoparticles were 

agglomerated during calcination, the aggregates were partly disintegrated in the fluid by 

ultrasonication prior to applying a magnetic field. After 10 min of sonication (20 kHz, 50 W) 

using a homogenizer (UH-50, SMT), the test tube was placed in the center of the coil. The 

temperature rise of the fluid in the AC magnetic field was measured with an optical fiber 

thermometer (FTI-10 with FOT-L-NS-967, FISO Technologies). The frequency f and amplitude 

H of the magnetic field were f = 600 kHz and H = 5 kA/m, respectively [52, 53]. Dutz and Hergt 

[55] suggest that H·f is less than 5 × 109 A/(m·s) as the biological safety limit. In this work, H·f 

= 3 × 109 A/(m·s), which satisfied the condition. The specific absorption rate (SAR) 

corresponding to the heat generation of the sample powder was determined using Eq. (3) 

according to the literature [35, 37, 56, 57]. 

SAR = [{mCpf + (1–m)Cpg}/m]Δth (3) 

where m is the content of the sample powder in the fluid (m = 0.05) and Cpf and Cpg are the 

specific heat capacities of ferrites (0.64–0.68 J/(g‧K) [58, 59]) and glycerol (2.43 J/(g‧K) [54]), 

respectively. Δth is the elapsed time when the sample temperature reaches 45°C from 35°C, 

which is the effective temperature range for magnetic hyperthermia treatments [60, 61]. In this 

work, the intrinsic loss power (ILP) [62] was used to take into account the influences of 

amplitude and frequency of the magnetic field on the heating efficiency, expressed by 

ILP = SAR/(H2f) (4) 

where H and f are the amplitude and frequency of the magnetic field, respectively. 
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3. Results and discussion 

3.1 Characterization 

Fig. 1 shows the XRD patterns of Mg0.5Zn0.5RExFe2–xO4 samples. Except for Ce-

substituted Mg–Zn ferrites, the samples with low RE contents (x ≤ 0.03) were confirmed to 

have a single-phase spinel structure. In contrast, when x = 0.1, Mg–Zn ferrites substituted with 

La, Pr and Nd contained rare earth orthoferrites, such as LaFeO3, PrFeO3 and NdFeO3, 

respectively, as byproducts. Rare earth orthoferrites were observed in similar RE-substituted 

spinel ferrites, such as La-substituted Mg–Zn ferrites [63], Pr-substituted Mg ferrites [44], Pr-

substituted Ni–Zn ferrites [64], Nd-substituted Mn–Zn ferrites [65] and Nd-substituted Mg–Cd 

ferrites [66]. Table 1 lists the actual RE compositions of samples except for the cases of Ce 

substitution. The RE compositions tended to coincide with the nominal values at low RE 

contents. In Ce-substituted Mg–Zn ferrites, cerium oxide (CeO2) was contained as a byproduct 

because Ce3+ and Ce4+ ions can coexist in the samples [29]. The results demonstrated that our 

synthesis method can provide RE-substituted Mg–Zn ferrites at low RE contents except for Ce 

substitution and suggested that the formation of secondary phases leads to the reduction of the 

RE in the desired ferrite phases. 

 

Table 1 

Experimentally determined RE compositions in samples. 

x (nominal) Experimental values 

Y La Pr Nd Gd Yb 

0.015 

0.03 

0.06 

0.1 

0.014 

0.027 

0.054 

0.091 

0.015 

0.029 

0.057 

0.097 

0.014 

0.027 

0.055 

0.091 

0.015 

0.030 

0.058 

0.097 

0.019 

0.033 

0.062 

0.099 

0.016 

0.032 

0.062 

0.101 
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Fig. 1. XRD patterns of Mg0.5Zn0.5RExFe2–xO4 samples of RE = (a) Y, (b) La, (c) Ce, (d) Pr, (e) 

Nd, (f) Gd, and (g) Yb with x = 0.015–0.1. 
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As shown in Fig. 2, the lattice parameters a were strongly affected by the RE elements 

and contents. When small amounts of Fe3+ ions in Mg–Zn ferrites were substituted with Y3+, 

Gd3+ and Yb3+ ions, the lattice parameters drastically decreased (Fig. 2a). This can be explained 

by the micro-strains in the internal grain region. According to Ateia et al. [29], the compression 

induced by the difference of the thermal expansion coefficient among the constituent elements 

and the lattice mismatch between the grain and the grain boundary phase can result in the 

generation of the micro-strains, which may decrease the lattice parameter. Subsequently, the 

lattice parameters gradually increased with the RE contents because the radii of RE3+ ions (Y3+ 

= 0.90 Å, Gd3+ = 0.94 Å and Yb3+ = 0.87 Å) were larger than that of Fe3+ ions (0.78 Å) [67]. 

Although the variations in the experimental data were relatively large due to the small changes 

in the lattice parameter, the results showed the significance of the non-monotonous changes of 

the lattice parameter, taking into account the range of variation. In contrast, the lattice 

parameters of the samples with RE = La, Ce, Pr and Nd decreased with the RE contents within 

x = 0–0.06 (Fig. 2b). This suggests that some of the RE3+ ions may not enter the spinel lattice 

but diffuse into the grain boundaries [63]. 

 

   

Fig. 2. Effect of RE elements on the variation in the a-axis lattice parameter with RE contents 

for RE = (a) Y, Gd and Yb, and (b) La, Ce, Pr and Nd. 
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Fig. 3. Effect of RE elements on the variation in the average crystallite size with (a) RE contents 

and (b) ionic radii of RE3+ ions at x = 0.015. 

 

Fig. 4 shows typical SEM images of Mg0.5Zn0.5YbxFe2–xO4 nanoparticles with x = 0, 

0.03 and 0.1 as an example. The particle diameters decreased with RE contents ranging from 

approximately 100 to 20 nm. For other samples with different RE elements and contents, similar 

results were obtained. This may have been because RE3+ ions inhibit grain growth, as observed 

in similar ferrites such as Y-substituted Mg–Cd ferrites [69] and RE-substituted Co ferrites [22]. 

 

 

Fig. 4. Typical SEM images of Mg0.5Zn0.5YbxFe2–xO4 with x = (a) 0, (b) 0.03, and (c) 0.1. 
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Fig. 5. Typical temperature profile curves of Mg0.5Zn0.5YbxFe2–xO4 with x = 0–0.1. 

 

RE3+ ions have different magnetic moments [70, 71]. Thus, the variation in the 

magnetic moments can modify the magnetization of ferrites. This is because the Fe3+ ions (5 

μB) in the octahedral B-sites can be replaced with the RE3+ ions (0–8 μB) in the Mg–Zn ferrites 

[47], which leads to variation in the induction heating properties [36, 37]. Fig. 6 illustrates the 
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73]. The results suggested that the ILP of the RE-substituted Mg–Zn ferrites was strongly 

affected by the RE contents compared with the RE elements, and the RE contents and the RE 

elements could tune the induction heating widely and narrowly, respectively. Therefore, 

properly selecting the RE elements and adjusting the RE contents could lead to easy and fine 

control of the induction heating properties of RE-substituted Mg–Zn ferrites in magnetic 

hyperthermia treatments. 

 

 
Fig. 6. Relationship between the ILP and magnetic moments of RE3+ ions at x = 0.015. 

 

 

Fig. 7. Effect of RE elements on the variation in the ILP with RE contents. 
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Fig. 8. Relationship between the ILP and average crystallite size. 

 

4. Conclusion 

RE-substituted Mg–Zn ferrite (Mg0.5Zn0.5RExFe2–xO4; RE = Y, La, Ce, Pr, Nd, Gd and 

Yb; x = 0–0.1) nanoparticles were prepared via coprecipitation of metal hydroxides as the 

precursors, followed by calcination in air. Except for Ce substitution, the synthesis process can 

successfully provide pure RE-substituted Mg–Zn ferrites with x ranging from 0 to 0.06. Some 

RE-substituted Mg–Zn ferrites (RE = La, Pr and Nd at x = 0.1) contained rare earth orthoferrites 

such as LaFeO3, PrFeO3 and NdFeO3 as byproducts. In contrast, Ce-substituted Mg–Zn ferrites 

contained CeO2 even when x was quite small. The lattice parameters and average crystallite 

sizes were found to depend strongly on the RE elements and the RE contents, resulting in 

variation in the magnetic induction heating properties. The ILP values of the RE-substituted 

Mg–Zn ferrites finely varied with the RE elements, possibly due to the differences in magnetic 

moments of the RE3+ ions. However, regardless of the RE elements, high ILP values were 

obtained at low RE contents, possibly due to improvements in the magnetization and coercivity 

of the ferrites. Subsequently, the ILP gradually decreased with the RE contents, except for Ce-

substituted ferrites, due to a reduction in the average crystallite sizes. The use of various RE 

elements revealed that the induction heating properties of RE-substituted Mg–Zn ferrites can 

be controlled by adjusting the RE elements and contents. The results suggest that RE-substituted 

Mg–Zn ferrite nanoparticles are promising candidates as heating mediators which may lead to 

easy and fine control of heating in magnetic hyperthermia treatments for cancer therapy. 
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