

学術情報リポジトリ

Interferon gamma, lipopolysaccharide, and modified-live viral vaccines stimulation alter the mRNA expression of tumor necrosis factor α , inducible nitric oxide synthase, and interferon β in bovine alveolar macrophages

メタデータ	言語: eng
	出版者:
	公開日: 2022-01-26
	キーワード (Ja):
	キーワード (En):
	作成者: Ishikawa, Shingo, Miyazawa, Masataka, Tanaka,
	Chiho, Uesawa, Ryoma, Nishizawa, Juri, Uemura,
	Ryoko, Kobayashi, Ikuo, Hobo, Seiji
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/00017577

Veterinary Immunology and Immunopathology

Interferon gamma, lipopolysaccharide, and modified-live viral vaccines stimulation alter the mRNA expression of tumor necrosis factor α, inducible nitric oxide synthase, and interferon β in bovine alveolar macrophages --Manuscript Draft--

Manuscript Number:	VETIMM-D-21-00171R1
Article Type:	Short Communication
Keywords:	alveolar macrophage; modified-live viral vaccine; Innate immunity; cytokines; PAMPs
Corresponding Author:	Seiji Hobo, Ph.D. Kagoshima Daigaku Kagoshima, Kagoshima JAPAN
First Author:	Shingo Ishikawa
Order of Authors:	Shingo Ishikawa
	Masataka Miyazawa
	Chiho Tanaka
	Ryoma Uesawa
	Juri Nishizawa
	Ryoko Uemura
	Ikuo Kobayashi
	Seiji Hobo, Ph.D.
Abstract:	To understand the pathogenesis of bovine respiratory disease (BRD), it is necessary to elucidate the mechanisms of alveolar macrophage regulation by cytokines and pathogen-associated molecular patterns (PAMPs). Moreover, "trained immunity," an innate immune regulatory mechanism in response to vaccines containing PAMPs, has recently attracted attention. It may be applied to BRD control, but there is limited knowledge in bovine. To investigate this, we stimulated alveolar macrophages in vitro with lipopolysaccharide (LPS), polyinosinic-polycytidylic acid sodium salt (Poly I:C), interferon gamma (IFN- γ), and modified-live viral (MLV) vaccines, respectively, and analyzed changes in interferon beta (IFN- β), tumor necrosis factor alpha (TNF- α), and inducible nitric oxide synthase (iNOS) mRNA expression levels. mRNA expression levels of TNF- α , iNOS, and IFN- β were significantly increased in bovine alveolar macrophages stimulated by IFN- γ and MLV vaccine; LPS, IFN- γ , and MLV vaccine; and MLV vaccine only, respectively. Additionally, all MLV vaccine-stimulated mRNA expression increases were observed in a concentration-dependent manner. These results revealed in part, the mechanism of bovine alveolar macrophage regulation by cytokines and PAMPs. Understanding the regulatory mechanisms of alveolar macrophages will contribute to understanding the pathogenesis of BRD and preventive and therapeutic BRD management based on trained immunity.
Response to Reviewers:	

Highlights

- IFN- γ and PAMPs alter bovine alveolar macrophage mRNA expression
- MLV vaccine alter bovine alveolar macrophage mRNA expression
- The effects of PAMPs on bovine alveolar macrophages vary with the type of PAMP
- PAMPs in modified-live viral vaccines directly stimulate alveolar macrophages

 $TNF-\alpha$ iNOS (b) (a) **** *** *** *** ** ** * 1100003 1000 **Relative Fold Change** ▼ 8 **Relative Fold Change** (Gene / β -act) 100 100 0 <u><u></u></u> (Gene / β -act) 10 цр С ~ 10 10 10 \mathbf{V} V V 0 1 0.1 0. 00.011 **0**.01 Gantrall control PON IF IF MED NULW MULW MODUW LPE IN I'E INFINISHING MILW A O OOUN

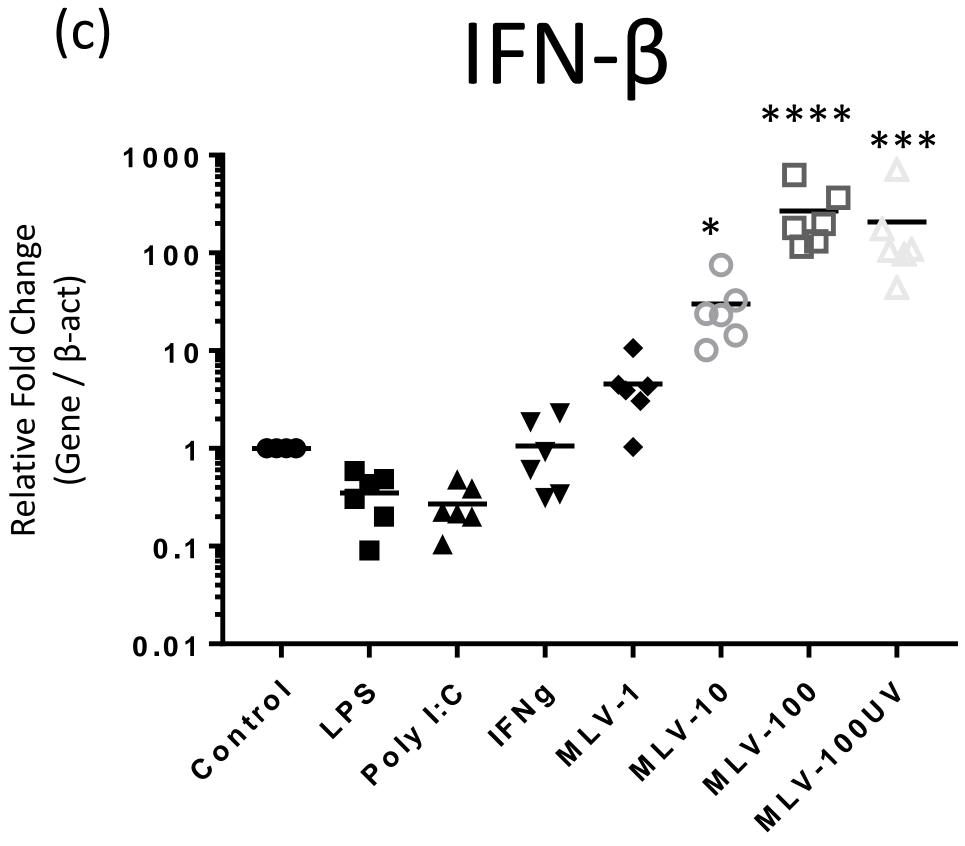


Table 1. Sequences of primers used for PCR

Primer	Kind	Sequence (5'—3')	Accession Number
TNF-α	Sense	TTGCTTGTGCCTCAGCCTCT	NNA 172066 2
INF-U	Antisense	GGGACTGCTCTTCCCTCTGG	NM_173966.3
iNOS	Sense	AAAACCCACGTCTGGCAGGA	NNA 001076700 1
INUS	Antisense	GGCGAAGAACACGGCTTTGA	NM_001076799.1
IFN-β	Sense	GAGGAGATGAAGCAAGAACAGCA	NNA 1742EO 1
ігіх-р	Antisense	TCTGGTGAGAATGCCGAAGA	NM_174350.1
β-actin	Sense	CCCAGATCATGTTCGAGACC	NM 173979.3
p-actin	Antisense	GAGGCATACAGGGACAGCAC	11111_1/39/9.3

Conflict of Interest

The authors declare the following financial interests/personal relationships that may be considered potential conflict of interests: SI received research funding from Zoetis Japan Inc. None of the other authors have conflicting financial interests.

1	Short communication
2	Interferon gamma, lipopolysaccharide, and modified-live viral vaccines stimulation alter
3	the mRNA expression of tumor necrosis factor α , inducible nitric oxide synthase, and
4	interferon β in bovine alveolar macrophages
5	
6	Shingo Ishikawa ^{a,b} , Masataka Miyazawa ^b , Chiho Tanaka ^b , Ryoma Uesawa ^b , Juri
7	Nishizawa ^b , Ryoko Uemura ^c , Ikuo Kobayashi ^c , and Seiji Hobo ^{b,*}
8	^a Division of Veterinary Science, Graduate School of Life and Environmental Biosciences,
9	Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan
10	^b Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto,
11	Kagoshima, 890-0065, Japan.
12	°Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi,
13	Miyazaki 889-2192, Japan
14	
15	*Corresponding author: Seiji Hobo
16	Joint Faculty of Veterinary Medicine, Kagoshima University
17	1-21-24 Korimoto, Kagoshima 890-0065, Japan
18	E-mail address: k2088185@kadai.jp, Fax: +81-992853538
19	1

20 Abstract

21	To understand the pathogenesis of bovine respiratory disease (BRD), it is
22	necessary to elucidate the mechanisms of alveolar macrophage regulation by cytokines
23	and pathogen-associated molecular patterns (PAMPs). Moreover, "non-specific effects
24	(NSEs)" an innate immune regulatory mechanism in response to vaccines containing
25	PAMPs, has recently attracted attention. It may be applied to BRD control, but there is
26	limited knowledge in bovine. To investigate this, we stimulated alveolar macrophages in
27	vitro with lipopolysaccharide (LPS), polyinosinic-polycytidylic acid sodium salt (Poly
28	I:C), interferon gamma (IFN- γ), and modified-live viral (MLV) vaccines, respectively,
29	and analyzed changes in tumor necrosis factor alpha (TNF- α), inducible nitric oxide
30	synthase (iNOS), and interferon beta (IFN- β) mRNA expression levels. mRNA
31	expression levels of TNF- α , iNOS, and IFN- β were significantly increased in bovine
32	alveolar macrophages stimulated by IFN- γ and MLV vaccine; LPS, IFN- γ , and MLV
33	vaccine; and MLV vaccine only, respectively. Additionally, all MLV vaccine-stimulated
34	mRNA expression increases were observed in a concentration-dependent manner. These
35	results revealed in part, the mechanism of bovine alveolar macrophage regulation by
36	cytokines and PAMPs. Understanding the regulatory mechanisms of alveolar
37	macrophages will contribute to understanding the pathogenesis of BRD and preventive

 $\mathbf{2}$

38 and therapeutic BRD management based on NSEs.

40	Keywords: bovine; alveolar macrophage; modified-live viral vaccine; innate immunity;
41	cytokines; PAMPs
42	
43	Abbreviations
44	BRDC: Bovine respiratory disease complex; MLV: Modified-live viral; PAMPs:
45	Pathogen-related molecular patterns; PRRs: Pattern recognition receptors; LPS:
46	Lipopolysaccharide; Poly I:C: Polyinosinic-polycytidylic acid sodium salt; IFN:
47	Interferon; IL: Interleukin; TNF: Tumor necrosis factor; iNOS: Inducible nitric oxide
48	synthase; BALF: bronchoalveolar lavage fluid; RPMI: Roswell Park Memorial Institute;
49	FBS: Fetal bovine serum

51 1. Introduction

Bovine respiratory disease (BRD), a complex infection caused by the 52 intertwining of various pathogens and stress (Griffin et al., 2010), is the most common 53 54 disease in cattle, and it causes great economic losses (Edwards, 2010). Some of the causative pathogens of BRD, such as *Mycoplasma bovis*, do not have a vaccine and are 55 difficult to treat with antibiotics; thus, complicating respiratory disease countermeasures 56 57 (Maunsell et al., 2011). The internal respiratory organ is in contact with the outside world; 58 hence, there is always a risk of infection by various pathogens in the outside world. 59 Therefore, the respiratory system develops various immune mechanisms in mucosal 60 tissues, particularly, innate immunity (Ackermann et al., 2010), which is mostly dependent on alveolar macrophages (Batista et al., 2012; Bertagnon et al., 2019). In 61 62 experimental models of humans and animals, alveolar macrophages exhibit plasticity and maintain lung homeostasis by altering their function (Hussell and Bell, 2014). The 63 64 maintenance and alteration of these functions are regulated by the alveolar microenvironment, particularly by fluid factors, including cytokines and pathogen-65 66 associated molecular patterns (PAMPs).

67 When pathogens invade a host, pattern recognition receptors (PRRs) expressed 68 by alveolar macrophages are activated by recognizing bacterial and viral PAMPs and

69	produce type I interferons (IFNs) and proinflammatory cytokines, thus, changing the
70	immune dynamics from a steady state to an unbalanced state (Aggarwal et al., 2014).
71	Subsequently, the production of chemokines and the collection of neutrophils and
72	lymphocytes are enhanced. Lymphocytes produce IFN- γ (type II IFN), or IFN- β (type I
73	IFN) which polarizes alveolar macrophages to classically activated (M1)-like
74	inflammatory states which improve pathogen clearance (Herold et al., 2011), or to
75	alternatively activated (M2)-like phenotypes which resolve inflammation and repair the
76	alveolar environment (Hussell and Bell, 2014; Kumaran Satyanarayanan et al., 2019),
77	respectively. Thus, the function of alveolar macrophages is regulated by various humoral
78	factors and PAMPs, but all the above findings are from humans and experimental animals,
79	and there are few reports in bovine.
80	Epidemiological studies showed that the tuberculosis vaccine, BCG, protects
81	against childhood mortality caused by non-antigenic pathogens (Levine and Sackett,
82	1946). Subsequent numerous studies have shown its ability to induce a strong protective
83	effect against other infectious diseases, due to "non-specific effects (NSEs)" (Netea et al.,
84	
	2020) which is induced by the recognition of PAMPs in BCG by various immune cells
85	2020) which is induced by the recognition of PAMPs in BCG by various immune cells (Covian et al., 2019). Studies in mice have shown that intranasal BCG directly affects

 $\mathbf{5}$

87	(Mukherjee et al., 2017). A report from Japan suggests that nasal cavity-administered
88	modified-live viral (MLV) vaccines also protect against infection by non-antigenic
89	pathogens in bovines (Aoki, 2019; Kano, 2018), but the immunological basis is unknown.
90	In the present study, we investigated the regulatory role of MLV vaccines in
91	bovine alveolar macrophages. As an NSEs effect of MLV vaccines, we hypothesized the
92	activation of non-specific innate immune mechanisms in alveolar macrophages. Common
93	nonspecific innate immune mechanisms of macrophages include production of
94	inflammatory cytokines (tumor necrosis factor alpha: TNF- α) induced by the nuclear
95	factor kappa B pathway, inducible NO synthase (iNOS), which synthesizes NO, type I
96	interferon (IFN- α , β) induced by the interferon regulatory factor pathway. In the above-
97	mentioned processes, PRRs such as Toll like receptors, RIG-I like receptors, and NOD
98	like receptors activate signal transduction circuits when PAMPs are recognized, and
99	increase mRNA (Akira et al., 2006). We stimulated alveolar macrophages in vitro with
100	lipopolysaccharide (LPS), a bacterial PAMP, polyinosinic-polycytidylic acid sodium salt
101	(Poly I:C), a synthetic RNA analog mimicking viral PAMPs, IFN-7, and MLV vaccine,
102	respectively, and analyzed the changes in tumor necrosis factor alpha (TNF- α), inducible
103	nitric oxide synthase (iNOS), and IFN- β mRNA expression levels.
104	

105 2. Materials and methods

106 2.1. Animals

107 This study was approved by the Animal Care and Use Committee of the Feed Research Institute of the University of Miyazaki (No. 2017-016-1). All experimental 108 109 procedures were approved and carried out according to the guidelines of the committee. We used six Japanese Black cattle (aged 30 - 42 months old), born between December 8, 110 111 2018, and March 7, 2019, and raised them according to standard guidelines at the Sumiyoshi Livestock Science Station (Miyazaki, Japan) which had Global G.A.P. 112 113 certification (GGN: 4052852881722). BALF samples were collected from cattle that were systemically healthy, which did not have a chronic or immediate history of 114 respiratory disease. 115

116

117 2.2. Bronchoalveolar lavage fluid (BALF)

While holding the cattle, a flexible electronic endoscope (VQ TYPE 5112 B, Olympus, Tokyo, Japan) was inserted through the nasal passage to the carina, and its distal end was then passed into a main stem bronchus. The flexible electronic endoscope was then inserted into a subsegment of each lobe. Three 30 mL aliquots of sterile 0.9 % normal saline solution were infused into the lobes and immediately aspirated. All

123	aspirations were pooled, and the volume of the BALF was measured and recorded.
124	Additionally, BALF was collected from the right cranial lobe, and a part of the BALF
125	was used for microbiological tests and was confirmed to be negative. No secondary
126	symptoms were observed after BALF collection.

- 127
- 128 2.3. Alveolar macrophage processing

129 After measuring their volumes, the **BALF** samples were filtered using sterilized gauze and centrifuged ($400 \times g$ for 10 min at 4 °C) to separate their cellular components. 130 The number of total nucleated cells was counted using a Countess Ii FL automated cell 131 132 counter (Thermo Fisher Scientific, Waltham, MA, USA). Sample was diluted with equal 133 volume of PBS and carefully layered 20 ml of diluted sample over the two 4ml 134 Lympholyte-H (Cederlane Lab., Ontario, Canada) in 15 ml tube. Centrifuge for 60 minutes at $800 \times g$ at room temperature. The interface layer was placed into a new 15ml 135 tube, washed three times in PBS. After additional wash, cells were resuspended and 136 cryopreserved in CELLBANKER 2 (Takara Bio Inc., Shiga, Japan) and kept frozen at -137 80° C for later use. 138

139

140 2.4. Stimulated culture

141	Alveolar macrophages (2×10^5 cells) were cultured in 1mL of Roswell Park
142	Memorial Institute 1640 medium (Fujifilm Wako Pure Chemical Corporation, Osaka,
143	Japan) containing 10 % FBS (Japan Bioserum Co. Ltd., Hiroshima, Japan) and 1 %
144	penicillin-streptomycin-amphotericin B suspension (×100 solution; Fujifilm Wako Pure
145	Chemical Corporation) in 12-well plates in 5 % CO ₂ at 37 °C with stimulation. Cultures
146	were stimulated with 1 μ g/mL LPS, 25 μ g/mL Poly I:C (Sigma Aldrich, St. Louis, MO,
147	USA), 1 $\mu L/mL$ MLV vaccine-1, 10 $\mu L/mL$ MLV vaccine-10, 100 $\mu L/mL$ MLV vaccine-
148	100, 100 $\mu L/mL$ ultraviolet (UV)-irradiated MLV vaccine-100, or 5 ng/mL IFN- γ
149	(Thermo Fisher Scientific) for 24 h. The MLV vaccine (Inforce-3; Zoetis, Kalamazoo, MI,
150	USA) containing temperature-sensitive variants of bovine herpesvirus type 1 (BoHV-1),
151	bovine parainfluenza virus type 3 (BPIV-3), and bovine respiratory syncytial virus
152	(BRSV) were used for stimulation. Approximately 2.86×10^7 copies/mL of BoHV-1
153	DNA were used. UV irradiation using the UV cross-linker FS-1500 for 5 min kills the
154	virus particles which are then used in the MLV vaccine (Rajan et al., 2011).
155	
156	2.5. Quantitative reverse transcription PCR (RT q-PCR)

Total RNA was isolated using RNAiso Plus Total RNA extraction reagent
(Takara Bio Inc.) and Direct-zol RNA MiniPrep kit (Zymo Research, Irvine, CA, USA)

159	according to the manufacturers' protocols. RNA concentration and purity were measured
160	using a nanophotometer (Wako, Kyoto, Japan). The total RNA was used as a template for
161	complementary DNA synthesis using the PrimeScript RT reagent kit (Takara) according
162	to the manufacturer's protocol. Real-time quantitative PCR reactions were performed
163	using TB Green Premix Ex Taq II (Takara). Cycling conditions were as follows: 95 °C
164	for 30 s; 40×: 95 °C for 5 s, 60 °C for 30 s; 95 °C for 15 s, 60 °C for 1 min, and 95 °C for
165	15 s. Quantitative evaluation of mRNA was performed using a StepOnePlus TM Real-Time
166	PCR System (Applied Biosystems, Foster City, CA, USA). Values were normalized to
167	those of β -actin. Changes in gene expression were calculated using the $\Delta\Delta Ct$ method. The
168	oligonucleotide primer sequences used are shown in Table 1. All experiments were
169	independently replicated in duplicates.
170	
171	2.6. Date statistics
172	Statistical data for unstimulated and stimulated samples were obtained using the
173	Kruskal-Wallis and Dunn's multiple comparison tests using GraphPad Prism Software
174	(version 7.05; GraphPad Software Inc., San Diego, CA, USA).
175	

176 3. Results and discussion

177	This study revealed that mRNA expression levels in bovine alveolar
178	macrophages were altered by stimulation with PAMPs, cytokines, and vaccines, and that
179	these changes were different depending on the type of stimulus. We analyzed TNF- α ,
180	iNOS, and IFN- β which cause changes in alveolar macrophage function due to changes
181	in mRNA expression in humans and experimental animals (Aggarwal et al., 2014).
182	TNF- α expression in bovine alveolar macrophages was significantly upregulated
183	by IFN- γ and MLV vaccines (Fig. 1a), and iNOS expression was significantly upregulated
184	by LPS, IFN-7, and MLV vaccine stimulation (Fig. 1b). Inflammation, which activates
185	and induces immune cells to eliminate pathogens, is essential for the healing of infectious
186	pneumonia, and TNF- α and nitric oxide induced by iNOS are important for the initiation
187	of inflammation. However, cytokine storms can cause excessive inflammation, which can
188	lead to more severe symptoms (Fajgenbaum and June 2020). In acute respiratory
189	syndrome coronavirus 2 (SARS-COV-2) pneumonia, a feedback loop of infected
190	macrophages and IFN-y produced by T cells leads to excessive alveolar inflammation
191	(Grant et al., 2021). Importantly, these modulations may increase anti-pathogen activity
192	and increase the risk of symptom exacerbation.
193	IFN- β is a type I IFN which provides antiviral immunity, and when produced by

194 alveolar macrophages, acts on autocrine cells and promotes the resolution of

195 inflammation in the respiratory tract (Connolly and Hussell, 2020). Additionally, 196 individuals with severe SARS-COV-2 pneumonia have impaired responses to IFN-β, which may be the reason for the difference in host immune responses (Hadjadj et al., 197 2020). In the present study, only the MLV vaccine significantly increased the IFN-B 198 199 expression (Fig. 1c). We believe that elucidation of the mechanism by which IFN-B 200 expression is increased in alveolar macrophages will be an important key point in the 201 development of preventive and therapeutic measures against BRD, and we plan to 202 conduct further analyses.

203 The results of stimulation with the MLV vaccine were of particular interest in this study. The expression levels of TNF- α , iNOS, and IFN- β , increased in a 204 205 concentration-dependent manner. The MLV vaccine did not contain any adjuvants. BoHV-1 and BPIV-3 are temperature-sensitive strains that cannot infect or be amplified 206 207 under the present culture conditions. Moreover, BRSV is unstable and grows very poorly 208 in cell culture in vitro (Larsen, 2000), and amplification in macrophage-derived cells has not been reported. Based on the above background and the result indicating that the same 209 effect was observed with a vaccine whose infectivity was eliminated by UV irradiation, 210 211 we believe that viral PAMPs contained in the MLV vaccine directly stimulated alveolar macrophages. Importantly, a detailed examination of the stimulatory or cooperative 212

213	effects of PAMPs in the three viruses should be conducted. Furthermore, it has been
214	reported that the nasally administered MLV vaccine used in this study does not proliferate
215	in the deep respiratory tract when administered to cattle, but the virus particles themselves
216	do reach the site (Walz et al., 2017). Although it is unclear whether the phenomenon
217	observed in vitro is also observed in vivo, we hypothesized that virus particles contained
218	in the MLV vaccine administered into the nasal cavity reach the respiratory mucosa and
219	directly stimulate alveolar macrophages. If the interrelationship between alveolar
220	macrophages and PAMPs can be elucidated in detail, it is expected to induce more
221	effective and controlled NSEs.

The limitations of this study and future prospects are described below. Whether 222223 the upregulation of mRNA expression of IFN- β , TNF- α , and iNOS in bovine alveolar 224 macrophages has the same effect as in humans and experimental animals requires further analysis at the protein and infectivity testing levels. To elucidate the details of the 225 stimulatory response and NSEs induced by PAMPs, including the MLV vaccine, it is 226 227 important to analyze their relationship with PRRs. However, the RIG-I like receptor family, which has been reported to be particularly important as a viral receptor in humans 228 229 and mice, has not been reported in cattle (Takeuchi and Akira, 2009), the expression and function of PRRs in bovine alveolar macrophages should be elucidated first. 230

231	In summary, this study revealed that mRNA expression levels in bovine alveolar
232	macrophages were altered by stimulation with cytokines and PAMPs. Therefore, it is
233	likely that bovine alveolar macrophages have plasticity, which is regulated by cytokines
234	and PAMPs. In addition, nasal mucosal MLV vaccine stimulation also resulted in large
235	fluctuations in the mRNA expression levels. We believe that this suggests the potential
236	application of NSEs as a candidate for a new preventive strategy against bovine infectious
237	diseases. Further elucidation of the factors and methods that induce NSEs most potently
238	and analyze the plasticity and regulatory mechanisms of alveolar macrophages will
239	contribute to the understanding of the pathogenesis of BRD and the development of
240	preventive and therapeutic measures.
240 241	preventive and therapeutic measures.
	preventive and therapeutic measures. Declarations
241	
241 242	Declarations
241 242 243	Declarations Ethics approval
241 242 243 244	Declarations Ethics approval This study was approved by the Animal Care and Use Committee of the Feed
241 242 243 244 245	Declarations Ethics approval This study was approved by the Animal Care and Use Committee of the Feed Research Institute of the University of Miyazaki which approved all experimental

249	The authors declare the following financial interests/personal relationships that
250	may be considered potential conflict of interests: SI received research funding from Zoetis
251	Japan Inc. None of the other authors have conflicting financial interests.
252	
253	Funding
254	This work was supported by JSPS KAKENHI [grant number JP19K16002]
255	and CADIC for Joint Research Projects, University of Miyazaki (2019). The funding
256	body had no role in the design of the study, collection, analysis, and interpretation of data,
257	or in writing the manuscript.
258	
259	Acknowledgements
260	The authors would like to thank Editage (www.editage.jp) for English language
261	editing.
262	
263	References
264	Ackermann, M.R., Derscheid, R., Roth, J.A., 2010. Innate immunology of bovine
265	respiratory disease. Vet Clin North Am Food Anim Pract 26, 215-228.
266	Aggarwal, N.R., King, L.S., D'Alessio, F.R., 2014. Diverse macrophage populations

- 267 mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol
 268 Physiol 306, L709-725.
- Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen recognition and innate immunity.
 Cell 124, 783-801.
- Aoki., T., 2019. [Use of a nasal mucosal vaccine reduces disease incidence in calves on a
- beef cattle feedlot.] Nikuushi hiikunoujo ni okeru bikuunenmaku vaccine no
 shiyou ga koushi no shippei rikanritsu wo teigen saseta jirei (in Japanese). MP
 agro journal. MP agro journal 36, 29-33.
- agio journal. Wir agio journal 50, 27-55.
- 275 Batista, C.F., Blagitz, M.G., Santos, B.P., Bertagnon, H.G., Parra, A.C., Vianna, R.S., de
- 276 Lucca, G.G., Lima, D.M., Santos, D.S., Della Libera, A.M., 2012. Maturation of
- mononuclear phagocytes in the lungs of young calves--in vitro study. J Dairy Sci
 95, 5909-5915.
- 279 Bertagnon, H.G., Batista, C.F., Santos, K.R., Gomes, R.C., Bellinazzi, J.B., Della Libera,
- A., 2019. Alveolar macrophage functions during the transition phase to active
 immunity in calves. J Anim Sci 97, 982.
- 282 Connolly, E., Hussell, T., 2020. The Impact of Type 1 Interferons on Alveolar
- 283 Macrophage Tolerance and Implications for Host Susceptibility to Secondary
- Bacterial Pneumonia. Front Immunol 11, 495.

285	Covian, C., Fernandez-Fierro, A., Retamal-Diaz, A., Diaz, F.E., Vasquez, A.E., Lay, M.K.,
286	Riedel, C.A., Gonzalez, P.A., Bueno, S.M., Kalergis, A.M., 2019. BCG-Induced
287	Cross-Protection and Development of Trained Immunity: Implication for Vaccine
288	Design. Front Immunol 10, 2806.
289	Edwards, T.A., 2010. Control methods for bovine respiratory disease for feedlot cattle.
290	Vet Clin North Am Food Anim Pract 26, 273-284.
291	Fajgenbaum, D.C., June, C.H., 2020. Cytokine Storm. N Engl J Med 383, 2255-2273.
292	Grant, R.A., Morales-Nebreda, L., Markov, N.S., Swaminathan, S., Querrey, M., Guzman,
293	E.R., Abbott, D.A., Donnelly, H.K., Donayre, A., Goldberg, I.A., Klug, Z.M.,
294	Borkowski, N., Lu, Z., Kihshen, H., Politanska, Y., Sichizya, L., Kang, M.,
295	Shilatifard, A., Qi, C., Lomasney, J.W., Argento, A.C., Kruser, J.M., Malsin, E.S.,
296	Pickens, C.O., Smith, S.B., Walter, J.M., Pawlowski, A.E., Schneider, D.,
297	Nannapaneni, P., Abdala-Valencia, H., Bharat, A., Gottardi, C.J., Budinger,
298	G.R.S., Misharin, A.V., Singer, B.D., Wunderink, R.G., Investigators, N.S.S.,
299	2021. Circuits between infected macrophages and T cells in SARS-CoV-2
300	pneumonia. Nature 590, 635-641.
301	Griffin, D., Chengappa, M.M., Kuszak, J., McVey, D.S., 2010. Bacterial pathogens of the
302	bovine respiratory disease complex. Vet Clin North Am Food Anim Pract 26, 381-

394.

304	Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., Pere, H., Charbit,
305	B., Bondet, V., Chenevier-Gobeaux, C., Breillat, P., Carlier, N., Gauzit, R.,
306	Morbieu, C., Pene, F., Marin, N., Roche, N., Szwebel, T.A., Merkling, S.H.,
307	Treluyer, J.M., Veyer, D., Mouthon, L., Blanc, C., Tharaux, P.L., Rozenberg, F.,
308	Fischer, A., Duffy, D., Rieux-Laucat, F., Kerneis, S., Terrier, B., 2020. Impaired
309	type I interferon activity and inflammatory responses in severe COVID-19
310	patients. Science 369, 718-724.
311	Herold, S., Mayer, K., Lohmeyer, J., 2011. Acute lung injury: how macrophages
312	orchestrate resolution of inflammation and tissue repair. Front Immunol 2, 65.
313	Hussell, T., Bell, T.J., 2014. Alveolar macrophages: plasticity in a tissue-specific context.
314	Nat Rev Immunol 14, 81-93.
315	Kano., Y., 2018. Measureas against bovine respiratory syncytial virus disease in calves
316	considered by clinical veterinarian. The Journal of Farm Animal in Infectious
317	Disease 7, 119-127.
318	Kumaran Satyanarayanan, S., El Kebir, D., Soboh, S., Butenko, S., Sekheri, M., Saadi, J.,
319	Peled, N., Assi, S., Othman, A., Schif-Zuck, S., Feuermann, Y., Barkan, D., Sher,
320	N., Filep, J.G., Ariel, A., 2019. IFN- β is a macrophage-derived effector cytokine

321	facilitating the resolution of bacterial inflammation. Nat Commun 10, 3471.
322	Larsen, L.E., 2000. Bovine respiratory syncytial virus (BRSV): a review. Acta Vet Scand
323	41, 1-24.
324	Levine, M.I., Sackett, M.F., 1946. Results of BCG immunization in New York City. Am
325	Rev Tuberc 53, 517-532.
326	Maunsell, F.P., Woolums, A.R., Francoz, D., Rosenbusch, R.F., Step, D.L., Wilson, D.J.,
327	Janzen, E.D., 2011. Mycoplasma bovis infections in cattle. J Vet Intern Med 25,
328	772-783.
329	Mukherjee, S., Subramaniam, R., Chen, H., Smith, A., Keshava, S., Shams, H., 2017.
330	Boosting efferocytosis in alveolar space using BCG vaccine to protect host against
331	influenza pneumonia. PLoS One 12, e0180143.
332	Netea, M.G., Giamarellos-Bourboulis, E.J., Dominguez-Andres, J., Curtis, N., van Crevel,
333	R., van de Veerdonk, F.L., Bonten, M., 2020. Trained Immunity: a Tool for
334	Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell 181,
335	969-977.
336	Rajan, J.V., Rodriguez, D., Miao, E.A., Aderem, A., 2011. The NLRP3 inflammasome
337	detects encephalomyocarditis virus and vesicular stomatitis virus infection. J Virol
338	85, 4167-4172.

339	Takeuchi, O., Akira, S., 20	009. Innate immunity to vir	rus infection. Immunol Rev 227	, 75-
340	86.			

- Walz, P.H., Newcomer, B.W., Riddell, K.P., Scruggs, D.W., Cortese, V.S., 2017. Virus
 detection by PCR following vaccination of naive calves with intranasal or
 injectable multivalent modified-live viral vaccines. J Vet Diagn Invest 29, 628635.
- 345

346 Figure legend

347 Fig. 1. Changes in bovine alveolar macrophages. Changes in (a) tumor necrosis factor alpha (TNF- α), (b) inducible nitric oxide synthase (iNOS), and (c) interferon beta (IFN-348 β) mRNA expression in alveolar macrophages (2×10⁵) stimulated by lipopolysaccharide 349 (LPS; 1 µg/mL), polyinosinic-polycytidylic acid sodium salt (Poly I:C; 25 µg/mL), 350 interferon gamma (IFN-γ; 5 ng/mL), modified-live viral (MLV) vaccine-1 (1 μL/mL), 351 352 MLV vaccine-10 (10 µL/mL), MLV vaccine-100 (100 µL/mL), UV-irradiated MLV 353 vaccine-100UV (100 µL/mL), or non-stimulated (control). Alveolar macrophages were 354 collected 24 h after stimulation. Analysis of relative gene expression data using real-time 355 quantitative PCR and the $\Delta\Delta$ Ct method was assessed. Each value was normalized to that of β-actin mRNA and fold-changes in the gene of each stimulation were calculated by 356

357	referring to the value of the control. Dot plots of individual stimulations: control (circle),
358	LPS (square), Poly I:C (triangle), IFN-7 (inverted triangle), MLV-1 (rhombus), MLV-10
359	(white circle), MLV-100 (white square), MLV-100UV (white triangle), and mean are
360	shown (n=6). Data are representative of two independent experiments. Significant
361	differences between the control and stimulated cells are denoted as *p<0.05, **p<0.01,
362	***p<0.001, or ****p<0.0001.