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Abstract. We prove the nonexistence of some ternary linear codes of dimen-
sion 6, which implies that n3(6, d) = g3(6, d)+2 for d = 48, 49, 66, 67, 149, 150,

where g3(k, d) =
∑k−1

i=0

⌈
d/3i

⌉
and nq(k, d) denotes the minimum length n for

which an [n, k, d]q code exists. To prove the nonexistence of a putative code
through projective geometry, we introduce some proof techniques such as i-
Max and i-Max-NS to rule out some possible weights of codewords.

1 Introduction

We denote by Fn
q the vector space of n-tuples over Fq, the field of order q. The weight

of a vector x ∈ Fn
q , denoted by wt(x), is the number of nonzero entries in x. An

[n, k, d]q code C is a k-dimensional subspace of Fn
q with d = min{wt(c) > 0 | c ∈ C},

which is also called a linear code of length n, dimension k and minimum weight d
over Fq. We only consider linear codes having no coordinate which is identically
zero. A fundamental problem in coding theory is to find nq(k, d), the minimum
length n for which an [n, k, d]q code exists for all k, d, q. An [n, k, d]q code is called
optimal if n = nq(k, d). See [18] for the updated tables of nq(k, d) for some small q
and k. See also [3] for optimal linear codes for small q. The Griesmer bound ([6, 23])
gives a lower bound on nq(k, d):

nq(k, d) ≥ gq(k, d) :=
k−1∑
i=0

⌈
d

qi

⌉
,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. An [n, k, d]q code
C is called Griesmer if it attains the Griesmer bound, i.e. n = gq(k, d). For ternary
linear codes, n3(k, d) is known for k ≤ 5 for all d ([14]), but the value of n3(6, d) is
still unknown for 76 integers d.

Theorem 1.1. n3(4, d) = g3(4, d) + 1 for d = 3, 7, 8, 9, 13, 14, 15 and n3(4, d) =
g3(4, d) for all the other d.

Theorem 1.2. (1) n3(5, d) = g3(5, d) for d = 1, 2, 4, 5, 6, 10, 11, 12, 28-31, 34, 35, 36,
52-60, 64-93 and for d ≥ 100.
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(2) n3(5, d) = g3(5, d) + 1 for d = 3, 7, 8, 9, 13-24, 32, 33, 37-51, 61, 62, 63, 94-99.

(3) n3(5, d) = g3(5, d) + 2 for d = 25, 26, 27.

It is known that n3(6, d) = g3(6, d)+1 or g3(6, d)+2 for d = 48, 49, 66, 67, 149, 150,
see [7, 12, 19, 20, 21, 24]. Our purpose is to prove the following.

Theorem 1.3. There exist no [g3(6, d)+1, 6, d]3 codes for d = 48, 49, 66, 67, 149, 150.

Corollary 1.4. n3(6, d) = g3(6, d) + 2 for d = 48, 49, 66, 67, 149, 150.

We recall the geometric method through projective geometry and preliminary
results in Section 2. We give some results on ternary linear codes of dimension
5 in Section 3, which are needed to prove Theorem 1.3 in Section 4. To prove
the nonexistence of putative codes through projective geometry, we introduce some
proof techniques such as “i-Max” and “i-Max-NS” to rule out the hyperplanes of
some possible multiplicities. The updated n3(6, d) table for d ≤ 360 is given as
Table 3. In the table, “s-t” stands for g3(6, d) + s ≤ n3(6, d) ≤ g3(6, d) + t. Entries
in boldface are given in this paper. Note that n3(6, d) = g3(6, d) for all d ≥ 352 by
Theorem 2.12 of [9].

2 Preliminary results

We denote by PG(r, q) the projective geometry of dimension r over Fq. A t-flat is
a t dimensional projective subspace of PG(r, q). The 0-flats, 1-flats, 2-flats, 3-flats,
(r − 2)-flats and (r − 1)-flats are called points, lines, planes, solids, secundums and
hyperplanes, respectively. We denote by Fj the set of j-flats of PG(r, q) and by θj
the number of points in a j-flat, i.e., θj = (qj+1 − 1)/(q − 1).

Let C be an [n, k, d]q code having no coordinate which is identically zero. Then,
the columns of a generator matrix of C can be considered as a multiset of n points in
Σ = PG(k− 1, q) denoted by MC. An i-point is a point of Σ which has multiplicity
mMC(P ) = i in MC. Denote by γ0 the maximum multiplicity of a point from Σ in
MC. Let Λi be the set of i-points in Σ, 0 ≤ i ≤ γ0, and let λi = |Λi|, where |Λi|
denotes the number of elements in a set Λi. For any subset S of Σ, the multiplicity
of S, denoted by mMC(S), is defined as mMC(S) =

∑
P∈S mMC(P ) =

∑γ0
i=1 i·|S∩Λi|.

Then we obtain the partition Σ =
∪γ0

i=0 Λi such that n = mMC(Σ) and

n− d = max{mMC(π) | π ∈ Fk−2}. (2.1)

Conversely such a partition Σ =
∪γ0

i=0 Λi as above gives an [n, k, d]q code. A hyper-
plane H with t = mMC(H) is called a t-hyperplane. A t-line, a t-plane and so on
are defined similarly. For an m-flat Π in Σ we define

γj(Π) = max{mMC(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ m;

λs(Π) = |Π ∩ Λs|, 0 ≤ s ≤ γ0.

We denote simply by γj and λs instead of γj(Σ) and λs(Σ), respectively. It holds
that γk−2 = n− d, γk−1 = n.

2



Denote by ai the number of i-hyperplanes in Σ. The list of ai’s is called the
spectrum of C. The spectrum can be calculated from the weight distribution of C
by ai = An−i/(q − 1) for 0 ≤ i ≤ n − d, where Aw is the number of codewords of
C with weight w. Let τj be the number of j-secundums in a fixed hyperplane Π of
Σ. The list of τj’s is called the spectrum of Π. Simple counting arguments yield the
following [15].

γk−2∑
i=0

ai = θk−1, (2.2)

γk−2∑
i=1

iai = nθk−2, (2.3)

γk−2∑
i=2

i(i− 1)ai = n(n− 1)θk−3 + qk−2

γ0∑
s=2

s(s− 1)λs. (2.4)

When γ0 ≤ 2, we get the following equality from (2.2)-(2.4).

γk−2−2∑
i=0

(
γk−2 − i

2

)
ai =

(
γk−2

2

)
θk−1 − n(n− d− 1)θk−2 +

(
n

2

)
θk−3 + qk−2λ2. (2.5)

Note that λ2 can be calculated from the spectrum and (2.5) when γ0 = 2.

Lemma 2.1 ([16]). For 0 ≤ j ≤ k − 3, γj ≤ γj+1 − (n− γj+1)/(θk−2−j − 1).

Lemma 2.2 ([13, 24]). Put ϵ = qγk−2 − n and t0 = ⌊(w + ϵ)/q⌋, where ⌊x⌋ stands
for the largest integer ≤ x. Let H be a w-hyperplane containing a t-secundum T .
Then t ≤ (w + ϵ)/q and the following hold.

(1) aw = 0 if no [w, k − 1, d0]q code satisfying d0 ≥ w − t0 exists.

(2) γk−3(H) = t0 if no [w, k − 1, d1]q code satisfying d1 ≥ w − t0 + 1 exists.

(3) Let cj be the number of j-hyperplanes through T except H. Then
∑

j cj = q and∑
j

(γk−2 − j)cj = w + ϵ− qt. (2.6)

(4) A γk−2-hyperplane with spectrum (τ0, . . . , τγk−3
) satisfies τt > 0 if w+ ϵ− qt < q.

(5) If any γk−2-hyperplane has no t0-secundum, then mMC(H) ≤ t0 − 1.

It follows from (2.1) that an i-hyperplane Π corresponds to an [i, k− 1, d0]q code
with d0 = i− γk−3(Π). A linear code C is called projective if γ0 = 1.
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Lemma 2.3. Let C be an [n, k, d]q code. If every (n − d)-hyperplane H satisfies
γ0(H) = 1, then C is projective.

Proof. Suppose an s-point P with s > 1 exists. Take a hyperplane π not containing
P and let MC̄ be the multiset for a code C̄ obtained by the projection of MC from
P onto π. Then, C̄ is an [n− s, k− 1, d]q code and there is an (n− d− s)-secundum
for C̄ in π, say ∆. Then, H = ⟨P,∆⟩ is an (n− d)-hyperplane in Σ with γ0(H) > 1,
a contradiction. Hence Σ has no s-point with s > 1, i.e., γ0 = 1.

3 Spectra of some [n, k, d]3 codes with k = 4, 5

In this section, we give some results on ternary linear codes of dimensions 4 or
5, which are needed to investigate ternary linear codes of dimension 6 in Section
4. Tables 1 and 2 can be obtained from the known results. There are exactly 9
[12, 5, 6]3 codes, 11 [27, 5, 16]3 codes and 444 [24, 5, 14]3 codes up to equivalence [2].
From the classifications, we get the following lemmas.

Lemma 3.1. Let C be a [12, 5, 6]3 code with a5 = λ2 = 0. Then, the spectrum of C
is (a0, a3, a6) = (3, 76, 42).

Lemma 3.2. The spectrum of a [24, 5, 14]3 code is one of the following:
(a) (a0, a4, a6, a7, a9, a10) = (1, 12, 13, 30, 26, 39),
(b) (a2, a3, a4, a5, a6, a7, a8, a10) = (2, 4, 1, 16, 4, 12, 18, 32, 32),
(c) (a1, a3, a4, a6, a7, a9, a10) = (b, a, 15−a−3b, 16−2a, 24+2a+3b, 24+a, 42−a−b)
with a ∈ {0, 1, 2, 3, 4}, b = 0, 1.

Lemma 3.3. Let C be a [27, 5, 16]3 code. If λ2 = 0, then the spectrum of C is one
of the following:
(a) (a0, a5, a8, a9, a11) = (1, 18, 18, 39, 45),
(b) (a1, a4, a5, a7, a8, a9, a10, a11) = (1, 4, 14, 4, 14, 13, 45, 26),
(c) (a1, a4, a5, a7, a8, a9, a10, a11) = (1, 2, 16, 8, 10, 13, 43, 28).

The following two lemmas can be obtained by the exhaustive computer search
(e.g. using the package Q-Extension [1]).

Lemma 3.4. The spectrum of a [27, 4, 17]3 code satisfies a2 = a5 = 0.

Lemma 3.5. The spectrum of a [36, 5, 22]3 code is one of the following:
(a) (a0, a8, a10, a12, a13, a14) = (1, 18, 18, 12, 36, 36),
(b) (a1, a7, a8, a9, a10, a11, a12, a13, a14) = (1, 4, 14, 4, 6, 8, 9, 43, 32),
(c) (a1, a7, a8, a9, a10, a11, a12, a13, a14) = (1, 4, 14, 1, 12, 5, 12, 37, 35),
(d) (a2, a6, a7, a8, a9, a10, a11, a12, a13, a14) = (1, 1, 6, 11, 2, 6, 10, 10, 42, 32),
(e) (a2, a6, a7, a8, a10, a11, a12, a13, a14) = (1, 2, 4, 12, 10, 8, 11, 40, 33),
(f) (a2, a7, a8, a9, a10, a11, a12, a13, a14) = (1, 8, 10, 1, 8, 9, 12, 38, 34),
(g) (a3, a6, a8, a9, a10, a11, a12, a13, a14) = (1, 6, 8, 4, 12, 2, 20, 33, 35).
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Table 1: The spectra of some ternary linear codes of dimension 4 [5].
parameters possible spectra
[5, 4, 2]3 (a0, a1, a2, a3) = (5, 15, 10, 10)
[8, 4, 4]3 (a0, a1, a2, a3, a4) = (3, 4, 10, 12, 11)

(a0, a1, a2, a3, a4) = (2, 8, 4, 16, 10)
(a0, a2, a3, a4) = (4, 16, 8, 12)

[14, 4, 8]3 (a1, a2, a3, a4, a5, a6) = (1, 4, 4, 8, 9, 14)
(a1, a2, a4, a5, a6) = (2, 4, 10, 12, 12)
(a1, a2, a3, a4, a5, a6) = (2, 2, 5, 7, 11, 13)
(a1, a2, a3, a4, a5, a6) = (3, 1, 2, 12, 9, 13)
(a1, a2, a3, a4, a5, a6) = (3, 3, 3, 6, 10, 15)
(a0, a2, a3, a4, a5, a6) = (1, 3, 4, 9, 10, 13)
(a0, a2, a3, a5, a6) = (1, 3, 10, 10, 16)
(a2, a3, a5, a6) = (3, 12, 10, 15)
(a0, a2, a4, a5, a6) = (1, 4, 15, 6, 14)
(a0, a3, a5, a6) = (1, 13, 13, 13)

Lemma 3.6. The spectrum of a projective [17, 5, 9]3 code satisfies a1 ≤ 12.

Proof. Let C be a [17, 5, 9]3 code with γ0 = 1 and a1 > 0. Let ∆ be a 1-solid in
PG(4, 3) and let cj be the number of j-solids through a fixed t-plane in ∆. From
(2.5) and (2.6) with w = 1, we have

28a0 + 21a1 + 15a2 + 10a3 + 6a4 + 3a5 + a6 = 396 (3.1)

and ∑
j

(8− j)cj = 8− 3t (3.2)

with
∑

j cj = 3. Suppose a1 ≥ 13. Note that the spectrum of ∆ is (τ0, τ1) = (27, 13).

Let L = 28c0 + 21c1 + 15c2 + 10c3 + 6c4 + 3c5 + c6 from (3.1). Since the solution of
cj’s in (3.2) with c1 > 0 is (c1, c7, c8) = (1, 1, 1) for t = 0 giving L = 21 and since the
minimum possible contributions of cj’s in (3.2) to L are (c5, c6) = (2, 1) for t = 0
giving L = 7 and (c6, c7) = (2, 1) for t = 1 giving L = 2, we get

396 = (LHS of (3.1)) ≥ 21× 12 + 7(τ0 − 12) + 2τ1 + 21 = 404,

a contradiction. Hence, a1 ≤ 12.

Lemma 3.7. The spectrum of a [65, 5, 42]3 code satisfies
(1) ai = 0 for all i ̸∈ {2, 5, 8, 11, 14, 17, 20, 23},
(2) λ2 ≤ 9 if a14 > 0.

Proof. Let C be a [65, 5, 42]3 code. Note that γ0 ≤ 2 by Lemma 2.1. A w-solid with
a t-plane satisfies

t ≤ w + 4

3
(3.3)

by Lemma 2.2. If there exists a 3-solid, it follows from (3.3) that there exists no 3-
plane, a contradiction. If there exists a 21-solid, it corresponds to a [21, 4, d0]3 code
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Table 2: The spectra of some ternary linear codes of dimension 5.
parameters possible spectra reference
[6, 5, 2]3 (a0, a1, a2, a3, a4) = (11, 30, 45, 20, 15) [2]
[8, 5, 3]3 (a0, a1, a2, a3, a4, a5) = (4, 22, 30, 32, 23, 10) [5]

(a0, a1, a2, a3, a4, a5) = (3, 24, 32, 24, 30, 8)
(a0, a2, a3, a4, a5) = (6, 15, 38, 30, 21, 11)

[9, 5, 4]3 (a0, a1, a2, a3, a4, a5) = (1, 18, 36, 12, 36, 18) [5]
[10, 5, 5]3 (a1, a2, a4, a5) = (10, 45, 30, 36) [5]
[11, 5, 6]3 (a2, a5) = (55, 66) [5]
[15, 5, 8]3 (a1, a3, a4, a6, a7) = (6, 15, 42, 25, 33) [5]

(a0, a1, a3, a4, a6, a7) = (1, 5, 13, 44, 26, 32)
(a1, a2, a3, a4, a5, a6, a7) = (5, 5, 20, 10, 31, 20, 30)

[16, 5, 9]3 (a1, a4, a7) = (6, 57, 58) [5]
[18, 5, 10]3 (a0, a2, a4, a5, a6, a7, a8) = (1, 9, 18, 18, 12, 36, 27) [5]

(a1, a2, a3, a4, a5, a6, a7, a8) = (2, 8, 2, 14, 20, 11, 38, 26)
[19, 5, 11]3 (a1, a2, a4, a5, a7, a8) = (1, 9, 9, 27, 30, 45) [5]
[20, 5, 12]3 (a2, a5, a8) = (10, 36, 75) [5]
[28, 5, 17]3 (a1, a5, a8, a10, a11) = (1, 18, 18, 39, 45) [2]

(a2, a4, a5, a7, a8, a10, a11) = (1, 4, 14, 4, 14, 32, 52)
(a2, a4, a5, a7, a8, a10, a11) = (1, 2, 16, 8, 10, 30, 54)

[29, 5, 18]3 (a2, a5, a8, a11) = (1, 18, 18, 84) [2]
[37, 5, 23]3 (a2, a7, a8, a10, a11, a13, a14) = (1, 4, 14, 5, 13, 31, 53) [2]

(a1, a8, a10, a11, a13, a14) = (1, 18, 9, 9, 30, 54)
[38, 5, 24]3 (a2, a8, a11, a14) = (1, 18, 18, 84) [2]
[47, 5, 30]3 (a5, a8, a11, a14, a17) = (1, 4, 10, 23, 83) [2]

(a2, a11, a14, a17) = (1, 18, 18, 84)
[53, 5, 34]3 (a8, a9, a10, a17, a18, a19) = (1, 2, 8, 12, 52, 46) [20]

(a9, a10, a17, a18, a19) = (4, 7, 13, 50, 47)
[54, 5, 35]3 (a9, a10, a18, a19) = (2, 9, 38, 72) [20]
[68, 5, 44]3 (a14, a15, a23, a24) = (1, 15, 39, 66) [20]

(a14, a15, a23, a24) = (4, 12, 36, 69)
[69, 5, 45]3 (a15, a24) = (16, 105) [4]

with d0 ≥ 21 − ⌊(21 + 4)/3⌋ = 13, which does not exist by Theorem 1.1. In this
way, one can get ai = 0 for all i ̸∈ {0, 1, 2, 5, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20, 23}. This
procedure to rule out some possible multiplicities of hyperplanes using Theorems 1.1,
1.2 and Lemma 2.2 is called the first sieve [13]. Let ∆w be a w-solid in PG(4,3).
Lemma 2.2 (3) gives

∑
j cj = 3 and∑

j

(23− j)cj = w + 4− 3t. (3.4)

One can determine γ2(∆w) from (3.3) and Theorem 1.1. For example, ∆14 corre-
sponds to a [14, 4, d1]3 code with d1 ≥ 14− 6 = 8 from (3.3). Since a [14, 4, 9]3 code
does not exist by Theorem 1.1, we have d1 = 8 and γ2(∆14) = 14− d1 = 6.

Setting (w, t) = (w, γ2(∆w)) for w ̸≡ 2 (mod 3), (3.4) has no solution. Hence
a1 = a9 = a10 = a11 = a15 = a18 = a19 = a0 = 0 and (1) follows.

Assume a14 > 0. Then, a2 = 0 since the RHS of (3.4) is at most 18 for w = 14.
From (2.2)-(2.4), one can get

15a5 + 10a8 + 6a11 + 3a14 + a17 = 30 + 3λ2. (3.5)

Assume a5 > 0. From Table 1, the spectrum of a 5-solid is (τ0, τ1, τ2, τ3) =
(5, 15, 10, 10). Setting w = 5, the maximum possible contributions of cj’s in (3.4)
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to the LHS of (3.5) are (c14, c23) = (1, 2) for t = 0; (c17, c23) = (1, 2) for t = 1;
(c20, c23) = (1, 2) for t = 2; c23 = 3 for t = 3. Hence we get

30 + 3λ2 = (LHS of (3.5)) ≤ 3τ0 + τ1 + 15 = 45,

giving λ2 ≤ 5. Similarly, using the possible spectra for a 8-solid from Table 1, we
get λ2 ≤ 6 when a8 > 0. Hence, assume a5 = a8 = 0. Using (3.4) and (3.5) with the
possible spectra of a 14-solid from Table 1, one can get λ2 ≤ 9.

Using Lemmas 2.2, 3.4 and Theorem 1.1, we get the following by the first sieve.

Lemma 3.8. The spectrum of a [56, 5, 36]3 code satisfies ai = 0 for all
i ̸∈ {0, 1, 2, 5, 8-11, 14, 15, 17-20}.

Lemma 3.9. The spectrum of a [77, 5, 50]3 code satisfies ai = 0 for all
i ̸∈ {0, 1, 5, 8, 9, 10, 14, 15, 17-20, 23-27}.

4 Proof of Theorem 1.3

Lemma 4.1. There exists no [75, 6, 48]3 code.

Proof. Let C be a putative [75, 6, 48]3 code. We have γ0 ≤ 2 by Lemma 2.1. If a 2-
point P in Σ = PG(5, 3) exists, then the projection of MC from P onto a hyperplane
not on P gives a multiset for a [73, 5, 48]3 code, which does not exist by Theorem
1.2, a contradiction. Hence, Σ has no 2-point. Let Π be a γ4-hyperplane. It follows
from Lemma 3.3 that Π has no t-solid for t = 2, 3, 6. An i-hyperplane Πi with a
t-solid satisfies

t ≤ i+ 6

3
(4.1)

by Lemma 2.2. Hence, using Theorem 1.2 and Lemma 2.2, we get ai = 0 for all

i ̸∈ {0, 1, 6, 9, 10, 11, 15, 16, 18, 19, 20, 21, 24, 25, 27}

by the first sieve. (2.6) for Πi through a t-solid yields

27∑
j=0

(27− j)cj = i+ 6− 3t (4.2)

with
∑

j cj = 3. From (4.1) and Theorem 1.2, we have γ3(Π25) = 10, but (4.2) has

no solution for (i, t) = (25, 10). Thus, a25 = 0. We obtain ai = 0 for all i ̸≡ 0
(mod 3) similarly. Hence we get ai = 0 for all i ̸∈ {0, 6, 9, 15, 18, 21, 24, 27}. From
(2.2)-(2.4), one can get

36a0 + 21a6 + 15a9 + 6a15 + 3a18 + a21 = 229. (4.3)
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Suppose a0 > 0. Since Π0 has spectrum τ0 = 121 and since the solution of (4.2)
with i = t = 0 that maximizes the LHS of (4.3) is (c21, c27) = (1, 2), we get

229 ≤ τ0 + 36 = 157,

a contradiction. Hence a0 = 0.
Suppose a6 > 0. Then, Π6 has spectrum (τ0, τ1, τ2, τ3, τ4) = (11, 30, 45, 20, 15)

from Table 2. Since the solutions of (4.2) with i = 6 that maximizes the LHS of
(4.3) is (c15, c27) = (1, 2) for t = 0; (c18, c27) = (1, 2) for t = 1; (c21, c27) = (1, 2) for
t = 2; (c24, c27) = (1, 2) for t = 3; c27 = 3 for t = 4, we get

229 ≤ 6τ0 + 3τ1 + τ2 + 21 = 222,

a contradiction. Hence a6 = 0.
Suppose a9 > 0. Then, Π9 has a 3-solid from Table 2, which contradicts that

(4.2) has no solution for t = 3 since c27 = 0 by Lemma 3.3. Thus a9 = 0. Setting
(i, t) = (18, 6), (15, 6) in (4.2), one can get a contradiction since c27 = 0 for t = 6.
Hence, a15 = a18 = 0. Now, we have ai = 0 for all i ̸∈ {21, 24, 27}.

Setting i = 27, (4.2) has no solution for t = 0, 1, which contradicts that Π has a
0-solid or a 1-solid by Lemma 3.3. This completes the proof of Lemma 4.1.

As in the above proof to show ai = 0 for i = 0, 6, we often obtain a contradiction
by eliminating the maximum possible value of (2.5) (or some similar equation on
the spectrum of C) using (4.2) and the possible spectra of the putative i-hyperplane.
We refer to this proof technique as the ”i-Max” in what follows.

Lemma 4.2. There exists no [77, 6, 49]3 code.

Proof. Let C be a putative [77, 6, 49]3 code. We first note that there is no 2-point in
Σ = PG(5, 3) since there exists no [75, 5, 49]3 code. An i-hyperplane Πi with a t-solid
satisfies t ≤ (i + 7)/3 by Lemma 2.2. Let Π be a γ4-hyperplane. From Table 2, Π
has spectrum (τ1, τ5, τ8, τ10, τ11) = (1, 18, 18, 39, 45) since the other possible spectra
need a 2-point. Using Theorem 1.2 and Lemma 2.2, one can get ai = 0 for all

i ̸∈ {0, 1, 2, 8, 9, 10, 11, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28}

by the first sieve. It follows from (2.5) and (2.6) that

26∑
j=0

(
28− i

2

)
ai = 3073, (4.4)

26∑
j=0

(27− j)cj = i+ 7− 3t (4.5)

with
∑

j cj = 3. Note that the spectrum of Πi is τ0 = 121 for i = 0, (τ0, τ1) = (81, 40)

for i = 1, (τ0, τ1, τ2) = (54, 54, 13) for i = 2 and see Table 2 for i ∈ {8-11, 18-20}.
One can prove ai = 0 by the i-Max for i = 0, 1, 2, 8, 9, 10, 11, 20, 19, 18 in this order
using the possible spectra for Πi, see [22] for the detail. Now, we have ai = 0 for all
i ̸∈ {17, 23, 24, 25, 26, 27, 28}. Setting i = 28, (4.5) has no solution for t = 1, which
contradicts that Π has a 1-solid. This completes the proof of Lemma 4.2.
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Lemma 4.3. There exists no [102, 6, 66]3 code.

Proof. Let C be a putative [102, 6, 66]3 code. An i-hyperplane Πi with a t-solid in
Σ = PG(5, 3) satisfies t ≤ (i + 6)/3 by Lemma 2.2. Hence, a γ4-hyperplane Π
corresponds to a [36, 5, 22]3 code. From Lemma 3.5, the spectrum of Π satisfies

τ4 = τ5 = λ2(Π) = 0. (4.6)

Hence Σ has no 2-point by Lemma 2.3. Using Theorem 1.2, Lemma 2.2 and (4.6),
one can get ai = 0 for all

i ̸∈ {0, 1, 2, 3, 12, 15, 16, 18, 19, 20, 21, 24, 25, 27, 28, 29, 30, 33, 34, 36}

by the first sieve. It follows from (2.6) that

35∑
j=0

(36− j)cj = i+ 6− 3t (4.7)

with
∑

j cj = 3. Setting (i, t) = (34, 13), (4.7) has no solution, a contradiction.

Similarly, one can rule out Πi for i ̸≡ 0 (mod 3) since (4.7) has no solution for such
an i and t = γ3(Πi). Hence, ai = 0 for all i ̸∈ {0, 3, 12, 15, 18, 21, 24, 27, 30, 33, 36}.
From (2.2)-(2.4), one can get

66a0 + 55a3 + 28a12 + 21a15 + 15a18 + 10a21 + 6a24 + 3a27 + a30 = 292. (4.8)

Note that the spectrum of Πi is τ0 = 121 for i = 0, (τ0, τ1) = (81, 40) for i = 1,
(τ0, τ1, τ3) = (27, 81, 13) or (τ0, τ1, τ2, τ3) = (36, 54, 27, 4) for i = 3. See Lemma 3.3
for i = 27 and Table 2 for i = 15, 18. One can prove ai = 0 by the i-Max for
i = 0, 3, 18, 27, 15 in this order using the possible spectra for Πi.

Suppose a12 > 0. Setting (i, t) = (12, 5), (4.7) has no solution, for c36 = 0 from
(4.6), a contradiction. Hence, Π12 has spectrum (τ0, τ3, τ6) = (3, 76, 42) by Lemma
3.1. Then, we can get a contradiction by the 12-Max. Thus a12 = 0.

Suppose a21 > 0 and let Π21 be a 21-hyperplane with spectrum (τ0, τ1, · · · , τ9).
Recall that the solutions of (4.7) satisfy c36 = 0 for t = 4, 5 from (4.6). Setting
i = 21 in (4.7), the maximum possible contribution of cj’s to the LHS of (4.8) are
(c21, c24, c36) = (1, 1, 1) for t = 0; (c21, c30, c33) = (1, 1, 1) for t = 1; (c21, c30, c36) =
(1, 1, 1) for t = 2; (c21, c33, c36) = (1, 1, 1) for t = 3; (c30, c33) = (2, 1) for t = 4;
(c30, c33) = (1, 2) for t = 5; (c30, c33, c36) = (1, 1, 1) for t = 6; (c30, c36) = (1, 2) for
t = 7; (c33, c36) = (1, 2) for t = 8; c36 = 3 for t = 9. Hence, from (4.8), we get

292 ≤ 16τ0 + 11τ1 + 11τ2 + 10τ3 + 2τ4 + τ5 + τ6 + τ7 + 10 (4.9)

by the 21-Max. On the other hand, the equalities (2.2)-(2.4) yield the following:

τ0 + τ1 + τ2 + τ3 + τ4 + τ5 + τ6 + τ7 + τ8 + τ9 = 121, (4.10)

τ1 + 2τ2 + 3τ3 + 4τ4 + 5τ5 + 6τ6 + 7τ7 + 8τ8 + 9τ9 = 840, (4.11)

τ2 + 3τ3 + 6τ4 + 10τ5 + 15τ6 + 21τ7 + 28τ8 + 36τ9 = 2730. (4.12)
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Then, ((4.10)× 333− (4.11)× 69 + (4.12)× 8)/15 gives

111τ0
5

+
88τ1
5

+
203τ2
15

+ 10τ3 + 7τ4 +
68τ5
15

+
13τ6
5

+
6τ7
5

+
τ8
3

=
1391

5
. (4.13)

Since (RHS of (4.9)) ≤ 10+ (LHS of (4.13)) = 10 + 1391/5 < 292, a contradiction.
Hence a21 = 0.

Now, we have ai = 0 for all i ̸∈ {24, 30, 33, 36}. Setting i = 36, (4.7) has no
solution for t = 0, 1, 3. Hence, we may assume that the spectrum of Π is one of (d),
(e), (f) in Lemma 3.5. Then, by the 36-Max, one can get a contradiction for each
of the spectra. This completes the proof of Lemma 4.3.

In the above proof, we proved ai = 0 by the i-Max not using the possible spectra
of an i-hyperplane for i = 21. We refer to this modified i-Max as ”i-Max-NS” in
what follows, which is effective when the possible spectra are too many or unknown.

Lemma 4.4. There exists no [104, 6, 67]3 code.

Proof. Let C be a putative [104, 6, 67]3 code. An i-hyperplane Πi with a t-solid
in Σ = PG(5, 3) satisfies t ≤ (i + 7)/3 by Lemma 2.2. Since a γ4-hyperplane Π
corresponds to a [37, 5, 23]3 code, the spectrum of Π satisfies

τ0 = τ3 = τ4 = τ5 = τ6 = τ9 = τ12 = λ2(Π) = 0 (4.14)

from Table 2. Hence Σ has no 2-point by Lemma 2.3. If a 0-hyperplane Π0 exists,
then Π0∩Π is a 0-solid, a contradiction. Hence a0 = 0. Using Theorem 1.2, Lemma
2.2 and (4.14), one can get ai = 0 for all i ̸∈ {1, 2, 11, 14-20, 23-29, 32-37} by the
first sieve. It follows from (2.5) and (2.6) that

35∑
j=0

(
37− i

2

)
= 3640, (4.15)

35∑
j=0

(36− j)cj = i+ 6− 3t (4.16)

with
∑

j cj = 3. One can prove that ai = 0 for i = 1, 2, 11, 16, 15, 18, 19, 20, 29, 28, 27
in this order by the i-Max using the possible spectra of an i-hyperplane Πi from Table
2 for i ≥ 11 and Lemma 3.3, see the proof of Lemma 4.2 for the spectra of Π1 and
Π2. Note that a putative Π28 has spectrum (τ1, τ5, τ8, τ10, τ11) = (1, 18, 18, 39, 45)
since γ0 = 1.

Next, we shall prove a14 = 0 by the 14-Max-NS. Suppose a14 > 0 and let Π14 be
a 14-hyperplane with spectrum (τ0, τ1, · · · , τ7). Recall that the solutions of (4.16)
satisfy c37 = 0 for t = 0, 3, 4, 5, 6 and c36 = 0 for t = 4, 5 from (4.14) and Lemma
3.5. Setting i = 14 in (4.16), the maximum possible contribution of cj’s to the LHS
of (4.8) are (c23, c32, c35) = (1, 1, 1) for t = 0; (c23, c33, c37) = (1, 1, 1) for t = 1;
(c23, c36, c37) = (1, 1, 1) for t = 2; (c32, c35) = (2, 1) for t = 3; (c32, c35) = (1, 2) for
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t = 4; c35 = 3 for t = 5; c36 = 3 for t = 6; c37 = 3 for t = 7. Hence, from (4.15), we
get

3640 ≤ 102τ0 + 97τ1 + 91τ2 + 21τ3 + 12τ4 + 3τ5 + 253 (4.17)

by the 14-Max. On the other hand, the equalities (2.2)-(2.4) give the following:

τ0 + τ1 + τ2 + τ3 + τ4 + τ5 + τ6 + τ7 = 121, (4.18)

τ1 + 2τ2 + 3τ3 + 4τ4 + 5τ5 + 6τ6 + 7τ7 = 560, (4.19)

τ2 + 3τ3 + 6τ4 + 10τ5 + 15τ6 + 21τ7 = 1183. (4.20)

Then, (4.18)× 214− (4.19)× 68 + (4.20)× 13 gives

214τ0 + 146τ1 + 91τ2 + 49τ3 + 20τ4 + 4τ5 + τ6 + 11τ7 = 3193. (4.21)

Since (RHS of (4.17)) < 253+ (LHS of (4.21)) = 3446 < 3640, a contradiction.
Hence a14 = 0. Then, we get a24 = 0 by the 24-Max using Lemma 3.2 and also
a23 = 0 by the 23-Max-NS, see [22].

Suppose a17 > 0 and let Π17 be a 17-hyperplane with spectrum (τ0, τ1, · · · , τ8).
Recall that the solutions of (4.16) satisfy c37 = 0 for t = 0, 3, 4, 5, 6 and c25 = 0
for t = 2, 3 from (4.14) and Table 2. Setting i = 17 in (4.16), the maximum
possible contribution of cj’s to the LHS of (4.8) are (c17, c34, c36) = (1, 1, 1) for t = 0;
(c17, c36, c37) = (1, 1, 1) for t = 1; (c26, c32, c35) = (1, 1, 1) for t = 2; (c26, c35, c36) =
(1, , 1) for t = 3; (c32, c35) = (2, 1) for t = 4; (c32, c35) = (1, 2) for t = 5; (c33, c36) =
(1, 2) for t = 6; (c34, c37) = (1, 2) for t = 7; c37 = 3 for t = 8. Hence, from (4.15), we
get

3640 ≤ 193τ0 + 190τ1 + 66τ2 + 58τ3 + 21τ4 + 12τ5 + 6τ6 + 3τ7 + 190 (4.22)

by the 17-Max. On the other hand, the equalities (2.2)-(2.4) give the following:

τ0 + τ1 + τ2 + τ3 + τ4 + τ5 + τ6 + τ7 + τ8 = 121, (4.23)

τ1 + 2τ2 + 3τ3 + 4τ4 + 5τ5 + 6τ6 + 7τ7 + 8τ8 = 680, (4.24)

τ2 + 3τ3 + 6τ4 + 10τ5 + 15τ6 + 21τ7 + 28τ8 = 1768. (4.25)

Then, (4.23)× 234− (4.24)× 63 + (4.25)× 10 gives

234τ0 + 171τ1 + 118τ2 + 75τ3 + 42τ4 + 19τ5 + 6τ6 + 3τ7 + 10τ8 = 3154. (4.26)

Since (RHS of (4.22)) < 190 + 19τ1+ (LHS of (4.26)) = 3344 + 19τ1, we obtain
τ1 > (3640− 3344)/19, i.e., τ1 ≥ 16, which contradicts Lemma 3.6. Hence a17 = 0.

Now, we have ai = 0 for all i ̸∈ {25, 26, 32, 33, . . . , 37}. Recall that Π satisfies
either a1 > 0 or a2 > 0 from Table 2, whilst (4.16) with i = 37 has no solution for
t = 1, 2, a contradiction. This completes the proof of Lemma 4.4.

Lemma 4.5. There exists no [227, 6, 150]3 code.

11



Proof. Let C be a putative [227, 6, 150]3 code. Let Π be a γ4-hyperplane in Σ =
PG(5, 3). We have γ0 ≤ 2 by Lemma 2.1. An i-hyperplane Πi with a t-solid satisfies
t ≤ (i+ 4)/3 by Lemma 2.2. Using Theorem 1.2 and Lemmas 2.2 and 3.9, one can
get ai = 0 for all i ̸∈ {0, 1, 11, 20, 38, 47, 53-56, 65, 68, 69, 74, 77} by the first sieve.
Lemma 2.2 (3) for Πi gives

∑
j cj = 3 and∑

j

(77− j)cj = 77c0 + · · ·+ 8c69 + 3c74 = i+ 4− 3t. (4.27)

Since (4.27) has no solution for (i, t) = (0, 0), (1, 1), (54, 19), (55, 19), (69, 24), we
obtain a0 = a1 = a54 = a55 = a69 = 0. From (2.2)-(2.4), we get

77a11 + 57a20 + 26a38 + 15a47 +
28a53
3

+ 7a56 + 2a65 + a68 = 113 + 3λ2. (4.28)

One can prove ai = 0 for i ∈ {11, 20, 38, 47, 53} by the i-Max using the possible
spectra for an i-hyperplane with i ∈ {11, 20, 38, 47, 53} from Table 2.

Suppose a68 > 0 and let Π68 be a 68-hyperplane. It follows from Table 2 that Π68

has spectrum (τ14, τ15, τ23, τ24) = (1, 15, 39, 66) with λ′
2 = 5 or (τ14, τ15, τ23, τ24) =

(4, 12, 36, 69) with λ′
2 = 6, where λ′

2 = λ2(Π68), and the solutions of (4.27) that
maximize the LHS of (4.28) are (c56, c68, c77) = (1, 1, 1) for t = 14; (c56, c74) = (1, 2)
for t = 15; (c74, c77) = (1, 2) for t = 23; c77 = 3 for t = 24. For the former spectrum
of Π68, we get

128 = 113 + 3λ′
2 ≤ 113 + 3λ2 ≤ 8τ14 + 7τ15 + 1 = 114,

a contradiction. We can get a contradiction for the latter spectrum of Π68 as well.
Thus, a68 = 0. Now, we have ai = 0 for all i ̸∈ {56, 65, 74, 77} and (4.28) becomes

7a56 + 2a65 = 113 + 3λ2. (4.29)

We shall prove a65 = 0 by the 65-Max-NS. Suppose a65 > 0 and let Π65 be a
65-hyperplane with spectrum (τ2, τ5, · · · , τ23), see Lemma 3.7. Setting i = 65, the
solutions of (4.27) that maximize the LHS of (4.29) are c56 = 3 for t = 2; (c56, c65) =
(2, 1) for t = 5; (c56, c74) = (2, 1) for t = 8; (c56, c65, c74) = (1, 1, 1) for t = 11;
(c56, c74) = (1, 2) for t = 14; (c65, c74) = (1, 2) for t = 17; c74 = 3 for t = 20; c77 = 3
for t = 23. Hence we get

(LHS of (4.29)) ≤ 21τ2 + 16τ5 + 14τ8 + 9τ11 + 7τ14 + 2τ17 + 2 (4.30)

by the 65-Max. On the other hand, the equalities (2.2)-(2.4) for Π65 are

τ2 + τ5 + τ8 + τ11 + τ14 + τ17 + τ20 + τ23 = 121, (4.31)

2τ2 + 5τ5 + 8τ8 + 11τ11 + 14τ14 + 17τ17 + 20τ20 + 23τ23 = 2600, (4.32)

τ2 + 10τ5 + 28τ8 + 55τ11 + 91τ14 + 136τ17 + 190τ20 + 253τ23 = 27040 + 27λ′
2, (4.33)
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respectively, where λ′
2 = λ2(Π65). Then, ((4.31)×299−(4.32)×24+(4.33))/9 yields

28τ2 + 21τ5 + 15τ8 + 10τ11 + 6τ14 + 3τ17 + τ20 = 91 + 3λ′
2. (4.34)

If τ14 = 0, it follows from (4.30) and (4.34) that 111+3λ2 ≤ 91+3λ′
2, a contradiction.

Hence, assume τ14 > 0. ((4.31)× 483− (4.32)× 43 + (4.33)× 2)/9 yields

133τ2
3

+ 32τ5 +
65τ8
3

+
40τ11
3

+ 7τ14 +
8τ17
3

+
τ20
3

=
241

3
+ 6λ′

2. (4.35)

Let y = λ2 − λ′
2 (≥ 0). Then, from (4.30) and (4.35), we get

111 + 3(λ′
2 + y) ≤ 241/3 + 6λ′

2,

giving λ′
2 ≥ 92/9, which contradicts Lemma 3.7. Hence, a65 = 0.

Now, ai = 0 for all i ̸∈ {56, 74, 77} and we have a56 > 0 from (4.29). From
Lemma 2.1, we have γ1 ≤ 4. If Π56 has a 2-point P , counting the multiplicities of
lines through P which are not in Π56, we get n ≤ (4 − 2)(θ4 − θ3) + 56 = 218, a
contradiction. Hence, Π56 has no 2-point. From Lemma 3.8 and (4.27), the spectrum
of Π56 satisfies τj = 0 for all j ̸∈ {5, 11, 17, 18, 19, 20}. One can get a contradiction
by the 56-Max-NS as follows. By the 56-Max, we obtain

113 + 3λ2 ≤ 14τ5 + 7τ11 + 7. (4.36)

On the other hand, (2.5) yields 105τ5 + 36τ11 + 3τ17 + τ18 = 450. Hence

113 + 3λ2 ≤ (105τ5 + 36τ11 + 3τ17 + τ18)/5 + 7 = 97,

a contradiction. This completes the proof of Lemma 4.5.

The code obtained by deleting the same coordinate from each codeword of C is
called a punctured code of C. If there exists an [n+1, k, d+1]q code which gives C as
a punctured code, C is called extendable. We use the following well-known theorem.

Theorem 4.6 ([10, 11]). Suppose C is an [n, k, d]q code with gcd(d, q) = 1. If Ai > 0
implies i ≡ 0 or d (mod q), then C is extendable.

We also need the following result about non-extendable code, which can be de-
rived from Theorems 1.1, 1.2 in [17] and Theorem 3.13 in [25].

Lemma 4.7. Let C be a non-extendable [n, 6, d]3 code with gcd(d, 3) = 1. Then, for
any π ∈ F4 with mMC(π) ̸≡ n, n − d (mod 3), there are at most 54 solids ∆ in π
such that mMC(πj) ≡ n (mod 3) for j = 1, 2 and mMC(π3) ≡ n− d (mod 3), where
π1, π2, π3 are the hyperplanes through ∆ other than π.

Lemma 4.8. There exists no [226, 6, 149]3 code.
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Proof. Let C be a putative [226, 6, 149]3 code. Then, C is not extendable since
a [227, 6, 150]3 code does not exist by Lemma 4.5. Let Π be a γ4-hyperplane in
Σ = PG(5, 3). An i-hyperplane with a t-solid satisfies t ≤ (i+ 5)/3 by Lemma 2.2.
Recall that Π has no t-solid for t ∈ {2, 3, 4, 6, 7, 11, 12, 13, 16, 21, 22} by Lemma 3.9.
Using Theorem 1.2 and Lemmas 2.2, 3.9, one can get ai = 0 for all

i ̸∈ {0, 1, 10, 11, 19, 20, 25, 37, 38, 46, 47, 49, 52-56, 64, 65, 67-70, 73, 74, 76, 77}

by the first sieve. It follows from (2.5) and (2.6) that

74∑
i=0

(
77− i

2

)
ai = 3768 + 81λ2, (4.37)∑

j

(77− j)cj = i+ 5− 3t (4.38)

with
∑

j cj = 3. Suppose a0 > 0 and let Π0 be a 0-hyperplane. Since Π0 has

spectrum τ0 = 121 and since the solution of (4.38) with i = t = 0 that maximizes
the LHS of (4.37) is (c73, c76, c77) = (1, 1, 1), the 0-Max gives

3768 ≤ 3768 + 81λ2 ≤ 6 · 121 + 2926 = 3652,

a contradiction. Hence a0 = 0.
Suppose a54 > 0 and let Π54 be a 54-hyperplane. Then, Π54 has spectrum

(τ9, τ10, τ18, τ19) = (2, 9, 38, 72) from Table 2. Setting w = 54 and t = 19, (4.38) has
the unique solution (c76, c77) = (2, 1), which contradicts Lemma 4.7, for τ19 = 72.
Hence a54 = 0. One can prove a69 = 0 similarly. Now, the spectrum of C satisfies
ai = 0 for all i ̸≡ 1, 2 (mod 3). Applying Theorem 4.6, C is extendable, which
contradicts Lemma 4.5. This completes the proof of Lemma 4.8.

Now, Theorem 1.3 follows from Lemmas 4.1 - 4.5 and 4.8.
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Table 3. Values and bounds of n3(6, d) for d ≤ 360.

d g n d g n d g n d g n d g n
1 6 6 37 59 1-2 73 112 114 109 167 168 145 220 1-2
2 7 7 38 60 1-2 74 113 115 110 168 169 146 221 1-2
3 8 9 39 61 1-2 75 114 116 111 169 170 147 222 1-2
4 10 10 40 63 1-2 76 116 118 112 171 172 148 224 1-2
5 11 11 41 64 1-2 77 117 119 113 172 173 149 225 227
6 12 12 42 65 1-2 78 118 120 114 173 174 150 226 228
7 14 15 43 67 1-3 79 120 122 115 175 176 151 228 1-2
8 15 17 44 68 2-3 80 121 123 116 176 177 152 229 231
9 16 18 45 69 2-3 81 122 124 117 177 178 153 230 232
10 19 20 46 72 1-2 82 127 0 -1 118 180 181 154 233 234
11 20 21 47 73 1-2 83 128 0 -1 119 181 182 155 234 235
12 21 22 48 74 76 84 129 0 -1 120 182 183 156 235 236
13 23 24 49 76 78 85 131 0 -1 121 184 185 157 237 238
14 24 25 50 77 79 86 132 133 122 185 186 158 238 239
15 25 26 51 78 80 87 133 134 123 186 187 159 239 240
16 27 29 52 80 82 88 135 136 124 188 189 160 241 241
17 28 30 53 81 83 89 136 137 125 189 190 161 242 242
18 29 31 54 82 84 90 137 138 126 190 191 162 243 243
19 32 1-2 55 86 1-2 91 140 0 -2 127 193 1-2 163 248 248
20 33 1-2 56 87 1-2 92 141 0 -2 128 194 1-2 164 249 249
21 34 36 57 88 1-2 93 142 1-2 129 195 1-2 165 250 250
22 36 38 58 90 1-2 94 144 1-2 130 197 199 166 252 252
23 37 39 59 91 1-2 95 145 1-2 131 198 200 167 253 253
24 38 40 60 92 1-2 96 146 1-2 132 199 201 168 254 254
25 40 42 61 94 1-2 97 148 1-2 133 201 203 169 256 257
26 41 43 62 95 97 98 149 1-2 134 202 204 170 257 258
27 42 44 63 96 98 99 150 1-2 135 203 205 171 258 259
28 46 0-1 64 99 1-2 100 153 154 136 207 1-2 172 261 261
29 47 48 65 100 1-2 101 154 155 137 208 1-2 173 262 262
30 48 49 66 101 103 102 155 156 138 209 1-2 174 263 263
31 50 51 67 103 105 103 157 158 139 211 1-2 175 265 266
32 51 52 68 104 106 104 158 159 140 212 1-2 176 266 267
33 52 53 69 105 107 105 159 160 141 213 1-2 177 267 268
34 54 54 70 107 109 106 161 162 142 215 1-2 178 269 270
35 55 55 71 108 110 107 162 163 143 216 1-2 179 270 271
36 56 56 72 109 111 108 163 164 144 217 1-2 180 271 272
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Table 3 (continued).

d g n d g n d g n d g n d g n
181 274 275 217 328 328 253 383 383 289 436 437 325 491 491
182 275 276 218 329 329 254 384 384 290 437 438 326 492 492
183 276 277 219 330 330 255 385 385 291 438 439 327 493 493
184 278 279 220 332 332 256 387 387 292 440 441 328 495 495
185 279 280 221 333 333 257 388 388 293 441 442 329 496 496
186 280 281 222 334 334 258 389 389 294 442 443 330 497 497
187 282 1-2 223 336 336 259 391 391 295 444 445 331 499 0 -1
188 283 285 224 337 337 260 392 392 296 445 446 332 500 0 -1
189 284 286 225 338 338 261 393 393 297 446 447 333 501 0 -1
190 288 288 226 341 341 262 396 396 298 450 0 -1 334 504 504
191 289 289 227 342 342 263 397 397 299 451 0 -1 335 505 505
192 290 290 228 343 343 264 398 398 300 452 0 -1 336 506 506
193 292 292 229 345 345 265 400 400 301 454 0 -1 337 508 0 -1
194 293 293 230 346 346 266 401 401 302 455 456 338 509 0 -1
195 294 294 231 347 347 267 402 402 303 456 457 339 510 0 -1
196 296 296 232 349 349 268 404 404 304 458 459 340 512 513
197 297 297 233 350 350 269 405 405 305 459 460 341 513 514
198 298 298 234 351 351 270 406 406 306 460 461 342 514 515
199 301 0 -1 235 354 354 271 410 410 307 463 0 -1 343 517 0 -1
200 302 303 236 355 355 272 411 411 308 464 465 344 518 0 -1
201 303 304 237 356 356 273 412 412 309 465 466 345 519 0 -1
202 305 306 238 358 358 274 414 414 310 467 468 346 521 0 -1
203 306 307 239 359 359 275 415 415 311 468 469 347 522 523
204 307 308 240 360 360 276 416 416 312 469 470 348 523 524
205 309 310 241 362 362 277 418 418 313 471 472 349 525 526
206 310 311 242 363 363 278 419 419 314 472 473 350 526 527
207 311 312 243 364 364 279 420 420 315 473 474 351 527 528
208 314 314 244 370 370 280 423 424 316 476 476 352 531 531
209 315 315 245 371 371 281 424 425 317 477 477 353 532 532
210 316 316 246 372 372 282 425 426 318 478 478 354 533 533
211 318 318 247 374 374 283 427 428 319 480 480 355 535 535
212 319 319 248 375 375 284 428 429 320 481 481 356 536 536
213 320 320 249 376 376 285 429 430 321 482 482 357 537 537
214 322 322 250 378 378 286 431 432 322 484 484 358 539 539
215 323 323 251 379 379 287 432 433 323 485 485 359 540 540
216 324 324 252 380 380 288 433 434 324 486 486 360 541 541
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