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Abstract. We prove that a non-trivial minimal blocking set with respect to
hyperplanes in PG(r, 2), r ≥ 3, is a skeleton contained in some s-flat with
odd s ≥ 3. We also consider non-trivial minimal blocking sets with respect to
lines and planes in PG(r, 2), r ≥ 3. Especially, we show that there are exactly
two non-trivial minimal blocking sets with respect to lines and six non-trivial
minimal blocking sets with respect to planes up to projective equivalence in
PG(4, 2). A characterization of an elliptic quadric in PG(5, 2) as a special non-
trivial minimal blocking set with respect to planes meeting every hyperplane
in a non-trivial minimal blocking sets with respect to planes is also given.

1 Introduction

We denote by PG(r, q) the projective geometry of dimension r over the field of q elements
Fq. A j-flat is a projective subspace of dimension j in PG(r, q). In this paper, Πk stands
for a k-flat in in PG(r, q). We set Πk = ∅ for k < 0. The 0-flats, 1-flats, 2-flats, 3-flats and
(r − 1)-flats are called points, lines, planes, solids and hyperplanes, respectively. A set of
points in PG(r, q) meeting every (r − k)-flat is called a k-blocking set or a blocking set
with respect to (r − k)-flats [4]. A 1-blocking set is simply called a blocking set. But we
only use ‘1-blocking set’ to avoid confusion. A k-flat in PG(r, q) is the smallest k-blocking
set [5] and a k-blocking set containing a k-flat in PG(r, q) is called trivial. A k-blocking
set B is minimal if B \ {P} is no longer a k-blocking set for any point P of B.

For an integer r ≥ 3 and a prime power q ≥ 3, a smallest non-trivial 1-blocking set
B0 in a plane δ in PG(r, q) is also a smallest non-trivial 1-blocking set in PG(r, q). The
speciality for the binary case is that a non-trivial 1-blocking set in PG(2, 2) does not exist.

Denote by Cone(Πk,B) (or simply ΠkB) a cone with vertex a k-flat Πk and base B in
an s-flat ∆ skew to Πk. Note that the cone is just B if Πk is empty.

Govaerts and Storme proved the following.

Theorem 1.1 ([16]). (a) Any smallest non-trivial 1-blocking set in PG(r, 2), r ≥ 3, is
an elliptic quadric in a solid in PG(r, 2).

1Corresponding author.
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(b) Every non-trivial minimal 2-blocking set in PG(3, 2) is the complement of an elliptic
quadric.

(c) Any smallest non-trivial k-blocking set in PG(r, 2), r ≥ 3, with 2 ≤ k ≤ r − 1 is
Cone(Πk−3, T ) where T is the set of 10 points consisting of the complement of an
elliptic quadric in a solid ∆.

An elliptic quadric in PG(3, 2) is a set of five points no four of which are coplanar, that
is the only non-trivial minimal 1-blocking set in PG(3, 2) up to projective equivalence.
A natural question is to classify all non-trivial minimal k-blocking sets in PG(r, 2) up to
projective equivalence for 1 ≤ k ≤ r − 1.

In this paper, the point P in PG(r, 2) with coordinate vector (p0, p1, . . . , pr) is denoted
by (p0, p1, . . . , pr) or simply p0p1 . . . pr, and the number of 1’s in {p0, p1, . . . , pr} is called
the weight of P . The hyperplane defined by the equation a0x0 + a1x1 + · · ·+ arxr = 0 is
denoted by [a0a1 . . . ar]. For two distinct points P (p0, p1, . . . , pr) and Q(q0, q1, . . . , qr) in
PG(r, 2), we denote the point (p0 + q0, p1 + q1, . . . , pr + qr) by P +Q.

Let ei = 0 · · · 010 · · · 0 be the point of PG(r, 2) the only i-th entry of which is 1. We
denote by 1 the point 11 · · · 1 and let Ir := {e1, e2, . . . , er+1,1} in PG(r, 2) with odd
r ≥ 3. Note that I3 = {1000, 0100, 0010, 0001, 1111} is an elliptic quadric in PG(3, 2). It
is easy to see that Ir is a non-trivial 1-blocking set in PG(r, 2) since r is odd. Since Ir

meets the hyperplane [ej + 1] in the point ej and meets the hyperplane [11 · · · 1] in the
point 1, Ir is minimal. Thus Ir is a non-trivial minimal 1-blocking set in PG(r, 2) for odd
r ≥ 3.

Let P1, P2, . . . , Pr+1 be r+1 points of PG(r, 2) in general position. We call the (r+2)-
set {P1, P2, . . . , Pr+1,

∑r+1
i=1 Pi} a skeleton in PG(r, 2), which is also called a ‘frame’ [2].

Obviously, a skeleton in PG(r, 2) is projectively equivalent to Ir. We prove the following.

Theorem 1.2. Let S be a non-trivial minimal 1-blocking set in PG(r, 2), r ≥ 3. Then,
S is projectively equivalent to Is in some s-flat of PG(r, 2) with odd s ≥ 3.

Corollary 1.3. There are exactly ⌊(r − 1)/2⌋ non-trivial minimal 1-blocking sets up to
projective equivalence in PG(r, 2), r ≥ 3.

Next, let us give two examples of non-trivial minimal (r−1)-blocking sets in PG(r, 2).

Example 1.4. (1) From Theorem 1.1, Cone(Πr−4, T ) with an (r − 4)-flat Πr−4 and T
in a solid ∆ skew to Πr−4 is the smallest non-trivial (r − 1)-blocking set of size
11 · 2r−3 − 1 in PG(r, 2) for r ≥ 3, say of type A1, where T is the complement of a
skeleton (an elliptic quadric) in ∆.

(2) Take two hyperplanes H1, H2 and a line l skew to H1 ∩ H2 in PG(r, 2) for r ≥ 3.
Let Qi = Hi ∩ l for i = 1, 2 and take the point P = Q1 + Q2 on l. Then, S =
(H1 \ {Q1})∪ (H2 \ {Q2})∪ {P} forms a non-trivial minimal (r− 1)-blocking set of
size 3 · 2r−1 − 2 in PG(r, 2), say of type A2.

We note that in PG(3, 2) the non-trivial minimal 2-blocking sets of type A1 and type
A2 are the same. Any smallest non-trivial (r − 1)-blocking set in PG(r, 2), r ≥ 3, is
Cone(Πr−4, T ) of size 11 · 2r−3 − 1 = 2r+1 − 1− 5 · 2r−3, where T is a 10-set in some solid
∆ such that ∆ \ T is a skeleton by Theorem 1.1(c). As for the second and third smallest
ones, we show the following.

2



Theorem 1.5. (a) Any second smallest non-trivial (r − 1)-blocking set in PG(r, 2),
r ≥ 4, is Cone(Πr−5, S22) of size 2r+1 − 1 − 9 · 2r−4, where S22 is a non-trivial
minimal 3-blocking set of type A2 in a 4-flat.

(b) Any third smallest non-trivial (r − 1)-blocking set in PG(r, 2), r ≥ 5, has size
2r+1 − 1− 17 · 2r−5.

As a consequence of Theorem 1.2, there is only one non-trivial minimal 1-blocking set
up to projective equivalence in PG(4, 2), which is a skeleton in a solid. We also classify
non-trivial minimal k-blocking sets in PG(4, 2) up to projective equivalence for k = 2, 3.

Theorem 1.6. There are exactly two non-trivial minimal 3-blocking sets in PG(4, 2).
One is of type A1 with size 21, that is, Cone(P, T ) with a point P and the complement T
of a skeleton in ∆, where ∆ is a solid not containing P . The other is of type A2 with size
22, consisting of two solids ∆1,∆2 with two points Qi ∈ ∆i \ (∆1 ∩∆2), i = 1, 2, deleted
plus one point Q1 +Q2.

For t flats χ1, . . . , χt, we denote by ⟨χ1, . . . , χt⟩ the smallest flat containing χ1, . . . , χt.
From Theorem 1.1, we get (a) of the following theorem.

Theorem 1.7. (a) Let S10 be the set of 10 points in a solid ∆ in PG(4, 2) which is the
complement of a skeleton in ∆. Then, S10 is the smallest non-trivial 2-blocking set
in PG(4, 2).

(b) Let S11 = Cone(P,K) with a point P and a skeleton K in a solid ∆ not containing
P . Then, S11 is a non-trivial minimal 2-blocking set with size 11 in PG(4, 2).

(c) Take two planes δ1, δ2 meeting in a point P in PG(4, 2) and a point Qi ∈ δi\{P} for
i = 1, 2. Let S12 = (δ1 \ {Q1})∪ (δ2 \ {Q2})∪ {Q1 +Q2}. Then, S12 is a non-trivial
minimal 2-blocking set with size 12 in PG(4, 2).

(d) Take three points Q1, Q2, Q3 not on a line and a line l which is skew to the plane
⟨Q1, Q2, Q3⟩ in PG(4, 2). Let δi = ⟨Qi, l⟩ for i = 1, 2, 3 and let P = Q1 +Q2 +Q3.
Then, S13 = {P} ∪

∪3
i=1(δi \ {Qi}) is a non-trivial minimal 2-blocking set with size

13 in PG(4, 2).

(e) Take a skeleton {Q1, Q2, Q3, Q4, P =
∑4

i=1 Qi} in a solid ∆ and a point R1 out of
∆. Let l1, . . . , l4 be the lines defined by l1 = {P,R1, R

′
1 = P +R1} and

lj = {P,Rj = Rj−1 +Qj−1, R
′
j = R′

j−1 +Qj−1}, j = 2, 3, 4.

Then, S ′
13 =

∪4
i=1(li ∪{P +Qi}) is a non-trivial minimal 2-blocking set with size 13

in PG(4, 2).

(f) A parabolic quadric P4 is a non-trivial minimal 2-blocking set with size 15 in PG(4, 2).

Theorem 1.8. There are exactly six non-trivial minimal 2-blocking sets in PG(4, 2) up
to projective equivalence, which are described in Theorem 1.7.

An elliptic quadric E5 in PG(5, 2) meets a hyperplane in a 11-set projectively equivalent
to S11 in Theorem 1.7 or a parabolic quadric P4. Hence we get the following.
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Corollary 1.9. An elliptic quadric E5 in PG(5, 2) is a non-trivial minimal 3-blocking set
meeting every hyperplane in a non-trivial minimal 2-blocking set.

We prove that the converse is also valid:

Theorem 1.10. Let S be a non-trivial minimal 3-blocking set in PG(5, 2) meeting every
hyperplane in a non-trivial minimal 2-blocking set. Then, S is an elliptic quadric E5 in
PG(5, 2).

We prove Theorem 1.2 in Section 2, Theorems 1.5 and 1.6 in Section 3 and Theorems
1.7, 1.8 and 1.10 in Section 4.

2 Non-trivial minimal 1-blocking sets in PG(r, 2)

For a set S in PG(r, q), we denote by Sc the complement of S in PG(r, q). The following
is well known, which is straightforward from the definition.

Lemma 2.1. A set S is a non-trivial k-blocking set in PG(r, q) if and only if Sc is a
non-trivial (r − k)-blocking set in PG(r, q).

Lemma 2.2. Every non-trivial 1-blocking set in PG(3, 2) is a skeleton (an elliptic quadric).

Proof. Let S be a non-trivial 1-blocking set in PG(3, 2). By Lemma 2.1, the complement
Sc is a non-trivial 2-blocking set in PG(3, 2). Then, Sc contains the complement of an
elliptic quadric Ec

3 by Theorem 1.1(b), whence S is contained in E3. Since E3 is the smallest
non-trivial 1-blocking set in PG(3, 2), we have S = E3.

Lemma 2.3. Every non-trivial minimal 1-blocking set in PG(4, 2) is a skeleton of some
solid.

Proof. Let S be a non-trivial minimal 1-blocking set in PG(4, 2). Assume that S is
contained in a solid ∆. Then, S is a non-trivial minimal 1-blocking set in ∆, which is a
skeleton of ∆ by Lemma 2.2. Next, assume that S is not contained in a solid. Note that
S contains no skeleton of a solid because of the minimality. Without loss of generality, we
may assume that S contains the 5-set K = {10000, 01000, 00100, 00010, 00001}. Then, S
contains a point of even weight since the solid [11111] contains no point of K. On the
other hand, S contains no point of weight 2 (resp. 4) since S contains no line (resp. no
skeleton of a solid), a contradiction.

Proof of Theorem 1.2. We prove Theorem 1.2 by induction on r. The theorem is
valid for r = 3, 4 by Lemmas 2.2, 2.3, respectively. We first assume r = 2m − 1 with
m ≥ 3 and that our assertion holds for at most r − 1 dimensions. Let S be a non-trivial
minimal 1-blocking set in PG(r, 2). If S is contained in a hyperplane H, then S forms
a non-trivial minimal 1-blocking set of H, which is projectively equivalent to Is in some
s-flat of H with odd s ≥ 3 from the induction hypothesis. So, we assume that S is not
contained in a hyperplane. Without loss of generality, we may assume that S contains the
2m-set K = {e1, · · · , e2m}. Then, S contains a point of even weight since the hyperplane
H1 = [11 · · · 1] contains no point of K. Suppose that S contains a point P = (p1, . . . , p2m)
with weight 2t for some t < m and let pj = 1 for j = u1, . . . , u2t. Then, S contains the
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(2t + 1)-set {eu1 , . . . , eu2t , P} which is projectively equivalent to I2t−1. This contradicts
the minimality of S. Hence S contains the point 1 = 11 · · · 1, giving S = I2m−1. One
can prove our assertion similarly for the case r = 2m with m ≥ 3. Actually, we get a
contradiction when we assume that S is not contained in a hyperplane since every point
of PG(2m, 2) with even weight has a 0 entry.

3 Non-trivial minimal (r− 1)-blocking sets in PG(r, 2)

In this section, we consider non-trivial minimal blocking sets with respect to lines in
PG(r, 2). A t-set T in PG(r, q) is called a t-cap if T meets any line in at most two points.
A t-cap T is complete if it is not contained in a (t + 1)-cap. For q = 2, it is well known
that a largest complete cap in PG(r, 2) is the complement of a hyperplane. The following
is obvious from the definitions.

Lemma 3.1 ([4]). A t-set T in PG(r, 2) is a complete t-cap if and only if the complement
T c is a minimal (r − 1)-blocking set in PG(r, 2).

Much attention has been given to the complete caps in PG(r, 2) from coding theory to
study binary quasi-perfect codes. An [n, k, d]q code is a linear code of length n, dimension
k and minimum weight d over Fq. Let C be an [n, n − r − 1, 4]2 code with parity check
matrix H with size (r+1)×n and let T be the n-set in PG(r, 2) consisting the n columns
of H. Then, it can be shown that T is a complete cap if and only if C has covering radius
2. If the code C of minimum distance 4 has covering radius 2, C is called quasi-perfect.
See [6] and [12] for binary quasi-perfect linear codes and caps in binary projective spaces.

It follows from Lemma 3.1 that the known results on complete caps in PG(r, 2) can
be seen as results on minimal (r − 1)-blocking sets in PG(r, 2), see [1, 6, 7, 8, 9, 10, 11,
12, 15, 21, 22, 23] and the references therein for complete caps in PG(r, 2).

An n-cap in PG(r, 2) is called large if n ≥ 2r−1 + 1, critical if n = 2r−1 + 1, and small
if n ≤ 2r−1 [7]. The following is known for critical complete caps in PG(r, 2) for r ≤ 6.

Theorem 3.2 ([10, 11, 12, 22]). (a) Every complete 5-cap in PG(3, 2) is projectively
equivalent to I3 = {1000, 0100, 0010, 0001, 1111}.

(b) Every complete 9-cap in PG(4, 2) is projectively equivalent to
C9 = {01000, 00100, 00010, 00001, 01111, 10100, 10010, 10001, 10111}.

(c) There are exactly five inequivalent complete 17-caps in PG(5, 2) up to projective
equivalence.

(d) There are exactly 42 inequivalent complete 33-caps in PG(6, 2) up to projective equiv-
alence.

Let Tk be a k-cap in a hyperplane H of PG(r, 2) and let P be a point out of H. Then,
T2k = Tk∪{P +Q | Q ∈ Tk} forms a 2k-cap in PG(r, 2). It is also known that the cap T2k

is complete in PG(r, 2) if and only if Tk is complete in H. This construction of T2k from
Tk is called the doubling construction or Plotkin construction [6, 12]. This means that the
minimal (r − 1)-blocking set T c

2k = PG(r, 2) \ T2k is obtained as Cone(P, T c
k ).

All exact possible sizes of large complete caps and the structure of complete n-caps
with n > 2r−1 − 1 is known as follows.

5



Theorem 3.3 ([12]). (a) A complete t-cap in PG(r, 2) with t > 2r−1 exists if and only
if t = 2r−1 + 2r−1−g with g ∈ {0, 2, 3, . . . , r − 1}.

(b) In PG(r, 2), for g = 2, 3, . . . , r−2, each complete (2r−1+2r−1−g)-cap can be obtained
by (r−1−g)-fold application of the doubling construction to a complete (2g+1)-cap
in PG(g + 1, 2).

Hence, every large complete cap can be obtained from some critical complete cap by
the doubling construction. Theorems 3.2 and 3.3 yield the following.

Theorem 3.4 ([12]). (a) In PG(r, 2), r ≥ 3, the second largest complete caps are
5 · 2r−3-caps, which are projectively equivalent to the cap obtained by (r − 3)-fold
application of the doubling construction to I3.

(b) In PG(r, 2), r ≥ 4, the third largest complete caps are 9 · 2r−4-caps, which are
projectively equivalent to the cap obtained by (r− 4)-fold application of the doubling
construction to C9.

(c) In PG(r, 2), r ≥ 5, the fourth largest complete caps are 17 · 2r−5-caps.

The part (a) of Theorem 3.4 implies Theorem 1.1(c) for k = r − 1. Taking two
hyperplanes H1 = [00111], H2 = [01111] and two points Q1 = 01000 ∈ H1 and Q2 =
01111 ∈ H2, one can see that the complement of C9 in PG(4, 2) is a non-trivial minimal
3-blocking set of type A2 in Example 1.4. Hence, Theorem 1.5 follows from the parts (b)
and (c) of Theorem 3.4.

Every non-trivial minimal 2-blocking sets in PG(3, 2) is the complement of a skeleton
(an elliptic quadric) by Lemmas 2.1 and 2.2. As for small n-caps with n ≤ 2r−1 in
PG(r, 2), the following is known for r ≤ 6, see [15] for r ≥ 7.

Theorem 3.5 ([13, 14, 21, 22]). (a) A small complete cap does not exist in PG(r, 2)
for r ≤ 4.

(b) In PG(5, 2), there are only small complete 13-caps.

(c) In PG(6, 2), the possible sizes of small complete caps are 21, 22, 24, 25, 26.

Now, let S be a non-trivial minimal 3-blocking set in Σ = PG(4, 2). It follows from
Theorem 3.5(a) that |Sc| ≥ 23 + 1, i.e., |S| ≤ 22. If |S| = 22, S = S22 in Theorem 1.5. If
|S| = 21, S has the smallest size from Theorem 1.1(c). Thus, we obtain Theorem 1.6.

Table 1 gives the number of non-trivial minimal (r − 1)-blocking sets in PG(r, 2) up
to projective equivalence for r ≤ 6. The classification of complete caps in PG(r, 2) for
r = 5, 6 is obtained by an exhaustive computer search, see [10, 22].

4 Non-trivial minimal (r− 2)-blocking sets in PG(r, 2)

For a given set S, a line l is called an i-line of S if |S∩ l| = i. An i-plane, i-solid and so on
are defined similarly. We denote by ai the number of i-hyperplanes. The list of the values
ai is called the spectrum of S. For example, the spectrum of a skeleton K in PG(3, 2) is
(a1, a3) = (5, 10) and there is a unique 1-plane of K through P for any point P of K.
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Table 1: The number of non-trivial minimal (r − 1)-blocking sets in PG(r, 2)

r Size #
3 10 1
4 21 1

22 1
5 43 1

45 1
46 5
50 1

r Size #
6 87 1

91 1
93 5
94 42
96 2
98 3
99 1

r Size #
6 100 4

101 2
102 13
103 6
105 2
106 5

In this section, we consider non-trivial minimal blocking sets with respect to planes.
We first give some examples of non-trivial minimal (r− 2)-blocking sets in PG(r, q) with
3 ≤ r ≤ 5, see [19] and [20] for quadrics in PG(r, q).

Example 4.1. Let q be a prime power.

(1) An elliptic quadric E3 in PG(3, q) is a non-trivial minimal 1-blocking set of size q2+1
since E3 has spectrum (a1, aq+1) = (q2 + 1, q3 + q) and since each point of E3 is on
a 1-plane, see [18]. Recall that the q + 1 points of E3 in a (q + 1)-plane forms a
(q + 1)-arc, which is a (q + 1)-set no three of which are collinear.

(2) Take an elliptic quadric E3 in a solid ∆ and a point P out of ∆ in PG(4, q). Let
Π0E3 be the cone with vertex P and base E3. It follows from the spectrum of E3
that Π0E3 has spectrum

(aq+1, aq2+1, aq2+q+1) = (q2 + 1, q4, q3 + q).

Let H be a solid. If H contains the vertex P , then H meets Π0E3 in a line (resp.
non-coplanar q + 1 lines) through P when H ∩∆ is a 1-plane (resp. (q + 1)-plane).
Otherwise, H meets Π0E3 in an elliptic quadric. Hence, Π0E3 is a non-trivial minimal
2-blocking set in PG(4, q).

(3) A parabolic quadric P4 in PG(4, q) has spectrum

(aq2+1, aq2+q+1, aq2+2q+1) = (
q4 − q2

2
, (q + 1)(q2 + 1),

q4 + q2

2
)

and an i-solid ∆ meets P4 in an elliptic quadric, a cone with vertex a point and base
a conic, a hyperbolic quadric for i = q2 + 1, q2 + q + 1, q2 + 2q + 1, respectively. So,
possible planes are 1-, (q + 1)- and (2q + 1)-planes. For any point P in P4, one can
find a solid through P meeting P4 in an elliptic quadric. Hence, P4 is a non-trivial
minimal 2-blocking set of size (q + 1)(q2 + 1).

(4) An elliptic quadric E5 in PG(5, q) is a non-trivial minimal 3-blocking set of size
(q + 1)(q3 + 1) meeting every hyperplane in a non-trivial minimal 2-blocking set
since E5 meets every hyperplane in a parabolic quadric P4 or a cone Π0E3.
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From now on, we consider the case when q = 2. Let Sn be a non-trivial minimal
2-blocking set of size n in PG(4, 2). We denote the numbers of i-planes by bi. Simple
counting arguments yield the following.

Lemma 4.2. (a)
∑6

i=1 bi = 155.

(b)
∑6

i=1 ibi = 35n.

(c)
∑6

i=2 i(i− 1)bi = 7n(n− 1).

Proof. Recall that the number of lines in PG(4, q) is (q2 + 1)θ4 and that the number of
planes through a fixed point in PG(4, q) is (q2 + 1)θ2, where θj = (qj+1 − 1)/(q − 1), see
[19]. Hence (1) and (2) hold. Counting the number of ({P,Q}, δ) with distinct points
P,Q and a plane δ containing P and Q in PG(4, 2), one can obtain (3).

A given set S in PG(4, 2) is a non-trivial minimal 2-blocking set if and only if S satisfies
that b0 = b7 = 0 and that every point of S is on a 1-plane. We first prove Theorem 1.7.

Proof of Theorem 1.7.

(a) Let S10 = ∆ \ E3, where ∆ is a solid and E3 is a skeleton of ∆. S10 is a smallest
non-trivial minimal 2-blocking set by Theorem 1.1(c) with

(a4, a6, a10) = (20, 10, 1), (b1, b2, b3, b4, b6) = (40, 60, 40, 10, 5).

(b) Take a skeleton K = {P1, P2, P3, P4, P1+P2+P3+P4} in a solid ∆ and a point P out
of ∆. Let S11 = Cone(P,K). Note that S11 is uniquely determined by 5 points in
general position: P1, P2, P3, P4, P . It follows from Example 4.1(2) that S11 is a non-
trivial minimal 2-blocking set in PG(4, 2) with spectrum (a3, a5, a7) = (5, 16, 10).
Let H be a solid. If H contains the vertex P , then H ∩ S11 is a line (resp. non-
coplanar three lines) through P when H∩∆ is a 1-plane (resp. 3-plane). Otherwise,
H ∩ S11 is a skeleton. Hence, by Lemma 4.2, we have (b1, b3, b5) = (50, 95, 10).

(c) Take a skeleton K = {P1, P2, P3, P4, P0 = P1 + P2 + P3 + P4} in a solid ∆ and a
point P out of ∆ again. Take two lines l1, l2 and two planes δ1, δ2 as

l1 = {P1, P2, Q1 = P1 + P2}, l2 = {P3, P4, Q2 = P3 + P4},

δ1 = ⟨l1, P ⟩, δ2 = ⟨l2, P ⟩ and let S12 = (δ1 \ {Q1}) ∪ (δ2 \ {Q2}) ∪ {P0}. S12 is also
uniquely determined by 5 points in general position: P1, P2, P3, P4, P . Obviously,
S12 satisfies b0 = b7 = 0. Indeed, one can calculate

(a4, a5, a6, a7, a8) = (5, 12, 4, 4, 6), (b1, b2, b3, b4, b5, b6) = (26, 40, 54, 25, 8, 2).

Let l0 be a 0-line of S12 in ∆ containing none of Q1, Q2 (there are four such lines).
Then, ⟨l0, P ⟩ is a 1-plane at P . Let l′i be the line through Qi on δi other than the two
lines li, ⟨Qi, P ⟩ for i = 1, 2. For the line l = ⟨Q1, Q2⟩, the union of the five planes
⟨l, l1⟩, ⟨l, l′1⟩, ⟨l, l2⟩, ⟨l, l′2⟩, ⟨l, P ⟩ includes S12. Hence, the other two planes through l
are 1-planes at P0. For any point P ′ ∈ δi \ {P,Qi}, one can find two 1-planes at P ′

through the line ⟨P ′, Qj⟩ for {i, j} = {1, 2} similarly. Thus, S12 is minimal.
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(d) Take three non-collinear points Q1, Q2, Q3 and a line l = {P1, P2, P1 + P2} which is
skew to the plane δ0 = ⟨Q1, Q2, Q3⟩. Let P = Q1 +Q2 +Q3 and S13 = ({P} ∪ δ1 ∪
δ2 ∪ δ3) \ {Q1, Q2, Q3}, where δi = ⟨l, Qi⟩ for i = 1, 2, 3. S13 is uniquely determined
by the 5 points P1, P2, Q1, Q2, Q3 in general position. It can be checked that

(a3, a5, a7, a9) = (1, 12, 15, 3), (b1, b2, b3, b4, b5, b6) = (22, 27, 60, 34, 9, 3).

Obviously, δ0 is a 1-plane at P and that ⟨P ′, Qj, Qk⟩ is a 1-plane at any point
P ′ ∈ (δi ∩ S13) \ l for {i, j, k} = {1, 2, 3}. Let m be the line on δ0 not meeting
{Q1, Q2, Q3, P}. For any point R on L, ⟨R,m⟩ is a 1-plane at R. Hence, S13 is
minimal.

(e) Take a skeleton K = {Q1, Q2, Q3, Q4, P = Q1 + Q2 + Q3 + Q4} in a solid ∆ and
a point R1 out of ∆. Let Rj = Rj−1 + Qj−1 for j = 2, 3, 4 and take lines L1 =
{P,R1, R

′
1 = P + R1}, Lj = {P,Rj, R

′
j = P + Rj = R′

j−1 + Qj−1} for j = 2, 3, 4.

Let S ′
13 =

∪4
i=1(Li ∪ {Pi = P + Qi}). S ′

13 is also uniquely determined by 5 points
Q1, Q2, Q3, Q4, R1 in general position. One can calculate that

(a5, a7, a9) = (15, 12, 4), (b1, b2, b3, b4, b5, b6) = (15, 44, 50, 32, 10, 4).

Since ∆ ∩ S ′
13 = {P1, P2, P3, P4, P} is a skeleton, each of the points P1, P2, P3, P4, P

is on a 1-plane. The plane ⟨R1, Q2, Q3⟩ is a 1-plane through R1 and the plane
⟨R′

1, Q2, Q3⟩ is a 1-plane through R′
1. One can find a 1-plane through each of

R2, R3, R4, R
′
2, R

′
3, R

′
4 similarly. Thus, S ′

13 is minimal.

(f) A parabolic quadric in PG(4, 2) is a non-trivial minimal 2-blocking set of size 15 with
(a5, a7, a9) = (6, 15, 10) and (b1, b3, b5) = (15, 95, 45) by Lemma 4.2, see Example
4.1(3).

Theorem 1.8 can be proved with the aid of a computer as follows.

Proof of Theorem 1.8. Let S be a non-trivial minimal 2-blocking set in PG(4, 2). Since
S is smallest when |S| = 10 and such a set is the complement of a skeleton in a solid
by Theorem 1.1(c), we may assume that 11 ≤ |S| ≤ 20 by Lemma 2.1 and that π \ S
contains no skeleton for any solid π. Let ∆ be a solid meeting S in s points. We have
s ≤ 12 since S contains no plane. If s = 11 or 12, one can find a point of S ∩ ∆ which
is not on a 1-plane, a contradiction. Assume s = 10. If ∆ \ S contains no line, then the
5-set ∆ \ S is a skeleton in ∆, a contradiction. Suppose ∆ \ S consists of a line l and two
points Q1, Q2. If Q2 is on the plane ⟨l, Q1⟩, then there is no 1-plane of S through a point
of (∆ ∩ S) \ ⟨l, Q1⟩, a contradiction. Hence Q2 ̸∈ ⟨l, Q1⟩. Take a plane δ in ∆ through
the line ⟨Q1, Q2⟩ meeting l at Q, say. Then, there is no 1-plane of S through the point
Q1 + Q2 + Q ∈ ∆ ∩ S, a contradiction again. Thus, we may assume that S meets every
solid in at most 9 points. Recall that S satisfies b0 = b7 = 0. We show that b5 + b6 > 0.
Suppose b5 = b6 = 0. If b4 = 0, then S meets every solid in at most 5 points and we
have |S| ≤ (5 − 3)3 + 3 = 9, a contradiction. Hence there is a 4-plane, say δ. Let π be
a solid through δ with |S ∩ π| = n > 4. Taking the n points of S ∩ π as columns of a
generator matrix, one can get an [n, 4, n−4]2 code C, see [3]. Since no [9, 4, 5]2 codes exist
[17], we have n ≤ 8. If n = 7 or 8, then C is a Hamming [7, 4, 3]2 code or an extended
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Hamming [8, 4, 4]2 code, and C has a codeword of weight n, which implies that π contains
a 0-plane, a contradiction. Hence a solid π through δ satisfies |S ∩ π| ≤ 6, and we have
|S| ≤ (6− 4)3 + 4 = 10, a contradiction again. Thus b5 + b6 > 0.

Assume b6 > 0 and let ∆1,∆2,∆3 be the solids through a 6-plane δ0. Since S meets
these solids in at most 9 points, we have |S| ≤ (9 − 6)3 + 6 = 15. Without loss of
generality, we may assume that ∆1 = [00001], ∆2 = [00010], ∆3 = [00011] and

S ∩ δ0 = {10000, 01000, 11000, 00100, 10100, 01100}.

Let ti = |S ∩∆i| − 6. By an exhaustive computer search for ti points from ∆i, we obtain
576 sets which are projectively equivalent to S12 when (t1, t2, t3) = (2, 2, 2), 256 sets and
768 sets which are projectively equivalent to S13 and S ′

13, respectively, when (t1, t2, t3) =
(3, 3, 1). Assuming b6 = 0 and b5 > 0, a similar exhaustive computer search found non-
trivial minimal 2-blocking sets projectively equivalent to either S11 or a parabolic quadric
P4.

Finally, we prove Theorem 1.10.

Proof of Theorem 1.10. Let S be a non-trivial minimal 3-blocking set in PG(5, 2)
meeting every hyperplane in a non-trivial minimal 2-blocking set. It follows form Theorem
1.8 and from the proof of Theorem 1.7 that we have |S ∩H| ∈ {10, 11, 12, 13, 15} for any
hyperplane H and 3 ≤ |S ∩∆| ≤ 10 for any solid ∆. Suppose that a 10-solid ∆10 exists.
Since the hyperplanes through ∆10 are 10-hyperplanes, we have |S| = 10. Then, one can
find a 0-plane, a contradiction. Suppose that a 4-solid ∆4 exists. Since the hyperplanes
through ∆4 are 12-hyperplanes, we have |S| = (12−4)3+4 = 28. On the other hand, the
hyperplanes through a fixed 8-solid are also 12-hyperplanes, and |S| = (12−8)3+8 = 20, a
contradiction. Suppose that there is a 5-solid ∆5 such that S∩∆5 is not a skeleton. Since
such a 5-solid exists only for S13 and S ′

13, we have |S| = (13−5)3+5 = 29. Take a 9-solid
δ9 in a 13-hyperplane. Since S ∩ δ9 is not a hyperbolic quadric, there is no 15–hyperplane
through δ9, whence |S| = (13 − 9)3 + 9 = 21, a contradiction. Hence, S meets every
hyperplane in a cone Π0E3 or a parabolic quadric P3, and S has size (15− 9)3 + 9 = 27.
Such a set S is an elliptic quadric E5 by Theorem 1.97 in [20].
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