On the non－trivial minimal blocking sets in binary projective spaces

メタデータ	言語：eng
	出版者：
	公開日：2022－02－03
	キーワード（Ja）：
	キーワード（En）：
	作成者：Bono，Nanami，Maruta，Tatsuya，Shiromoto，
	Keisuke，Yamada，Kohei
	メールアドレス： 所属：
URL	http：／／hdl．handle．net／10466／00017590

On the non-trivial minimal blocking sets in binary projective spaces

Nanami Bono, Tatsuya Maruta ${ }^{1}$
Department of Mathematical Sciences, Osaka Prefecture University
Keisuke Shiromoto
Department of Mathematics and Engineering, Kumamoto University
Kohei Yamada
Department of Computer Science and Mathematical Informatics, Nagoya University

Keywords: minimal blocking set, binary projective space, elliptic quadric, skeleton

Abstract

We prove that a non-trivial minimal blocking set with respect to hyperplanes in $\operatorname{PG}(r, 2), r \geq 3$, is a skeleton contained in some s-flat with odd $s \geq 3$. We also consider non-trivial minimal blocking sets with respect to lines and planes in $\operatorname{PG}(r, 2), r \geq 3$. Especially, we show that there are exactly two non-trivial minimal blocking sets with respect to lines and six non-trivial minimal blocking sets with respect to planes up to projective equivalence in $\operatorname{PG}(4,2)$. A characterization of an elliptic quadric in $\operatorname{PG}(5,2)$ as a special nontrivial minimal blocking set with respect to planes meeting every hyperplane in a non-trivial minimal blocking sets with respect to planes is also given.

1 Introduction

We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over the field of q elements \mathbb{F}_{q}. A j-flat is a projective subspace of dimension j in $\mathrm{PG}(r, q)$. In this paper, Π_{k} stands for a k-flat in in $\mathrm{PG}(r, q)$. We set $\Pi_{k}=\emptyset$ for $k<0$. The 0 -flats, 1 -flats, 2 -flats, 3 -flats and ($r-1$)-flats are called points, lines, planes, solids and hyperplanes, respectively. A set of points in $\operatorname{PG}(r, q)$ meeting every $(r-k)$-flat is called a k-blocking set or a blocking set with respect to $(r-k)$-flats [4]. A 1-blocking set is simply called a blocking set. But we only use ' 1 -blocking set' to avoid confusion. A k-flat in $\mathrm{PG}(r, q)$ is the smallest k-blocking set [5] and a k-blocking set containing a k-flat in $\operatorname{PG}(r, q)$ is called trivial. A k-blocking set \mathcal{B} is minimal if $\mathcal{B} \backslash\{P\}$ is no longer a k-blocking set for any point P of \mathcal{B}.

For an integer $r \geq 3$ and a prime power $q \geq 3$, a smallest non-trivial 1-blocking set \mathcal{B}_{0} in a plane δ in $\operatorname{PG}(r, q)$ is also a smallest non-trivial 1-blocking set in $\operatorname{PG}(r, q)$. The speciality for the binary case is that a non-trivial 1-blocking set in $\operatorname{PG}(2,2)$ does not exist.

Denote by Cone $\left(\Pi_{k}, \mathcal{B}\right)$ (or simply $\Pi_{k} \mathcal{B}$) a cone with vertex a k-flat Π_{k} and base \mathcal{B} in an s-flat Δ skew to Π_{k}. Note that the cone is just \mathcal{B} if Π_{k} is empty.

Govaerts and Storme proved the following.
Theorem 1.1 ([16]). (a) Any smallest non-trivial 1-blocking set in $P G(r, 2), r \geq 3$, is an elliptic quadric in a solid in $P G(r, 2)$.

[^0](b) Every non-trivial minimal 2-blocking set in $P G(3,2)$ is the complement of an elliptic quadric.
(c) Any smallest non-trivial k-blocking set in $P G(r, 2), r \geq 3$, with $2 \leq k \leq r-1$ is Cone $\left(\Pi_{k-3}, \mathcal{T}\right)$ where \mathcal{T} is the set of 10 points consisting of the complement of an elliptic quadric in a solid Δ.

An elliptic quadric in $\operatorname{PG}(3,2)$ is a set of five points no four of which are coplanar, that is the only non-trivial minimal 1-blocking set in $\operatorname{PG}(3,2)$ up to projective equivalence. A natural question is to classify all non-trivial minimal k-blocking sets in $\operatorname{PG}(r, 2)$ up to projective equivalence for $1 \leq k \leq r-1$.

In this paper, the point \bar{P} in $\overline{\mathrm{P}} \mathrm{G}(r, 2)$ with coordinate vector $\left(p_{0}, p_{1}, \ldots, p_{r}\right)$ is denoted by $\left(p_{0}, p_{1}, \ldots, p_{r}\right)$ or simply $p_{0} p_{1} \ldots p_{r}$, and the number of 1 's in $\left\{p_{0}, p_{1}, \ldots, p_{r}\right\}$ is called the weight of P. The hyperplane defined by the equation $a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{r} x_{r}=0$ is denoted by $\left[a_{0} a_{1} \ldots a_{r}\right]$. For two distinct points $P\left(p_{0}, p_{1}, \ldots, p_{r}\right)$ and $Q\left(q_{0}, q_{1}, \ldots, q_{r}\right)$ in $\mathrm{PG}(r, 2)$, we denote the point $\left(p_{0}+q_{0}, p_{1}+q_{1}, \ldots, p_{r}+q_{r}\right)$ by $P+Q$.

Let $\boldsymbol{e}_{i}=0 \cdots 010 \cdots 0$ be the point of $\mathrm{PG}(r, 2)$ the only i-th entry of which is 1 . We denote by $\mathbf{1}$ the point $11 \cdots 1$ and let $\mathcal{I}_{r}:=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{r+1}, \mathbf{1}\right\}$ in PG $(r, 2)$ with odd $r \geq 3$. Note that $\mathcal{I}_{3}=\{1000,0100,0010,0001,1111\}$ is an elliptic quadric in $\operatorname{PG}(3,2)$. It is easy to see that \mathcal{I}_{r} is a non-trivial 1-blocking set in $\operatorname{PG}(r, 2)$ since r is odd. Since \mathcal{I}_{r} meets the hyperplane $\left[\boldsymbol{e}_{j}+\mathbf{1}\right]$ in the point \boldsymbol{e}_{j} and meets the hyperplane $[11 \cdots 1]$ in the point $\mathbf{1}, \mathcal{I}_{r}$ is minimal. Thus \mathcal{I}_{r} is a non-trivial minimal 1-blocking set in $\operatorname{PG}(r, 2)$ for odd $r \geq 3$.

Let $P_{1}, P_{2}, \ldots, P_{r+1}$ be $r+1$ points of $\mathrm{PG}(r, 2)$ in general position. We call the $(r+2)$ set $\left\{P_{1}, P_{2}, \ldots, P_{r+1}, \sum_{i=1}^{r+1} P_{i}\right\}$ a skeleton in $\operatorname{PG}(r, 2)$, which is also called a 'frame' [2]. Obviously, a skeleton in $\overline{\mathrm{P}} \mathrm{G}(r, 2)$ is projectively equivalent to \mathcal{I}_{r}. We prove the following.

Theorem 1.2. Let S be a non-trivial minimal 1-blocking set in $P G(r, 2), r \geq 3$. Then, S is projectively equivalent to \mathcal{I}_{s} in some s-flat of $\operatorname{PG}(r, 2)$ with odd $s \geq 3$.

Corollary 1.3. There are exactly $\lfloor(r-1) / 2\rfloor$ non-trivial minimal 1-blocking sets up to projective equivalence in $P G(r, 2), r \geq 3$.

Next, let us give two examples of non-trivial minimal $(r-1)$-blocking sets in $\operatorname{PG}(r, 2)$.
Example 1.4. (1) From Theorem 1.1, $\operatorname{Cone}\left(\Pi_{r-4}, \mathcal{T}\right)$ with an $(r-4)$-flat Π_{r-4} and \mathcal{T} in a solid Δ skew to Π_{r-4} is the smallest non-trivial $(r-1)$-blocking set of size $11 \cdot 2^{r-3}-1$ in $\operatorname{PG}(r, 2)$ for $r \geq 3$, say of type A_{1}, where \mathcal{T} is the complement of a skeleton (an elliptic quadric) in Δ.
(2) Take two hyperplanes H_{1}, H_{2} and a line l skew to $H_{1} \cap H_{2}$ in $\operatorname{PG}(r, 2)$ for $r \geq 3$. Let $Q_{i}=H_{i} \cap l$ for $i=1,2$ and take the point $P=Q_{1}+Q_{2}$ on l. Then, $\bar{S}=$ $\left(H_{1} \backslash\left\{Q_{1}\right\}\right) \cup\left(H_{2} \backslash\left\{Q_{2}\right\}\right) \cup\{P\}$ forms a non-trivial minimal $(r-1)$-blocking set of size $3 \cdot 2^{r-1}-2$ in $\operatorname{PG}(r, 2)$, say of type A_{2}.

We note that in $\operatorname{PG}(3,2)$ the non-trivial minimal 2-blocking sets of type A_{1} and type A_{2} are the same. Any smallest non-trivial $(r-1)$-blocking set in $\operatorname{PG}(r, 2), r \geq 3$, is Cone $\left(\Pi_{r-4}, \mathcal{T}\right)$ of size $11 \cdot 2^{r-3}-1=2^{r+1}-1-5 \cdot 2^{r-3}$, where \mathcal{T} is a 10 -set in some solid Δ such that $\Delta \backslash \mathcal{T}$ is a skeleton by Theorem 1.1(c). As for the second and third smallest ones, we show the following.

Theorem 1.5. (a) Any second smallest non-trivial $(r-1)$-blocking set in $P G(r, 2)$, $r \geq 4$, is $\operatorname{Cone}\left(\Pi_{r-5}, S_{22}\right)$ of size $2^{r+1}-1-9 \cdot 2^{r-4}$, where S_{22} is a non-trivial minimal 3-blocking set of type A_{2} in a 4-flat.
(b) Any third smallest non-trivial $(r-1)$-blocking set in $P G(r, 2), r \geq 5$, has size $2^{r+1}-1-17 \cdot 2^{r-5}$.

As a consequence of Theorem 1.2, there is only one non-trivial minimal 1-blocking set up to projective equivalence in $\operatorname{PG}(4,2)$, which is a skeleton in a solid. We also classify non-trivial minimal k-blocking sets in $\operatorname{PG}(4,2)$ up to projective equivalence for $k=2,3$.

Theorem 1.6. There are exactly two non-trivial minimal 3-blocking sets in $P G(4,2)$. One is of type A_{1} with size 21 , that is, Cone (P, \mathcal{T}) with a point P and the complement \mathcal{T} of a skeleton in Δ, where Δ is a solid not containing P. The other is of type A_{2} with size 22 , consisting of two solids Δ_{1}, Δ_{2} with two points $Q_{i} \in \Delta_{i} \backslash\left(\Delta_{1} \cap \Delta_{2}\right), i=1,2$, deleted plus one point $Q_{1}+Q_{2}$.

For t flats $\chi_{1}, \ldots, \chi_{t}$, we denote by $\left\langle\chi_{1}, \ldots, \chi_{t}\right\rangle$ the smallest flat containing $\chi_{1}, \ldots, \chi_{t}$. From Theorem 1.1, we get (a) of the following theorem.

Theorem 1.7. (a) Let S_{10} be the set of 10 points in a solid Δ in $P G(4,2)$ which is the complement of a skeleton in Δ. Then, S_{10} is the smallest non-trivial 2-blocking set in $P G(4,2)$.
(b) Let $S_{11}=\operatorname{Cone}(P, K)$ with a point P and a skeleton K in a solid Δ not containing P. Then, S_{11} is a non-trivial minimal 2-blocking set with size 11 in $\operatorname{PG}(4,2)$.
(c) Take two planes δ_{1}, δ_{2} meeting in a point P in $P G(4,2)$ and a point $Q_{i} \in \delta_{i} \backslash\{P\}$ for $i=1,2$. Let $S_{12}=\left(\delta_{1} \backslash\left\{Q_{1}\right\}\right) \cup\left(\delta_{2} \backslash\left\{Q_{2}\right\}\right) \cup\left\{Q_{1}+Q_{2}\right\}$. Then, S_{12} is a non-trivial minimal 2-blocking set with size 12 in $P G(4,2)$.
(d) Take three points Q_{1}, Q_{2}, Q_{3} not on a line and a line l which is skew to the plane $\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$ in $P G(4,2)$. Let $\delta_{i}=\left\langle Q_{i}, l\right\rangle$ for $i=1,2,3$ and let $P=Q_{1}+Q_{2}+Q_{3}$. Then, $S_{13}=\{P\} \cup \bigcup_{i=1}^{3}\left(\delta_{i} \backslash\left\{Q_{i}\right\}\right)$ is a non-trivial minimal 2-blocking set with size 13 in $P G(4,2)$.
(e) Take a skeleton $\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}, P=\sum_{i=1}^{4} Q_{i}\right\}$ in a solid Δ and a point R_{1} out of Δ. Let l_{1}, \ldots, l_{4} be the lines defined by $l_{1}=\left\{P, R_{1}, R_{1}^{\prime}=P+R_{1}\right\}$ and

$$
l_{j}=\left\{P, R_{j}=R_{j-1}+Q_{j-1}, R_{j}^{\prime}=R_{j-1}^{\prime}+Q_{j-1}\right\}, j=2,3,4
$$

Then, $S_{13}^{\prime}=\bigcup_{i=1}^{4}\left(l_{i} \cup\left\{P+Q_{i}\right\}\right)$ is a non-trivial minimal 2-blocking set with size 13 in $P G(4,2)$.
(f) A parabolic quadric \mathcal{P}_{4} is a non-trivial minimal 2-blocking set with size 15 in $P G(4,2)$.

Theorem 1.8. There are exactly six non-trivial minimal 2-blocking sets in $P G(4,2)$ up to projective equivalence, which are described in Theorem 1.7.

An elliptic quadric \mathcal{E}_{5} in $\operatorname{PG}(5,2)$ meets a hyperplane in a 11 -set projectively equivalent to S_{11} in Theorem 1.7 or a parabolic quadric \mathcal{P}_{4}. Hence we get the following.

Corollary 1.9. An elliptic quadric \mathcal{E}_{5} in $P G(5,2)$ is a non-trivial minimal 3-blocking set meeting every hyperplane in a non-trivial minimal 2-blocking set.

We prove that the converse is also valid:
Theorem 1.10. Let S be a non-trivial minimal 3-blocking set in $P G(5,2)$ meeting every hyperplane in a non-trivial minimal 2-blocking set. Then, S is an elliptic quadric \mathcal{E}_{5} in $P G(5,2)$.

We prove Theorem 1.2 in Section 2, Theorems 1.5 and 1.6 in Section 3 and Theorems 1.7, 1.8 and 1.10 in Section 4.

2 Non-trivial minimal 1-blocking sets in PG $(r, 2)$

For a set S in $\mathrm{PG}(r, q)$, we denote by S^{c} the complement of S in $\mathrm{PG}(r, q)$. The following is well known, which is straightforward from the definition.

Lemma 2.1. A set S is a non-trivial k-blocking set in $P G(r, q)$ if and only if S^{c} is a non-trivial $(r-k)$-blocking set in $P G(r, q)$.

Lemma 2.2. Every non-trivial 1-blocking set in $P G(3,2)$ is a skeleton (an elliptic quadric).
Proof. Let S be a non-trivial 1-blocking set in $\operatorname{PG}(3,2)$. By Lemma 2.1, the complement S^{c} is a non-trivial 2-blocking set in $\mathrm{PG}(3,2)$. Then, S^{c} contains the complement of an elliptic quadric \mathcal{E}_{3}^{c} by Theorem 1.1(b), whence S is contained in \mathcal{E}_{3}. Since \mathcal{E}_{3} is the smallest non-trivial 1-blocking set in $\operatorname{PG}(3,2)$, we have $S=\mathcal{E}_{3}$.

Lemma 2.3. Every non-trivial minimal 1-blocking set in $P G(4,2)$ is a skeleton of some solid.

Proof. Let S be a non-trivial minimal 1-blocking set in $\operatorname{PG}(4,2)$. Assume that S is contained in a solid Δ. Then, S is a non-trivial minimal 1-blocking set in Δ, which is a skeleton of Δ by Lemma 2.2. Next, assume that S is not contained in a solid. Note that S contains no skeleton of a solid because of the minimality. Without loss of generality, we may assume that S contains the 5 -set $K=\{10000,01000,00100,00010,00001\}$. Then, S contains a point of even weight since the solid [11111] contains no point of K. On the other hand, S contains no point of weight 2 (resp. 4) since S contains no line (resp. no skeleton of a solid), a contradiction.

Proof of Theorem 1.2. We prove Theorem 1.2 by induction on r. The theorem is valid for $r=3,4$ by Lemmas 2.2, 2.3, respectively. We first assume $r=2 m-1$ with $m \geq 3$ and that our assertion holds for at most $r-1$ dimensions. Let S be a non-trivial minimal 1-blocking set in $\operatorname{PG}(r, 2)$. If S is contained in a hyperplane H, then S forms a non-trivial minimal 1-blocking set of H, which is projectively equivalent to \mathcal{I}_{s} in some s-flat of H with odd $s \geq 3$ from the induction hypothesis. So, we assume that S is not contained in a hyperplane. Without loss of generality, we may assume that S contains the $2 m$-set $K=\left\{\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{2 m}\right\}$. Then, S contains a point of even weight since the hyperplane $H_{1}=[11 \cdots 1]$ contains no point of K. Suppose that S contains a point $P=\left(p_{1}, \ldots, p_{2 m}\right)$ with weight $2 t$ for some $t<m$ and let $p_{j}=1$ for $j=u_{1}, \ldots, u_{2 t}$. Then, S contains the
$(2 t+1)$-set $\left\{\boldsymbol{e}_{u_{1}}, \ldots, \boldsymbol{e}_{u_{2 t}}, P\right\}$ which is projectively equivalent to $\mathcal{I}_{2 t-1}$. This contradicts the minimality of S. Hence S contains the point $1=11 \cdots 1$, giving $S=\mathcal{I}_{2 m-1}$. One can prove our assertion similarly for the case $r=2 m$ with $m \geq 3$. Actually, we get a contradiction when we assume that S is not contained in a hyperplane since every point of $\operatorname{PG}(2 m, 2)$ with even weight has a 0 entry.

3 Non-trivial minimal $(r-1)$-blocking sets in PG($r, 2)$

In this section, we consider non-trivial minimal blocking sets with respect to lines in $\mathrm{PG}(r, 2)$. A t-set T in $\mathrm{PG}(r, q)$ is called a t-cap if T meets any line in at most two points. A t-cap T is complete if it is not contained in a $(t+1)$-cap. For $q=2$, it is well known that a largest complete cap in $\operatorname{PG}(r, 2)$ is the complement of a hyperplane. The following is obvious from the definitions.

Lemma 3.1 ([4]). A t-set T in $P G(r, 2)$ is a complete t-cap if and only if the complement T^{c} is a minimal $(r-1)$-blocking set in $P G(r, 2)$.

Much attention has been given to the complete caps in $\operatorname{PG}(r, 2)$ from coding theory to study binary quasi-perfect codes. An $[n, k, d]_{q}$ code is a linear code of length n, dimension k and minimum weight d over \mathbb{F}_{q}. Let \mathcal{C} be an $[n, n-r-1,4]_{2}$ code with parity check matrix H with size $(r+1) \times n$ and let T be the n-set in $\operatorname{PG}(r, 2)$ consisting the n columns of H. Then, it can be shown that T is a complete cap if and only if \mathcal{C} has covering radius 2. If the code \mathcal{C} of minimum distance 4 has covering radius $2, \mathcal{C}$ is called quasi-perfect. See [6] and [12] for binary quasi-perfect linear codes and caps in binary projective spaces.

It follows from Lemma 3.1 that the known results on complete caps in $\operatorname{PG}(r, 2)$ can be seen as results on minimal $(r-1)$-blocking sets in $\operatorname{PG}(r, 2)$, see $[1,6,7,8,9,10,11$, $12,15,21,22,23]$ and the references therein for complete caps in $\operatorname{PG}(r, 2)$.

An n-cap in $\operatorname{PG}(r, 2)$ is called large if $n \geq 2^{r-1}+1$, critical if $n=2^{r-1}+1$, and small if $n \leq 2^{r-1}[7]$. The following is known for critical complete caps in $\operatorname{PG}(r, 2)$ for $r \leq 6$.

Theorem 3.2 ([10, 11, 12, 22]). (a) Every complete 5-cap in $\operatorname{PG}(3,2)$ is projectively equivalent to $\mathcal{I}_{3}=\{1000,0100,0010,0001,1111\}$.
(b) Every complete 9-cap in $\operatorname{PG}(4,2)$ is projectively equivalent to $C_{9}=\{01000,00100,00010,00001,01111,10100,10010,10001,10111\}$.
(c) There are exactly five inequivalent complete 17 -caps in $P G(5,2)$ up to projective equivalence.
(d) There are exactly 42 inequivalent complete 33 -caps in $P G(6,2)$ up to projective equivalence.

Let T_{k} be a k-cap in a hyperplane H of $\operatorname{PG}(r, 2)$ and let P be a point out of H. Then, $T_{2 k}=T_{k} \cup\left\{P+Q \mid Q \in T_{k}\right\}$ forms a $2 k$-cap in $\operatorname{PG}(r, 2)$. It is also known that the cap $T_{2 k}$ is complete in $\mathrm{PG}(r, 2)$ if and only if T_{k} is complete in H. This construction of $T_{2 k}$ from T_{k} is called the doubling construction or Plotkin construction [6,12]. This means that the minimal $(r-1)$-blocking set $T_{2 k}^{c}=\mathrm{PG}(r, 2) \backslash T_{2 k}$ is obtained as $\operatorname{Cone}\left(P, T_{k}^{c}\right)$.

All exact possible sizes of large complete caps and the structure of complete n-caps with $n>2^{r-1}-1$ is known as follows.

Theorem 3.3 ([12]). (a) A complete t-cap in $P G(r, 2)$ with $t>2^{r-1}$ exists if and only if $t=2^{r-1}+2^{r-1-g}$ with $g \in\{0,2,3, \ldots, r-1\}$.
(b) In $P G(r, 2)$, for $g=2,3, \ldots, r-2$, each complete $\left(2^{r-1}+2^{r-1-g}\right)$-cap can be obtained by $(r-1-g)$-fold application of the doubling construction to a complete $\left(2^{g}+1\right)$-cap in $P G(g+1,2)$.

Hence, every large complete cap can be obtained from some critical complete cap by the doubling construction. Theorems 3.2 and 3.3 yield the following.

Theorem 3.4 ([12]). (a) In $P G(r, 2), r \geq 3$, the second largest complete caps are $5 \cdot 2^{r-3}$-caps, which are projectively equivalent to the cap obtained by $(r-3)$-fold application of the doubling construction to \mathcal{I}_{3}.
(b) In $P G(r, 2), r \geq 4$, the third largest complete caps are $9 \cdot 2^{r-4}$-caps, which are projectively equivalent to the cap obtained by $(r-4)$-fold application of the doubling construction to C_{9}.
(c) In $\operatorname{PG}(r, 2), r \geq 5$, the fourth largest complete caps are $17 \cdot 2^{r-5}$-caps.

The part (a) of Theorem 3.4 implies Theorem 1.1(c) for $k=r-1$. Taking two hyperplanes $H_{1}=[00111], H_{2}=[01111]$ and two points $Q_{1}=01000 \in H_{1}$ and $Q_{2}=$ $01111 \in H_{2}$, one can see that the complement of C_{9} in $\operatorname{PG}(4,2)$ is a non-trivial minimal 3 -blocking set of type A_{2} in Example 1.4. Hence, Theorem 1.5 follows from the parts (b) and (c) of Theorem 3.4.

Every non-trivial minimal 2-blocking sets in $\operatorname{PG}(3,2)$ is the complement of a skeleton (an elliptic quadric) by Lemmas 2.1 and 2.2. As for small n-caps with $n \leq 2^{r-1}$ in $\mathrm{PG}(r, 2)$, the following is known for $r \leq 6$, see [15] for $r \geq 7$.

Theorem 3.5 ([13, 14, 21, 22]). (a) A small complete cap does not exist in $P G(r, 2)$ for $r \leq 4$.
(b) In $P G(5,2)$, there are only small complete 13-caps.
(c) In $P G(6,2)$, the possible sizes of small complete caps are $21,22,24,25,26$.

Now, let S be a non-trivial minimal 3 -blocking set in $\Sigma=\mathrm{PG}(4,2)$. It follows from Theorem 3.5(a) that $\left|S^{c}\right| \geq 2^{3}+1$, i.e., $|S| \leq 22$. If $|S|=22, S=S_{22}$ in Theorem 1.5. If $|S|=21, S$ has the smallest size from Theorem 1.1(c). Thus, we obtain Theorem 1.6.

Table 1 gives the number of non-trivial minimal ($r-1$)-blocking sets in $\operatorname{PG}(r, 2)$ up to projective equivalence for $r \leq 6$. The classification of complete caps in $\operatorname{PG}(r, 2)$ for $r=5,6$ is obtained by an exhaustive computer search, see [10, 22].

4 Non-trivial minimal $(r-2)$-blocking sets in PG($r, 2)$

For a given set S, a line l is called an i-line of S if $|S \cap l|=i$. An i-plane, i-solid and so on are defined similarly. We denote by a_{i} the number of i-hyperplanes. The list of the values a_{i} is called the spectrum of S. For example, the spectrum of a skeleton K in $\operatorname{PG}(3,2)$ is $\left(a_{1}, a_{3}\right)=(5,10)$ and there is a unique 1-plane of K through P for any point P of K.

Table 1: The number of non-trivial minimal $(r-1)$-blocking sets in $\operatorname{PG}(r, 2)$

r	Size	$\#$
3	10	1
4	21	1
	22	1
5	43	1
	45	1
	46	5
	50	1

r	Size	$\#$
6	87	1
	91	1
	93	5
	94	42
	96	2
	98	3
	99	1

r	Size	$\#$
6	100	4
	101	2
	102	13
	103	6
	105	2
	106	5

In this section, we consider non-trivial minimal blocking sets with respect to planes. We first give some examples of non-trivial minimal ($r-2$)-blocking sets in $\operatorname{PG}(r, q)$ with $3 \leq r \leq 5$, see [19] and [20] for quadrics in $\mathrm{PG}(r, q)$.

Example 4.1. Let q be a prime power.
(1) An elliptic quadric \mathcal{E}_{3} in $\operatorname{PG}(3, q)$ is a non-trivial minimal 1-blocking set of size $q^{2}+1$ since \mathcal{E}_{3} has spectrum $\left(a_{1}, a_{q+1}\right)=\left(q^{2}+1, q^{3}+q\right)$ and since each point of \mathcal{E}_{3} is on a 1-plane, see [18]. Recall that the $q+1$ points of \mathcal{E}_{3} in a $(q+1)$-plane forms a $(q+1)$-arc, which is a $(q+1)$-set no three of which are collinear.
(2) Take an elliptic quadric \mathcal{E}_{3} in a solid Δ and a point P out of Δ in $\operatorname{PG}(4, q)$. Let $\Pi_{0} \mathcal{E}_{3}$ be the cone with vertex P and base \mathcal{E}_{3}. It follows from the spectrum of \mathcal{E}_{3} that $\Pi_{0} \mathcal{E}_{3}$ has spectrum

$$
\left(a_{q+1}, a_{q^{2}+1}, a_{q^{2}+q+1}\right)=\left(q^{2}+1, q^{4}, q^{3}+q\right) .
$$

Let H be a solid. If H contains the vertex P, then H meets $\Pi_{0} \mathcal{E}_{3}$ in a line (resp. non-coplanar $q+1$ lines) through P when $H \cap \Delta$ is a 1-plane (resp. $(q+1)$-plane). Otherwise, H meets $\Pi_{0} \mathcal{E}_{3}$ in an elliptic quadric. Hence, $\Pi_{0} \mathcal{E}_{3}$ is a non-trivial minimal 2-blocking set in $\operatorname{PG}(4, q)$.
(3) A parabolic quadric \mathcal{P}_{4} in $\mathrm{PG}(4, q)$ has spectrum

$$
\left(a_{q^{2}+1}, a_{q^{2}+q+1}, a_{q^{2}+2 q+1}\right)=\left(\frac{q^{4}-q^{2}}{2},(q+1)\left(q^{2}+1\right), \frac{q^{4}+q^{2}}{2}\right)
$$

and an i-solid Δ meets \mathcal{P}_{4} in an elliptic quadric, a cone with vertex a point and base a conic, a hyperbolic quadric for $i=q^{2}+1, q^{2}+q+1, q^{2}+2 q+1$, respectively. So, possible planes are $1-,(q+1)$ - and $(2 q+1)$-planes. For any point P in \mathcal{P}_{4}, one can find a solid through P meeting \mathcal{P}_{4} in an elliptic quadric. Hence, \mathcal{P}_{4} is a non-trivial minimal 2-blocking set of size $(q+1)\left(q^{2}+1\right)$.
(4) An elliptic quadric \mathcal{E}_{5} in $\operatorname{PG}(5, q)$ is a non-trivial minimal 3-blocking set of size $(q+1)\left(q^{3}+1\right)$ meeting every hyperplane in a non-trivial minimal 2-blocking set since \mathcal{E}_{5} meets every hyperplane in a parabolic quadric \mathcal{P}_{4} or a cone $\Pi_{0} \mathcal{E}_{3}$.

From now on, we consider the case when $q=2$. Let S_{n} be a non-trivial minimal 2-blocking set of size n in $\operatorname{PG}(4,2)$. We denote the numbers of i-planes by b_{i}. Simple counting arguments yield the following.
Lemma 4.2. (a) $\sum_{i=1}^{6} b_{i}=155$.
(b) $\sum_{i=1}^{6} i b_{i}=35 n$.
(c) $\sum_{i=2}^{6} i(i-1) b_{i}=7 n(n-1)$.

Proof. Recall that the number of lines in $\operatorname{PG}(4, q)$ is $\left(q^{2}+1\right) \theta_{4}$ and that the number of planes through a fixed point in $\operatorname{PG}(4, q)$ is $\left(q^{2}+1\right) \theta_{2}$, where $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$, see [19]. Hence (1) and (2) hold. Counting the number of $(\{P, Q\}, \delta)$ with distinct points P, Q and a plane δ containing P and Q in $\mathrm{PG}(4,2)$, one can obtain (3).

A given set S in $\mathrm{PG}(4,2)$ is a non-trivial minimal 2-blocking set if and only if S satisfies that $b_{0}=b_{7}=0$ and that every point of S is on a 1-plane. We first prove Theorem 1.7.

Proof of Theorem 1.7.

(a) Let $S_{10}=\Delta \backslash \mathcal{E}_{3}$, where Δ is a solid and \mathcal{E}_{3} is a skeleton of $\Delta . S_{10}$ is a smallest non-trivial minimal 2-blocking set by Theorem 1.1(c) with

$$
\left(a_{4}, a_{6}, a_{10}\right)=(20,10,1),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{6}\right)=(40,60,40,10,5)
$$

(b) Take a skeleton $K=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{1}+P_{2}+P_{3}+P_{4}\right\}$ in a solid Δ and a point P out of Δ. Let $S_{11}=\operatorname{Cone}(P, K)$. Note that S_{11} is uniquely determined by 5 points in general position: $P_{1}, P_{2}, P_{3}, P_{4}, P$. It follows from Example 4.1(2) that S_{11} is a nontrivial minimal 2-blocking set in $\operatorname{PG}(4,2)$ with spectrum $\left(a_{3}, a_{5}, a_{7}\right)=(5,16,10)$. Let H be a solid. If H contains the vertex P, then $H \cap S_{11}$ is a line (resp. noncoplanar three lines) through P when $H \cap \Delta$ is a 1-plane (resp. 3-plane). Otherwise, $H \cap S_{11}$ is a skeleton. Hence, by Lemma 4.2, we have $\left(b_{1}, b_{3}, b_{5}\right)=(50,95,10)$.
(c) Take a skeleton $K=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{0}=P_{1}+P_{2}+P_{3}+P_{4}\right\}$ in a solid Δ and a point P out of Δ again. Take two lines l_{1}, l_{2} and two planes δ_{1}, δ_{2} as

$$
l_{1}=\left\{P_{1}, P_{2}, Q_{1}=P_{1}+P_{2}\right\}, l_{2}=\left\{P_{3}, P_{4}, Q_{2}=P_{3}+P_{4}\right\}
$$

$\delta_{1}=\left\langle l_{1}, P\right\rangle, \delta_{2}=\left\langle l_{2}, P\right\rangle$ and let $S_{12}=\left(\delta_{1} \backslash\left\{Q_{1}\right\}\right) \cup\left(\delta_{2} \backslash\left\{Q_{2}\right\}\right) \cup\left\{P_{0}\right\} . S_{12}$ is also uniquely determined by 5 points in general position: $P_{1}, P_{2}, P_{3}, P_{4}, P$. Obviously, S_{12} satisfies $b_{0}=b_{7}=0$. Indeed, one can calculate

$$
\left(a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right)=(5,12,4,4,6),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)=(26,40,54,25,8,2) .
$$

Let l_{0} be a 0 -line of S_{12} in Δ containing none of Q_{1}, Q_{2} (there are four such lines). Then, $\left\langle l_{0}, P\right\rangle$ is a 1-plane at P. Let l_{i}^{\prime} be the line through Q_{i} on δ_{i} other than the two lines $l_{i},\left\langle Q_{i}, P\right\rangle$ for $i=1,2$. For the line $l=\left\langle Q_{1}, Q_{2}\right\rangle$, the union of the five planes $\left\langle l, l_{1}\right\rangle,\left\langle l, l_{1}^{\prime}\right\rangle,\left\langle l, l_{2}\right\rangle,\left\langle l, l_{2}^{\prime}\right\rangle,\langle l, P\rangle$ includes S_{12}. Hence, the other two planes through l are 1-planes at P_{0}. For any point $P^{\prime} \in \delta_{i} \backslash\left\{P, Q_{i}\right\}$, one can find two 1-planes at P^{\prime} through the line $\left\langle P^{\prime}, Q_{j}\right\rangle$ for $\{i, j\}=\{1,2\}$ similarly. Thus, S_{12} is minimal.
(d) Take three non-collinear points Q_{1}, Q_{2}, Q_{3} and a line $l=\left\{P_{1}, P_{2}, P_{1}+P_{2}\right\}$ which is skew to the plane $\delta_{0}=\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$. Let $P=Q_{1}+Q_{2}+Q_{3}$ and $S_{13}=\left(\{P\} \cup \delta_{1} \cup\right.$ $\left.\delta_{2} \cup \delta_{3}\right) \backslash\left\{Q_{1}, Q_{2}, Q_{3}\right\}$, where $\delta_{i}=\left\langle l, Q_{i}\right\rangle$ for $i=1,2,3 . S_{13}$ is uniquely determined by the 5 points $P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{3}$ in general position. It can be checked that

$$
\left(a_{3}, a_{5}, a_{7}, a_{9}\right)=(1,12,15,3),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)=(22,27,60,34,9,3) .
$$

Obviously, δ_{0} is a 1-plane at P and that $\left\langle P^{\prime}, Q_{j}, Q_{k}\right\rangle$ is a 1-plane at any point $P^{\prime} \in\left(\delta_{i} \cap S_{13}\right) \backslash l$ for $\{i, j, k\}=\{1,2,3\}$. Let m be the line on δ_{0} not meeting $\left\{Q_{1}, Q_{2}, Q_{3}, P\right\}$. For any point R on $L,\langle R, m\rangle$ is a 1-plane at R. Hence, S_{13} is minimal.
(e) Take a skeleton $K=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}, P=Q_{1}+Q_{2}+Q_{3}+Q_{4}\right\}$ in a solid Δ and a point R_{1} out of Δ. Let $R_{j}=R_{j-1}+Q_{j-1}$ for $j=2,3,4$ and take lines $L_{1}=$ $\left\{P, R_{1}, R_{1}^{\prime}=P+R_{1}\right\}, L_{j}=\left\{P, R_{j}, R_{j}^{\prime}=P+R_{j}=R_{j-1}^{\prime}+Q_{j-1}\right\}$ for $j=2,3,4$. Let $S_{13}^{\prime}=\bigcup_{i=1}^{4}\left(L_{i} \cup\left\{P_{i}=P+Q_{i}\right\}\right)$. S_{13}^{\prime} is also uniquely determined by 5 points $Q_{1}, Q_{2}, Q_{3}, Q_{4}, R_{1}$ in general position. One can calculate that

$$
\left(a_{5}, a_{7}, a_{9}\right)=(15,12,4),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)=(15,44,50,32,10,4) .
$$

Since $\Delta \cap S_{13}^{\prime}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P\right\}$ is a skeleton, each of the points $P_{1}, P_{2}, P_{3}, P_{4}, P$ is on a 1-plane. The plane $\left\langle R_{1}, Q_{2}, Q_{3}\right\rangle$ is a 1-plane through R_{1} and the plane $\left\langle R_{1}^{\prime}, Q_{2}, Q_{3}\right\rangle$ is a 1-plane through R_{1}^{\prime}. One can find a 1-plane through each of $R_{2}, R_{3}, R_{4}, R_{2}^{\prime}, R_{3}^{\prime}, R_{4}^{\prime}$ similarly. Thus, S_{13}^{\prime} is minimal.
(f) A parabolic quadric in $\mathrm{PG}(4,2)$ is a non-trivial minimal 2-blocking set of size 15 with $\left(a_{5}, a_{7}, a_{9}\right)=(6,15,10)$ and $\left(b_{1}, b_{3}, b_{5}\right)=(15,95,45)$ by Lemma 4.2, see Example 4.1(3).

Theorem 1.8 can be proved with the aid of a computer as follows.
Proof of Theorem 1.8. Let S be a non-trivial minimal 2-blocking set in PG(4, 2). Since S is smallest when $|S|=10$ and such a set is the complement of a skeleton in a solid by Theorem 1.1(c), we may assume that $11 \leq|S| \leq 20$ by Lemma 2.1 and that $\pi \backslash S$ contains no skeleton for any solid π. Let Δ be a solid meeting S in s points. We have $s \leq 12$ since S contains no plane. If $s=11$ or 12, one can find a point of $S \cap \Delta$ which is not on a 1 -plane, a contradiction. Assume $s=10$. If $\Delta \backslash S$ contains no line, then the 5 -set $\Delta \backslash S$ is a skeleton in Δ, a contradiction. Suppose $\Delta \backslash S$ consists of a line l and two points Q_{1}, Q_{2}. If Q_{2} is on the plane $\left\langle l, Q_{1}\right\rangle$, then there is no 1-plane of S through a point of $(\Delta \cap S) \backslash\left\langle l, Q_{1}\right\rangle$, a contradiction. Hence $Q_{2} \notin\left\langle l, Q_{1}\right\rangle$. Take a plane δ in Δ through the line $\left\langle Q_{1}, Q_{2}\right\rangle$ meeting l at Q, say. Then, there is no 1-plane of S through the point $Q_{1}+Q_{2}+Q \in \Delta \cap S$, a contradiction again. Thus, we may assume that S meets every solid in at most 9 points. Recall that S satisfies $b_{0}=b_{7}=0$. We show that $b_{5}+b_{6}>0$. Suppose $b_{5}=b_{6}=0$. If $b_{4}=0$, then S meets every solid in at most 5 points and we have $|S| \leq(5-3) 3+3=9$, a contradiction. Hence there is a 4 -plane, say δ. Let π be a solid through δ with $|S \cap \pi|=n>4$. Taking the n points of $S \cap \pi$ as columns of a generator matrix, one can get an $[n, 4, n-4]_{2}$ code \mathcal{C}, see [3]. Since no $[9,4,5]_{2}$ codes exist [17], we have $n \leq 8$. If $n=7$ or 8 , then \mathcal{C} is a Hamming $[7,4,3]_{2}$ code or an extended

Hamming $[8,4,4]_{2}$ code, and \mathcal{C} has a codeword of weight n, which implies that π contains a 0-plane, a contradiction. Hence a solid π through δ satisfies $|S \cap \pi| \leq 6$, and we have $|S| \leq(6-4) 3+4=10$, a contradiction again. Thus $b_{5}+b_{6}>0$.

Assume $b_{6}>0$ and let $\Delta_{1}, \Delta_{2}, \Delta_{3}$ be the solids through a 6 -plane δ_{0}. Since S meets these solids in at most 9 points, we have $|S| \leq(9-6) 3+6=15$. Without loss of generality, we may assume that $\Delta_{1}=[00001], \Delta_{2}=[00010], \Delta_{3}=[00011]$ and

$$
S \cap \delta_{0}=\{10000,01000,11000,00100,10100,01100\}
$$

Let $t_{i}=\left|S \cap \Delta_{i}\right|-6$. By an exhaustive computer search for t_{i} points from Δ_{i}, we obtain 576 sets which are projectively equivalent to S_{12} when $\left(t_{1}, t_{2}, t_{3}\right)=(2,2,2), 256$ sets and 768 sets which are projectively equivalent to S_{13} and S_{13}^{\prime}, respectively, when $\left(t_{1}, t_{2}, t_{3}\right)=$ $(3,3,1)$. Assuming $b_{6}=0$ and $b_{5}>0$, a similar exhaustive computer search found nontrivial minimal 2-blocking sets projectively equivalent to either S_{11} or a parabolic quadric \mathcal{P}_{4}.

Finally, we prove Theorem 1.10.
Proof of Theorem 1.10. Let S be a non-trivial minimal 3-blocking set in $\operatorname{PG}(5,2)$ meeting every hyperplane in a non-trivial minimal 2-blocking set. It follows form Theorem 1.8 and from the proof of Theorem 1.7 that we have $|S \cap H| \in\{10,11,12,13,15\}$ for any hyperplane H and $3 \leq|S \cap \Delta| \leq 10$ for any solid Δ. Suppose that a 10 -solid Δ_{10} exists. Since the hyperplanes through Δ_{10} are 10-hyperplanes, we have $|S|=10$. Then, one can find a 0 -plane, a contradiction. Suppose that a 4 -solid Δ_{4} exists. Since the hyperplanes through Δ_{4} are 12-hyperplanes, we have $|S|=(12-4) 3+4=28$. On the other hand, the hyperplanes through a fixed 8 -solid are also 12 -hyperplanes, and $|S|=(12-8) 3+8=20$, a contradiction. Suppose that there is a 5 -solid Δ_{5} such that $S \cap \Delta_{5}$ is not a skeleton. Since such a 5 -solid exists only for S_{13} and S_{13}^{\prime}, we have $|S|=(13-5) 3+5=29$. Take a 9 -solid δ_{9} in a 13 -hyperplane. Since $S \cap \delta_{9}$ is not a hyperbolic quadric, there is no 15 -hyperplane through δ_{9}, whence $|S|=(13-9) 3+9=21$, a contradiction. Hence, S meets every hyperplane in a cone $\Pi_{0} \mathcal{E}_{3}$ or a parabolic quadric \mathcal{P}_{3}, and S has size $(15-9) 3+9=27$. Such a set S is an elliptic quadric \mathcal{E}_{5} by Theorem 1.97 in [20].

Acknowledgments

The authors would like to thank the anonymous referees for their careful reading and helpful comments. Theorem 1.5 is due to the known results informed from one of the reviewers. The research of the second author is partially supported by JSPS KAKENHI Grant Number 20K03722. The research of the third author is partially supported by JSPS KAKENHI Grant Number 20H01818.

References

[1] V.B. Afanassiev, A.A. Davydov, Weight spectrum of quasi-perfect binary codes with distance 4, in Proc. of 2017 IEEE Int. Symp. on Information Theory (ISIT), June 25-30, 2017, Aachen, Germany, 2193-2197, IEEE Explore.
[2] A. Beutelspacher, U. Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press, Cambridge, 1998.
[3] J. Bierbrauer, Introduction to Coding Theory, Chapman \& Hall/CRC, 2005.
[4] A. Blokhuis, P. Sziklai, T. Szönyi, Blocking sets in projective spaces, in Current research topics in Galois geometry, Nova Sci. Publ., New York, 2010, Chap. 3, 63-86.
[5] R.C. Bose, R.C. Burton, A characterization of flat spaces in a finite projective geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966) 96-104.
[6] A.A. Bruen, L. Haddad, D.L. Wehlau, Binary codes and caps, Journal of Combinatorial Designs 6, No. 4 (1998) 275-284.
[7] A.A. Bruen, D.L. Wehlau, Long binary linear codes and large caps in projective space, Des. Codes Cryptogr. 17 (1999) 37-60.
[8] W.E. Clark, J. Pedersen, Sum-free sets in vector spaces over $G F(2)$, J. Combin. Theory, Ser. A, 61 (1992) 222-229.
[9] A.A. Davydov, G. Faina, F. Pambianco, Constructions of small complete caps in binary projective spaces, Des. Codes Cryptogr. 37 (2005) 61-80.
[10] A.A. Davydov, S. Marcugini, F. Pambianco, Minimal 1-saturating sets and complete caps in binary projective spaces, J. Comb. Theory, Ser. A, 113 (2006) 647-663.
[11] A.A. Davydov, S. Marcugini, F. Pambianco, New results on binary codes obtained by doubling construction, Cybernetics and Information Technologies, 18 No. 5 (2018) 63-76.
[12] A.A. Davydov and L.M. Tombak, Quasi-perfect linear binary codes with distance 4 and complete caps in projective geometry, Problems of Information Transmission 25, No. 4 (1989) 265-275.
[13] G. Faina, S. Marcugini, A. Milani, F. Pambianco, The sizes k of the complete k-caps in $\operatorname{PG}(n, q)$, for small q and $3 \leq n \leq 5$, Ars Combinatoria 50 (1998) 235-243.
[14] G. Faina, F. Pambianco, On the spectrum of the values k for which a complete k-cap in PG (n, q) exists, J. Geometry 62, No. 1 (1998) 84-98.
[15] E.M. Gabidulin, A.A. Davydov, L.M. Tombak, Linear codes with covering radius 2 and other new covering codes, IEEE Trans. Inform. Theory 37 (1991) 219-224.
[16] P. Govaerts, L. Storme, The classification of the smallest nontrivial blocking sets in PG(n,2), J. Combin. Theory Ser. A 113 (2006) 1543-1548.
[17] M. Grassl, Tables of linear codes and quantum codes (electronic table, online). http://www.codetables.de/.
[18] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
[19] J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford, 1998.
[20] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Springer-Verlag, London, 2016.
[21] S.Y. Kettoola, J.D. Roberts, Some results on Ramsey numbers using sumfree sets, Discrete Math. 40 (1982) 123-124.
[22] M. Khatirinejad, P. Lisoněk, Classification and constructions of complete caps in binary spaces, Des. Codes Cryptogr. 39 (2006) 17-31.
[23] D.L. Wehlau, Complete caps in projective space which are disjoint from a subspace of codimension two, in Finite Geometries, ser. Developments in Mathematics, A. Blokhuis, J. Hirschfeld, D. Jungnickel, J. Thas, Eds. Dordrecht: Kluwer Academic Publishers, 2001, vol. 3, pp. 347-361, corrected version: arXiv:math/0403031 (2004).

[^0]: ${ }^{1}$ Corresponding author.

