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With increasing amounts of wind power generation installed, the steep fluctuation of wind power generation output, called ramp
events, causes serious problems for power system operation. Controlling fluctuations is an important issue for increasing the
amount of wind power generation as a wind farm (WF) in the future. The authors reported the scheduled operation method of
WF using a battery energy storage system (BESS) and forecast data of wind power generation output. In this paper, the authors
propose a new scheduled operation method of WF. In particular, we propose the application of deep reinforcement learning to
decide the output schedule of WF. Moreover, we compare the conventional method, the reinforcement learning method, and the
deep reinforcement learning method in terms of the number of ramp events. In addition, we calculate the reducing effect of the
storage capacity of BESS.  2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
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1. Introduction

Renewable sources of energy such as wind have developed
rapidly worldwide [1]. Installed wind power capacity has increased
from 432 680 MW in 2015 to 486 790 MW in 2016 globally and
from 3038 to 3234 MW in Japan over the same period [2].
Therefore, wind farms (WFs) are expected to be installed as
sources of renewable and clean energy.

However, wind power is associated with uncertainty. The long-
term fluctuation of wind power, called ramp events, occur, and
they last for anywhere between tens of minutes to several hours.
There are two basic types of ramp events: ramp-up and ramp-
down. Ramp-up is characterized by increased levels of wind
power, and they are caused by low-level jets, thunderstorms, wind
gusts, or similar weather phenomena [3]. Ramp-down events are
characterized by decreased wind power. Ramp events threaten the
reliable and economic operation of power systems [4]. In recent
years, this phenomenon has been studied by working in the fields of
analysis [4–11], forecasting [12], and control [13–18]. In terms of
analytical studies, time series measured at offshore WFs in Horns
Rev., Denmark, have been compared to a time series simulated
based on the power fluctuation model presented in Reference [5].
In References [4,6], the detection of the ramp using the optimized
swing door algorithm has been discussed. In Reference [7], the
authors focused on extreme ramp events and performed statistical
extreme value analysis. In Japan, ramp events were first discussed
by Ogimoto in Reference [8] and analyzed by Ikegami et al. [9],
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Yoshida et al. [10], and Oba et al. [11]. In terms of forecasting
studies, in Reference [12], scenarios of wind power generation
were generated using a neural-network-based stochastic process
model and forecasts were made based on extracted features. Qi
et al. proposed the suppressing method of ramp events based on
bid strategy by using a competitive game strategy [13]. Moreover,
many authors have been proposed scheduled operation methods
using an energy storage system (ESS) [14–18].

When using ESS to adjust the output of renewable energy, state-
of-charge (SOC) management is important. This is because output
compensation cannot be performed when the ESS is fully charged
or discharged. Therefore, in References [19,20] control strategies
to protect battery-ESS (BESS) by maintaining SOC within a
suitable range (i.e., between 30 and 70%) have been proposed. In
Reference [21], a self-adaptive control strategy based on the fuzzy
logic controller was adopted when SOC exceeds the warning lim-
its. As another approach, a dispatch scheme is scheduled depending
on SOC in References [22,23]. In general, the required BESS
capacity increases in the absence of a SOC management scheme.
Given that an additional large BESS is expensive, the implemen-
tation of a SOC management strategy should be considered.

In the conventional method [16], we have proposed setting the
SOC target to 50% to respond flexibly to wind power forecast
error.

However, there is still room for study on how to decide
appropriate target values according to the situation. The SOC
management method was the issue of previous research. If SOC
of BESS can be managed properly, the required BESS capacity
will be reduced compared to the management method that keeps
SOC constant. However, it is very difficult to uniquely determine
the appropriate SOC target value because it changes due to the
influence of prediction error and grid code (GC).

 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
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In this paper, we propose a new scheduled operation method
for WF using reinforcement learning. Reinforcement learning is
a method in which an agent learns better behavior selection
(decision-making) through interaction with the environment (con-
trolled object) [24]. Since agents will be able to learn the optimal
action selection through trial and error, the setting of SOC target
value by autonomous learning can be expected.

Thus, in the model proposed herein, the purpose is achieved
adequately by using reinforcement learning. However, reinforce-
ment learning has the disadvantage that learning becomes unstable
as the number of states increases. To solve this problem, deep rein-
forcement learning has proposed [25]. Deep reinforcement learning
is a method that uses reinforcement learning and deep learning,
and it has been reported that arcade games have surpassed human
experts. Deep learning is a method concerning the structure of the
human brain and has made it possible to extract high-level features
from raw sensory data, leading to breakthroughs in speech recog-
nition [26]. Therefore, deep reinforcement learning can expect
autonomous learning using complex information. As mentioned
above, many variables such as prediction error and GC have a com-
plicated influence on the determination of the SOC target value.
Therefore, deep reinforcement learning is appropriate to consider
more variables and to deal with uncertainties.

In this paper, we consider the situation where the WF operator
must notify the generation plan to the organization for cross-
regional coordination of transmission operators (OCCTO) 1 h in
advance. The goal of this study is to reduce the required capacity
of BESS for suppressing ramp events under the institution.

The remainder of this paper is organized as follows. Section 2
presents an outline of this study: dispatching rules, scheduled oper-
ation, and a description of aggregated WFs with the BESS system.
The mechanism of machine learning, such as reinforcement learn-
ing, deep learning, and deep reinforcement learning, is described
in Section 3. The proposed scheduling model that decides the tar-
get value of SOC with machine learning is described in Section 4.
Case studies based on numerical simulation using observed and
forecast data from Tokai, Japan, are given in Section 5. Finally, a
few concluding remarks are presented in Section 6.

2. Outline of this Study

2.1. System configuration A schematic diagram of
aggregated WFs with BESS is shown in Fig. 1. WF aggregation
leads to the smoothing effect, which mitigates WF power fluctu-
ations. This effect related to geographical distribution results in
low short-term fluctuations in wind power production [9,27]. In
addition, the power flow at the junction between WF and BESS is
monitored by the control center [1] for security.

2.2. Scheduled operation Scheduled operation is
achieved using Scheduling Generation plans and real-time oper-
ating of BESS [28]. Figure 2 shows the schedule for scheduled
operation. The balancing rule enforced in April 2016 includes
‘the day before plan’ to notify the generation plan of the next
day on the previous day and ‘the 1-h advance plan’ to notify
the generation plan 1 h before shown in Fig. 2. In this paper,
we consider the 1-h advance plan. Therefore, the WF operator
must notify the generation plan (The unit is kWh/30 min) 1.5 h
in advance, considering the gate closing time (1 h) and the
optimization calculation time (0.5 h). The WF operator prepares
a generation plan every 30 min.

Fig. 1. Schematic of the aggregated WFs with BESS

In the scheduling phase, generation plans based on WF power
forecasts are scheduled for submission to OCCTO. In this paper, a
generation plan Pt

plan, which is the amount of energy generated in
30 min, is determined using the scheduling model. The scheduling
model is described in Section 4. In the operating phase, BESS
is used to adjust WF power considering the generation plans.
Whereas a generation plan is scheduled at intervals of 30 min,
WF operation is conducted every minute. The order of power of
BESS can be optimized in advance [14] or determined sequentially
depending on WF power [19–23]. The latter approach is adopted
in this paper, which means the scheduled BESS power is not used,
and Pt

BESS is calculated as follows:

Pt
BESS = Pt

plan − Pt
WF (1)

2.3. Dispatching rules After interconnecting WFs to
the power grid on a large scale, WF operators need to submit
generation plans to the independent system operator, which means
generation plans should be determined days-ahead or hours-ahead
[22]. Similarly, the power transactions of renewable energy are
expected to take place under the new institution after FIT in
Japan. Under the new institution, WF operators must submit
generation plans, which is the amount of energy generated in
30 min, to OCCTO, and operate WF power as specified in the
generation plans. However, if WF operators cannot match WF
power generation to the submitted generation plans, they must pay
a penalty depending on the difference between the power generated
and that specified in the generation plan. The energy imbalance
is computed at intervals of 30 min. Under this institution, the
available WF forecasts, which are 30-min averages of WF power
over the last 24 h, are announced at intervals of 6 h.

In addition, WF operators must observe the GC to interconnect
into the power grid. The GC is the maximum power ramp PRval

in a time interval !T [14,17]. In other words, adherence to the
GC helps suppress ramp events: the combined power Ptotal (=WF
power PWF + BESS power PBESS ) remains within the GC. The
definition of GC is as follows:

max
t ′=t−!T+1, ... ,t

P t ′
total − min

t ′=t−!T+1, ... ,t
P t ′

total ≤ PRval (2)

The maximum power ramp PRval and the time interval !T are
determined in each scenario. For instance, in Reference [14], ramp
events are defined as 10% of the rated capacity over a 30-min

688 IEEJ Trans 16: 687–695 (2021)
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Fig. 2. Schedule for scheduled operation

Fig. 3. Definition of grid code

time window, expressed as the rate of 0.1 p.u./30 min herein. In
Reference [17], a ramp event is defined as a rate of 0.1 p.u./20 min
assuming load frequency control and as a rate of 0.3 p.u./6 h
assuming economic load dispatching control (EDC). In Reference
[4], a ramp event is defined a change in power generation of greater
than 20% of the installed wind capacity within a span of 4 h or
less, that is, a rate of 0.2 p.u./4 h. In this paper, PRval and !T are
set as 0.3 p.u. and 6 h, respectively, assuming the correspondence
in EDC with reference to [17] (shown in Fig. 3).

3. Machine Learning

3.1. Reinforcement learning Reinforcement learning is
a method of machine learning in which the agent learns the optimal
action by trial and error from the interactions with the environment.
The mechanism of reinforcement learning is shown in Fig. 4. At
first, the agent decides an action (a) based on the state (s) observed
from the environment. Next, the environment rewards (r) the agent
as a result of the action. Finally, the agent updates the Q value,
value of selecting action (a) in the state (s), based on the reward.
By repeating this series of flows, the agent searches for the optimal
policy.

In this paper, we use profit sharing (PS) as the reinforcement
learning algorithm. In PS, the Q value is stored in a tabular format
as shown in an example in Fig. 4. Therefore, if continuous values
are used for state and action, their discretization is required. The
update of the Q value in the PS is performed as follows:

Q(si , ai ) ← Q(si , ai ) + Cbid[r(i ) − Q(si , ai )] (3)

Fig. 4. Reinforcement learning model

Input layer

Input

Neuron
f(θ1x1 + θ2x2)

θ1x1

x2 θ2

Hidden layer

Output layer

Output

Fig. 5. Deep learning model

where, i (0 < i < I ) indicates the number of learning steps, I
indicates the maximum value of learning step, r(i ) indicates a
reward function, C bid (0 < C bid < 1) indicates a selling value (Q
value update ratio). In the PS, the search is performed until a
reward is obtained from the environment, and then, the reward at
each step is determined by the reward function, and the Q value
is updated collectively.

3.2. Deep learning Deep learning is a technique using
neural network (NN) that consists of a large-scale multiple layer
of ‘neurons’ mimicking the human brain. As shown in Fig. 5, the
neuron determines the output value by converting the sum of the
input values x i multiplied by the parameters θ i using a non-linear
function called the activation function f . NN is composed of an
input layer, a hidden layer, and an output layer. When data is input
to the NN, the outputs are sequentially determined from the input
layer side to the output layer side. In deep learning, training data,
mean collect answer data, is used for learning of NN together with
input data. That is, the error of NN is calculated by comparing the
training data and output data of NN. Therefore, the parameters in
NN are updated so that the error becomes smaller.

689 IEEJ Trans 16: 687–695 (2021)
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Fig. 6. Deep reinforcement learning model

3.3. Deep reinforcement learning Deep reinforcement
learning is a type of reinforcement learning algorithm using deep
learning. In deep reinforcement learning as shown in Fig. 6, the
state is input to NN, and the Q value of each action is output. Then,
a reward is applied to the training data, and a Q value updating
algorithm is applied to the calculation of the error of NN for
learning, thereby storing the Q value using the NN. Therefore, the
discretization of input data is unnecessary, and continuous values
can be used.

In this paper, we use deep Q-network with PS (DQN-PS) as
the deep reinforcement learning algorithm which is proposed in
Reference [29]. In the DQN-PS, a search is performed until a
reward is obtained from the environment in the same way as the
PS, and the reward at each step is determined by using the reward
function. Then, the parameters of NN are updated based on the
loss function as follows:

Lθ = (r(t) − Qθ (st , at ))
2 (4)

Here, Lθ indicates the loss function, θ indicates the parameter
of NN, Q indicates the Q value which is the result of output from
the NN.

4. Proposed Method

4.1. Basic scheduling model In this section, the basic
scheduling model is explained. The basic scheduling model has
been proposed in Reference [16], whose purpose is to manage
SOC while meeting GC for suppressing ramp fluctuations. The
objective function and constraints are shown below.

[objective function]

Min
ω1

∑N
t=1{|SOC(t) − SOCtarget|}

+ω2
∑N

t=1{Z out(t) + Z in(t)}
+ω3

∑N
t=1{Z GC+(t) + Z GC−(t)}

[constraints]

30
60

{Ptotal(t) − PWF(t)}

= 30
60

{Pout
BESS(t) − P in

BESS(t) + Z out(t) − Z in(t)} (6)

P in
BESS(t) ∗ Pout

BESS(t) = 0 (7)

0 ≤ P in
BESS(t) ≤ kW (8)

0 ≤ Pout
BESS(t) ≤ kW (9)

Ptmax(t) = max {Ptotal(t − 1, t − 2, . . . , t − 12), 0.3} (10)

Ptmin(t) = min {Ptotal(t − 1, t − 2, . . . , t − 12), 0.7} (11)

Ptmax(t) − (0.3 + Z GC−(t)) ≤ Ptotal(t) (12)

Ptotal(t) ≤ Ptmin(t) + (0.3 + Z GC+(t)) (13)

SOC(t) = SOC(t − 1)+
30
60

(
η ∗ P in

BESS(t) − 1
η

Pout
BESS(t)

)
/kWh (14)

P in
BESS(t) ≤ M ∗ {1 − SOC(t)} (15)

Pout
BESS(t) ≤ M ∗ SOC(t) (16)

|Ptotal(t − 1) − Ptotal(t)| ≤ 0.05 (17)

Z out(t), Z in(t), Z GC+(t), Z GC−(t) ≥ 0 (18)

where,

N the number of planning (20 in this paper)
t time (30 min is 1 unit in this paper)
SOC SOC of BESS
SOCtarget the target of SOC
Z out, Z in additional compensation power
Z GC+, Z GC− GC mitigation amount
ω1, ω2, ω3, weight coefficients
P total the generation plan
PWF WFs power
Pout

BESS discharge power of BESS on the system side of
the PCS.

P in
BESS charge power of BESS on the system side of the

PCS.
η conversion efficiency
kW power capacity of BESS
P tmax maximum supply output in the past 6 h
P tmin Minimum supply output in the past 6 h
kWh the energy capacity of BESS
M optimization parameter
P submit submitted plan

The first clause of the objective function (5) for managing SOC
aims to reduce the gap between SOC(t) and SOC target SOCtarget,
determined by deep reinforcement learning and will be described
later in Section 4.3. The SOC value is divided by 100 to normalize
SOC(t)∈ [0, 1]. The second one and third one is respectively
for minimizing the amount of additional compensation power and
the amount of GC mitigation. The purpose of this paper is to
minimize deviations from the GC in the schedule operation of
WF. Under the current system in Japan, imbalances are handled by
price settlement, not by penalty. In other words, it is impossible to
know the penalty unit price in advance. Therefore, in this paper, the
purpose of the scheduled operation is to minimize the imbalance
(p.u.-h). Therefore, we formulated to create a generation plan even
if the storage capacity of BESS is insufficient or the GC cannot
be achieved at the planning stage. Where, weight coefficients ω2,
ω3 are usually given to be 0. The formulation (6) shows the

690 IEEJ Trans 16: 687–695 (2021)
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power balance between the combined power and the generation
plan. The BESS cannot charge and discharge simultaneously.
Thus, the BESS power constraint is described in (7). Moreover,
since the BESS has rated output power, it is described as (8)
and (9). P in

BESS and Pout
BESS indicate the charge/discharge power on

the system side of the PCS as shown in Fig. 1. kW indicates
the power capacity on the AC side of the PCS. Observing the
GC helps suppress ramp events. In other words, controlling the
combined power P total within the GC is necessary. The formulation
of GC is expressed as (10)–(13). Given the energy capacity and
the conversion efficiency, the energy state of the BESS can be
calculated by (14). In addition, the BESS cannot be charged when
SOC(t) = 1 or cannot be discharged when SOC(t) = 0. BESS
power is restrained to avoid overcharging or over-discharging in
(15) and (16). M is an optimization parameter and an adequately
large constant. The formulation (17) is a constraint equation that
suppresses short-period fluctuations caused by a shift between
frames. This report prohibits the fluctuation between frames of 5%
or more of the rated WF output. The real-time operation of WFs is
conducted based on the 1.5-h-ahead generation plan P total(4). Note
that the additional compensation amounts Z out(t), Z in(t), and the
GC relaxation amount Z GC+(t), Z GC−(t) take non-negative values
as shown in (18). The generation plan is determined by solving
the above optimization calculation of the objective function (5)
and the constraints from (6) to (18).

4.2. Correction of prediction error The generation
plans requires several hours of prediction WF output, but the
prediction information includes an error. In this paper, we correct
the prediction error using deep learning. Specifically, the prediction
error is corrected by using the predicted value and the past
prediction error as the input data of NN and the measured value
as the training data.

4.3. Proposed method In this paper, it is assumed that
the environment is a power system operator such as OCCTO and
the agent is a WF operator. The WF operator determines the
target SOC, creates a power generation plan from the optimization
calculation, and executes the scheduled operation by controlling
BESS. In the proposed method, deep reinforcement learning is
applied to the determination of the target SOC and the result of
the scheduled operation is learned as a reward. Figure 7 shows the
flow chart of the proposed method. First, the predicted WF output
is corrected using deep learning from past predicted information
and measured information. Next, the target SOC is determined by
deep reinforcement learning using multiple information including
the corrected predicted WF output. Finally, the generation plan is
determined by the optimization calculation considering the target
SOC and submitted. After that, based on the submitted plan, the
control of BESS is performed, and it is confirmed whether the
ramp fluctuation suppression has been achieved. If no ramp event
occurs in the power supplied to the grid, the search is continued,
and if it occurs, learning is performed according to an algorithm.
By determining the target value of the optimization calculation by
learning in this manner, it is possible to reduce the deviation due
to insufficient capacity while guaranteeing a plan for achieving the
GC.

4.4. Applying reinforcement learning This section
describes the determination method of the target SOC using

Start

Decide Pref with optimization

Scheduled operation with battery

Occurrence of ramp event?

Update Q data
Yes

No

Decide SOCtarget with
fixed 50    PS DQN-PS

Decide PWF with deep learning

Fig. 7. The flow of scheduled operation

Grid Code
Deviation

0

penalties

0.3 p.u

r(t)

(r(t) + r(1))/2

(r(3) r(2) r(1)

Fig. 8. Image of penalties

reinforcement learning. To apply reinforcement learning, it is nec-
essary to define the state, action, and reward function respectively.
For the state, the target SOC before the change, the predicted WF
outputs, the current SOC, and the degree of the prediction error are
used. For predicted WF outputs including trends for several hours,
we will use Autoencoder, a method of deep learning in Reference
[30], to extract its features and discretize them. As the degree of
the prediction error, the value of the prediction error and the ten-
dency of the prediction error are used. The action is the target
SOC, and the reward function is calculated as follows:

r(t) = −10 ∗ P ∗ (t − T + 36)/36 (19)

Here, P is a penalty that increases as the combined output
deviates from the GC. As shown in Fig. 8, in the formulation
(19), a penalty is determined according to the length of the
departure time, and learning of an action to reduce the deviation is
encouraged. In addition, since the time of the available predictive
information at the time of determining the action is 18 h, a penalty
is given to the action up to 18 h before. Furthermore, as shown in
Fig. 3, the GC depends on the past generation plan, so penalties
are also imposed on the action that caused the deviation to occur
(in most cases, the action on the generation plan 6 h ago). On the
other hand, actions, when the power generation plan is blocked by
the GC, are exempt from penalties and prevent erroneous learning.

4.5. Applying deep reinforcement learning In this
section, we describe a target SOC determination method that
uses the proposed method, deep reinforcement learning. In deep
reinforcement learning, it is necessary to define states, actions,
reward functions, and loss functions. For the state, the SOC, the
power generation plan, the WF output, and the prediction error for
the past 24 h, the target SOC for the past 8 h and the predicted
WF output for the next 18 h are used without discretization. The
behavior and reward function are set the same as in Section 4.4,
and (4) is used for the loss function.

691 IEEJ Trans 16: 687–695 (2021)



M. FUTAKUCHI, S. TAKAYAMA, AND A. ISHIGAME

0.25

0.2

0.15

M
A

E
(p

.u
.)

0.05

0

0.1

Time(h)
1 2 3 4 5 6 7 8 9 10

w/o:2010
w/o:2011
w/o:2012
w/o:2010
w/o:2011
w/o:2012

Fig. 9. The result of error correction

Table I. Number of deviations from grid code when the
correction method is applied to the constant method

Number of deviations (times)

Method 2010 2011 2012

w/o correction 35 643 38 071 41 600
w/ correction 16 609 20 466 20 869

5. Case Studies

5.1. Conditions The WF outputs is calculated from the
1-min value data of the wind speed of the ground weather
observation measured by Japan Meteorological Business Support
Center and the power curve of the wind power generation system
‘HTW2.0-86’. The predicted WF output is calculated from the
hourly wind speed value announced by the GPV weather forecast.
In addition, we used wind speed data from 2009 to 2012 at
Minamichita and Irako sites in Aichi Prefecture. In this paper, we
examined the small-scale WF with two wind power generators.
We set the rated capacity of WF to 4 MW. Because the small-
scale WF is greatly affected by the GC due to the magnitude of
output fluctuation. Therefore, all power variables were normalized
by 4 MW. The power capacity of BESS is 0.4 p.u. and the storage
capacity of BESS is 10 h. The correction of prediction error is
learned based on the 2009 data, and is applied to the 2010 and
subsequent prediction information and evaluated. For learning in
reinforcement learning and deep reinforcement learning, training
data are used for 2010 and 2011, and the learning results are
evaluated by applying them to 2012 data. The number of trails
of learning in 1 year is 1800 for both reinforcement learning
and deep reinforcement learning. In addition, the conventional
method to be compared is a method in which the target value
is fixed at 0.5 p.u. Moreover, real-time WF operation is conducted
without control delay of the BESS—response delay of charge
and discharge, measurement lag, and communication lag in the
OWF phase—and the BESS is used to compensate for WF power
directly, as expressed in (2).

5.2. Scheduled operation Figure 9 shows the results of
the annual mean absolute error (MAE) for each forecast time. It
can be seen that the MAE value was reduced all year and all-
time by correcting the forecast information. In particular, after the
correction, the MAE value is reduced when the prediction is close.

Table I shows the results of the scheduled operation using the
conventional constant method. The correction of the predicted WF
output reduces the number of deviations throughout the year.

18:00

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
24:00 6:00

Time(hh:mm)

Po
w

er
(p

.u
.)

12:00

Actual WF output
Predict WF

Fig. 10. Actual output and predicted output of WF
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Fig. 11. SOC target value by each method

Figure 10 shows the wind power output and WF output forecast
during the time period when the proposed method is evaluated.
As shown in Fig. 10, we examined the ramp-up in which the WF
output rises sharply as a case study.

Figure 11 shows the SOC target values set by each method.
As shown in Fig. 11, in the PS method, the SOC target value is
frequently changed due to the influence of the discretization of
variables for applying reinforcement learning. On the other hand,
the state can be considered as a continuous value in the DQN-
PS method. Therefore, frequent target value changes have been
resolved.

Figure 12 shows the result of the scheduled operation on March
19, 2012, as an example. It should be noted that the form of the GC
in Fig. 12(a)–(c) are different because the GC changes according
to the past WF output shown in Fig. 3. In the constant method
shown in Fig. 12(a), a generation plan was made to charge the
storage of BESS greatly until 18:00 to bring the SOC closer to the
target value of 0.5 p.u. As a result, the storage of BESS became
fully charged from around 2:00, and the combined output deviated
from GC until 11:00. On the other hand, in the method using PS
in Fig. 12(b), by lowering the target SOC at around 15:00, it was
possible to respond to the ramp fluctuations from 18:00 with less
SOC than the constant method, so the time to full charge was
reduced by about 1 h. Furthermore, in the method using DQN-PS
shown in Fig. 12(c), by setting the target SOC to 0.3 p.u. for a
longer time than the PS method, the generation plan is increasing
around 18:00 with the increase in WF. As a result, it can be seen
that full charge was avoided, and combined output is as planned
without any deviation during all hours except for deviation due to
insufficient power capacity of BESS.

Table II shows the results of scheduled operation in 2012 when
learning and changing the target value. Compared with the constant
method, it can be confirmed that the number of deviations in PS is
worse. This seems to be because PS, select the usage information to
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Fig. 12. The result of the scheduled operation: (a) Constant
method (b) PS method (c) DQN-PS method

discretize the input information and avoid an increase in memory,
is lacking the necessary information for learning, and the number
of cases where PS is worse than constant methods is increasing. On
the other hand, it can be seen that DQN-PS can reduce the number
of deviations compared to the constant method. In addition, the
effectiveness of the proposed method can be confirmed from the
viewpoint of imbalance, which is the power balance difference
between the generation plan and the combined output. This is
because the input information can be used as a continuous value as
a state, so that judgment can be made based on more information,
and because it can be easily applied to unlearned data, so that it
learns the relationship between the state and the Q value instead of
learning the Q value itself. Moreover, it can be seen that the effect
of reducing the number of deviations is enhanced by learning not
only in 1 year but also in multiple years for both PS and DQN-
PS. Therefore, it is thought that learning more about various states
leads to the improvement of the ability to respond to unknown
data.

Table II. The number of deviations and imbalance from the grid
code in each method in 2012

Method
Number of

deviations (times)
Imbalance

(p.u.-h)

Constant method 20 869 80.48
PS 2011 22 670 88.87

2010 + 2011 22 652 83.37
DQN-PS 2011 15 430 64.94

2010 + 2011 14 894 59.52
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Fig. 13. The number of deviations from the grid code for the
number of trials using DQN-PS method
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Fig. 14. The number of deviations from the grid code for the
storage capacity of BESS when constant method is applied

Figure 13 shows the number of deviations when the number
of trials in learning is increased in DQN-PS. It is not possible to
confirm cases that exceed the constant method, but it can be seen
that the number of deviations repeatedly changes with an increase
in the number of trials. This seems to be caused by over-learning
caused by repeated learning. At present, it seems very difficult to
determine the optimal number of trials and this is an issue for the
future.

Figure 14 shows the number of deviations for a year when the
storage capacity of BESS is changed in the constant method. As
shown in Fig. 14, the number of deviations decreases as the storage
battery capacity increases. This is because the power deviating
from the GC can be charged and discharged more by increasing
the storage battery capacity.

Table III shows the required storage capacity of BESS in
the DQN-PS method and the constant method. In Table III, the
required storage capacity of BESS is evaluated based on the
maximum value, average value, and minimum value of the number
of deviations in the DQN-PS method shown in Fig. 13. As
shown in Table III, the required storage capacity of BESS for
the Constant method were 12.5, 14.25, and 17.75 h, respectively.
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Table III. The result of reducing storage capacity

Deviation of
DQN-PS

The required
capacity of
the constant
method (h)

The required
capacity of

the DQN-PS
method (h)

BESS
reduction
effect (h)

Maximum 16 021 12.50 10.00 2.50
Average 14 097 14.25 10.00 4.25
Minimum 11 494 17.75 10.00 7.75

On the other hand, it for the DQN-PS method are all 10 h as
shown in Section 5.1. These results show that the Constant method
requires the storage capacity of BESS of approximately 2.5–7.75 h
to achieve the same result as the proposed DQN-PS method. It can
be confirmed that the storage capacity of BESS can be reduced by
the DQN-PS method.

6. Conclusion

A machine learning method for scheduled WFs operation to
control ramp events is proposed in this paper. By correcting the
predicted information using deep leaning and deciding a target
SOC using deep reinforcement learning, the scheduled operation
for controlling ramp events is achieved. In addition, by using
multiple information for learning, the effectiveness of the proposed
method is improved. A comparison of the conventional method,
reinforcement learning method, and deep reinforcement learning
method through numerical simulation highlighted the effectiveness
of the proposed scheduling model. Finally, the required storage
capacity’s reduction of the proposed method can be expected.
Future tasks include studying how to judge the appropriate number
of learning trials, confirming the effects of rationality and timing,
and comparing it with other optimization methods.
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