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Abstract: This paper proposes a mode-in-state contribution factor for a class of nonlinear

dynamical systems by utilizing spectral properties of the Koopman operator and sensitivity

analysis. Using eigenfunctions of the Koopman operator for a target nonlinear system, we

show that the relative contribution between modes and state variables can be quantified be-

yond a linear regime, where the nonlinearity of the system is taken into consideration. The

proposed contribution factor is applied to the numerical analysis of large-signal simulations for

an interconnected AC/multi-terminal DC power system.
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1. Introduction
The so-called participation factor [1] and contribution one [2] quantify mutual impacts between state

variables and modes in multi-degree-of-freedom linear dynamical systems. Many groups of researches

have studied definitions and interpretations of these factors from viewpoints of systems theory and

physics (see, e.g., [3, 4]). Their generalizations to nonlinear systems are also reported in [5, 6]. Such

generalizations are of fundamental concern in nonlinear systems theory and of technological signifi-

cance in applications such as analysis and control of electric power systems [7].

In this paper, as a novel proposal, we introduce the mode-in-state contribution factor to a class of

nonlinear dynamical systems. The mode-in-state contribution factor depends on (initial) states and

is thus expected to extract global properties of nonlinear systems far from attractors. Our theory is

based on spectral theory of nonlinear dynamical systems, precisely speaking, spectral properties of the

Koopman operators [8] and the idea of sensitivity analysis [9, 10]. As introduced in Section 2.1, the

Koopman operator is a linear infinite-dimensional operator defined for a nonlinear dynamical system
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and keeps full information on the nonlinear system: see, e.g., [11–13]. The spectrum of the linear

operator is the mathematical foundation of Koopman Mode Decomposition (KMD) [8,14]. Based on

the KMD and the idea of sensitivity analysis, we introduce a data-driven mode-in-state contribution

factor for a class of nonlinear systems. It should be noted that a KMD-based “participation” factor

has been proposed in [6], which does not depend on states whereas our contribution factor does.

The introduced contribution factor is applied to the numerical analysis of large-signal simulations

in an interconnected AC/Multi-Terminal DC (MTDC) power system [15–18] in order to show its

technological potential. This paper is a substantially enhanced version of [19, 20], former of which

introduces a different definition of the mode-in-state contribution factor based on KMD.

2. Proposal
This section describes a new proposal of the mode-in-state contribution factor for nonlinear systems.

For this, we introduce the Koopman operator and its spectrum leading to signal representation, called

KMD (Koopman Mode Decomposition).

2.1 Koopman operator and Koopman mode decomposition (KMD)
Motivated by the application to power system analysis in this paper, we now consider continuous-time

dynamical systems described by the following Differential-Algebraic Equation (DAE):

dx

dt
= ẋ = F (x,y), 0 = G(x,y), (1)

where x ∈ Rn is the vector of differential variables, y ∈ Rm is the vector of algebraic variables, and

F : Rn+m → Rn and G : Rn+m → Rm are given nonlinear vector-valued functions. We make the

so-called regularity assumption [21] such that there exists a unique solution of DAE (1), for which we

address the dynamics in the set R defined as

R := {(x,y) ∈ Rn × Rm | G(x,y) = 0, det(DyG(x,y)) ̸= 0}, (2)

where DyG is the Jacobian of G with respect to y.

It is shown in [21] that the Koopman operator is defined for DAE (1) with an asymptotically

stable Equilibrium Point (EP). To see this, we denote by St(x,y) the solution in R starting at (x,y)

and converging to the stable EP (with a non-empty basin of attraction A ⊂ R) as t → ∞. Then,

the Koopman operator Ut is defined as a composition operator acting on a scalar-valued continuous

function g : A → C, given by

Utg := g ◦ St, t ≥ 0. (3)

The function g is called observable. Although DAE (1) and St are finite-dimensional and nonlinear,

Ut is an infinite-dimensional but linear operator acting on the space of functions. The linearity is uti-

lized in the so-called Koopman operator framework for analysis and synthesis of nonlinear dynamical

systems: see, e.g., [11–13].

One successful method in the framework is the KMD, in which signals generated by nonlinear

systems are represented in terms of spectral properties of the Koopman operator. For this, the pair

of Koopman eigenvalue λ ∈ C and Koopman eigenfunction ϕλ (a non-zero function defined on A) is

defined for Ut as follows:

Utϕλ = eλtϕλ, t ≥ 0. (4)

As proven in [21] under certain conditions, we expand a K-dimensional vector-valued observable

g : A → RK in terms of Koopman eigenfunctions ϕj , labeled by integer numbers j, and decompose

the associated multivariate signal as follows:

g(St(x,y)) =
∞∑
j=1

eλjtϕj(x,y)Vj , t ≥ 0, (x,y) ∈ A, (5)
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where λj are the j-th Koopman eigenvalues, and Vj are called Koopman modes for the expansion. If we

can take g(x) = x, then the time evolution of the differential variables, denoted as x(t) = St(x,y)|Rn ,

is decomposed as follows:

x(t) =
∞∑
j=1

eλjtϕj(x,y)Vj , t ≥ 0. (6)

Here, the y dependence in ϕj is resolved with the algebraic equation G(x,y) = 0. Precisely speaking,

by introducing a transformation φ satisfying G(x,y = φ(x)) = 0, in which its existence is guaran-

teed in R according to the implicit function theorem, it is possible to remove the y dependence as

ϕj(x,φ(x)) and to simply rewrite it as ϕj(x). For applications, it is numerically important to estimate

the Koopman eigenvalues and eigenfunctions, and their computation is generally termed as the Dy-

namic Mode Decomposition (DMD) [22]. In particular, the so-called Extended DMD (EDMD) [23]

is widely used for approximately deriving the Koopman eigenfunction as ϕj(x) ≈ u⊤
j γ(x), where

uj ∈ Cm are related to left eigenvectors of an approximate matrix representation of the underlying

Koopman operator, computed directly from time-series data of x(t). Them-dimensional vector-valued

observable γ(x) need to be designed for the computation.

2.2 KMD-based mode-in-state contribution factor
As a novel point of this paper, we introduce a mode-in-state contribution factor based on the KMD.

This is based on the idea of sensitivity like [9, 10]. Here, the term mode-in-state indicates the contri-

bution of modes in the time evolution of a single state, denoted by xk, which are excited by a small

change of initial value on the same state xk. For this purpose, we consider an infinitesimal change of

the state evolution xk(t), expressed as

dxk(t) =

n∑
i=1

∂xk(t)

∂xi
dxi, (7)

where dxi is a small change of the initial state xi. Now, to quantify the effect of the excitation of

state xk, we set dxi = 0 (i ≠ k). By substituting (6) into (7) with x = x(0), (7) is formally re-written

as follows:

dxk(t) =

∞∑
j=1

eλjt
∂ϕj

∂xk
(x(0))Vj,kdxk, (8)

where Vj,k is the k-th element of Vj . Here, from (8), we define ωk,j as the mode-in-state contribution

factor between j-th mode and k-th state as follows:

ωk,j :=
∂ϕj

∂xk
(x(0))Vj,k. (9)

This factor ωk,j is dependent on the initial state x(0) and hence affected by the nonlinearity of the DAE

system (1) through the Koopman eigenfunction ϕj(x). Numerically, using the estimated Koopman

modes vj and Koopman eigenfunctions uj
⊤γ(x), ωk,j is approximately computed as follows:

ωk,j ≈ vj,k

m∑
ℓ=1

uj,ℓ
∂γℓ
∂xk

∣∣∣∣∣
x=x(0)

. (10)

For the linear case, ωk,j includes the mode-in-state participation factor in [1]. Consider the linear

DAE with F (x,y) = A1x + A2y and G(x,y) = A3x + A4y ( A1 ∈ Rn×n,A2 ∈ Rn×m,A3 ∈
Rm×n,A4 ∈ Rm×m). It can be obtained by calculating the Jacobian matrices of the terms on the

right-hand sides of the nonlinear DAE (1). If det(DyG) = det(A4) ≠ 0, then the dynamics of the

differential variables are represented by the linear ordinary differential equation as

ẋ = (A1 −A2A
−1
4 A3)x =: Ax. (11)

For this linear system, by assuming distinct n eigenvalues λj of A and associated left- (or right-)

eigenvectors uj (or vj), it is shown in [24] that λj and ϕj(x) = u⊤
j x are principal eigenvalues and
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Fig. 1: Single-line diagram of interconnected AC/multi-terminal DC power system in [17]

eigenfunctions of the Koopman operator. Since the Koopman mode Vj corresponds to vj for the

expansion of x in the linear system [13], (9) is written as

ωk,j = uj,kvj,k, (12)

where it coincides with the participation factor [1] derived for the linear system (11).

3. Application to power system analysis
In this section, we apply the KMD-based mode-in-state contribution factor to the analysis of an

interconnected AC/MTDC (Multi-Terminal DC) power system in [15–18]. The single-line diagram

of the AC/MTDC system is depicted in Fig. 1. As shown in [16, 17], the mathematical model of the

system is represented with DAE (1) with 12 differential variables x and 7 algebraic ones y. The x

includes the angular position δ of the synchronous generator, the deviation ω of rotor speed relative

to a nominal angular frequency, the voltage e′q behind transient reactance in the generator, the DC

current Idcij between DC bus i and bus j, the DC voltage vdci at bus i, and the control inputs ui

at Voltage Source Converter (VSC) i. Also, y includes the amplitudes and arguments (angles θi) of

voltage phasor at AC bus i. The variables focused in this paper are shown in Fig. 1, and the details of

the model are described in [15–17]. The model is intended for large-signal analysis of the AC/MTDC

system, in which we need to evaluate the system dynamics beyond a neighborhood of a stable EP,

that is to say, affected by the nonlinearity of the mathematical model.

The KMD-based mode-in-state contribution factor is now evaluated for numerical simulations of the

model against disturbances in the generator voltage e′q. The simulations are necessary for estimating

the Koopman eigenvalues and eigenfunctions with EDMD. We generate 401 initial conditions of e′q as

e′q = e′∗q + 0.0005ℓ (for ℓ = 0, 1, . . . , 400), where e′∗q is the value at a stable EP, and we fix the initial

conditions of the other differential variables in x at the stable EP. Then, for each initial condition, we

simulate the time series of x with 300 numbers of snapshots and sampling period 0.005 s. Therefore,

120300 snapshots are used for the EDMD. In addition, based on [25], the 22 observables are selected

as γ(x) = [x⊤, cos(δ−θ1), sin(δ−θ1), cos 2(δ−θ1), sin 2(δ−θ1), ω cos(δ−θ1), ω sin(δ−θ1), ω cos 2(δ−
θ1), ω sin 2(δ − θ1), e

′
q cos(δ − θ1), e

′
q sin(δ − θ1)]

⊤. The parameters are basically the same values as

used in [17] although they do not show their complete list. In this paper there is no space here to

show the complete set due to the limitation of space, but which can be provided upon request and

will be shown in an archive.

Some of Koopman eigenvalues estimated by EDMD and eigevalues of the matrix A of (11) derived

via linearization of the mathematical model around a stable EP are presented in Table I, which are

related to the dynamics of the synchronous generator in the AC system. In Table I, the estimated

Koopman eigenvalues λ1, λ2,3 are close to the eigenvalues λ′
1, λ

′
2,3 for the linearized model. This is

valid in terms of the spectral characterization of the DAE with stable EP in [21]. Furthermore, the

Koopman eigenvalues λ4,5 are likely the linear combination as λ1 + λ2,3 × 2 = −3.06 ± 27.2i. The

linear combination is known as the algebraic property of Koopman eigenvalues (see, e.g., [21]), hence

λ4,5 are generated by the nonlinearity of the model.
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Table I: Eigenvalues for linearized model and estimated Koopman eigenvalues, which are related to

the dynamics of the synchronous generator in the AC system

Eigenvalues for Linearized Model Koopman Eigenvalues

λ′
1 −1.64 λ1 −1.80

λ′
2,3 −0.64 ± 13.5i λ2,3 −0.63 ± 13.6i

λ4,5 −2.98 ± 26.2i

(a) linearization (b) KMD-based (e′q(0) = e′∗q + 0.01) (c) KMD-based (e′q(0) = e′∗q + 0.2)

Fig. 2: Computation results on mode-in-state contribution and participation factors ω∗
k,j for the four

variables. Multiple colors are used to show the contributions of multiple modes (eigenvalues), where

some of the eigenvalues in Table I are explicitly shown.

Finally, the KMD-based mode-in-state contribution factors are evaluated for different initial condi-

tions. For clear comparison, motivated by [26], we introduce the normalized magnitude of contribution

factor based on the absolute values of ωk,j as follows:

ω∗
k,j :=

|ωk,j |∑m
j=1 |ωk,j |

. (13)

Fig. 2 shows the normalized magnitudes of contribution and participation factors for the four variables

Idc23, δ, e
′
q, and ω. The reason why the variables are chosen is that we emphasize the meaning and

the relevance of the proposed factors as explained below. The mode-in-state participation factors

with the conventional linear modal analysis calculated by (12) are presented in Fig. 2(a). The KMD-

based mode-in-state contribution factors are presented in Figs. 2(b) and (c). The difference between

Figs. 2(b) and (c) is that of the initial condition: e′q(0) = e′∗q + 0.01 for (b) and e′q(0) = e′∗q + 0.2 for

(c). In the figures, multiple colors are used to show the contributions of multiple modes, where some

of the eigenvalues in Table I are explicitly shown. A clear difference in the contribution factors of δ

among Figs. 2(a)-(c) is observed. In particular, the dependence on initial conditions in the figures (b)

and (c) is caused by the nonlinearity of the model. In Fig. 2(b) with the small excitation, the linear

mode λ2,3 has a large contribution, whereas λ1 has a small contribution. In Fig. 2(c) with the large

excitation, λ2,3 has lower a contribution and λ1 has a larger contribution to δ. Also, the contribution

factors for Idc23 in the MTDC system do not change when the change of initial conditions in the AC

system happens. This implies that disturbances that have strong impacts on the AC system do not

affect the DC system remarkably. This computation is relevant in terms of control systems of VSC

in the interconnected AC/MTDC system. This is because the power system is controlled by the VSC

in which dynamical interactions between the AC and MTDC systems are minimized.

4. Conclusion
A KMD-based mode-in-state contribution factor guided by the sensitivity analysis was proposed and

applied to the analysis of an interconnected AC/MTDC power system. Numerical results show that

the proposed factor can capture the nonlinearity of the model and the physical property of the target

power system. Several follow-up studies on this paper are possible. A KMD-based state-in-mode

contribution factor should be pursued to quantify the mutual impact between one mode and each
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state. Also, an application of the proposed factor to a multi-machine power system exhibiting an

inter-area oscillation is interesting and important in practical viewpoints.
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