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Chapter 1

Introduction

1.1 Background

1.1.1 Oscillations in autonomous systems

Oscillations are well known as important phenomena in nature and artificial sys-
tems [1]. They can be classified into forced oscillations and unforced oscillations
(i.e., self-excited oscillations). The self-excited oscillations occur in nonlinear au-
tonomous systems, in which external energy is constantly provided and their nonlin-
earity maintains their oscillations. Nonlinear autonomous systems with self-excited
oscillations are called oscillators throughout this thesis. The oscillations, such as
the periodic firing of pacemaker cells [2, 3], the rhythm of pendulum clocks, the
rhythm of metronomes, and the cyclic motions of heat engines [1], are beneficial to
performances of their various systems. Other oscillations, such as the wind-driven
vibrations of bridges [4, 5], the oscillations in direct current (DC) micro-grids [6],
and the vibrations of cutting machines [7, 8], harm the stability and degrade the
performance of their various systems.

In applications, it is imperative to avoid or suppress the harmful oscillations. In
order to do this, the influence of the system parameters on the harmful oscillations
must be investigated, and then the parameters must be chosen in such a way that
the oscillations do not occur. Although this method is practical in many cases,
changing the parameters can be very costly. This is because avoiding harmful os-
cillations may require major changes in the system, and the system may even need
to be abandoned due to practical restrictions. An alternative is to suppress harmful
oscillations with feedback control; this is more practical, since it does not require
major changes in the system. In the field of control engineering, many schemes have
been proposed for suppressing oscillations with feedback. In the field of nonlinear
science, there is a significant control scheme for suppressing oscillations: Hövel and
Scholl [9] applied a delayed feedback control (DFC) method, which had been pro-
posed by Pyragas [10]1, to the suppression of oscillations (see Table 1.1). Their

1The original DFC method introduced by Pyragas [10] stabilizes unstable periodic orbits em-
bedded in a chaotic attractor.
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CHAPTER 1. INTRODUCTION

scheme stabilizes an unstable steady state embedded within a system of oscillators,
without direct knowledge of the steady state position. Thus, the DFC method has
been useful for experimental situations, and it has been extended to various situ-
ations: Ahlborn and Parlitz proposed a multiple DFC method [11]; and Konishi
and Hara proposed a queue-based DFC method [12] (see Table 1.1). The multiple
DFC method uses two or more different and independent delayed feedback signals.
Its advantage is that stabilization can be induced even for long delay times. The
queue-based DFC method uses a first-in-first-out (FIFO) queue for a delayed feed-
back signal. Its primary advantage is that it is easy to implement the delayed signal
using inexpensive and simple electronic devices.

1.1.2 Coupled oscillators

Connections between oscillators were first studied in 1665 by Huygens, who no-
ticed that pendulum clocks in the same room were synchronized [13]. In daily life,
we can observe this phenomenon, for example, in the flash of fireflies [14], the firing
of pacemaker cells [2], and the chirping of crickets [15]. The dynamics of these phe-
nomena can be described by coupled oscillators. In the field of nonlinear science,
researchers have found many interesting phenomena relating to coupled oscillators,
but if they are harmful in practice, for instance, the oscillations in DC micro-grids [6],
they must be suppressed.

Amplitude death, the stabilization of a steady state that is induced by a static
connection2, is a strong candidate for suppressing the oscillations in coupled oscilla-
tors. Yamaguchi and Shimizu [16] and Aronson et al. [17] observed this phenomenon
in paired and networked oscillators, respectively (see Table 1.1). Unfortunately, a
static connection cannot induce amplitude death for coupled similar oscillators.
This is a crucial limitation of the use of amplitude death in practice. Reddy et al.
showed that amplitude death can be induced in coupled similar oscillators [18], if
the connections between the oscillators have a transmission delay (see Table 1.1).
Moreover, Konishi et al. extended the multiple DFC method to a multiple delay
connection which induces stabilization of coupled similar oscillators [19] (see Table
1.1). The advantage of this connection compared with a single delay connection is
that amplitude death occurs even with long delays.

1.1.3 Motivation

Time delays inevitably exist in many dynamical systems [20,21], such as biological
systems [21–24], traffic systems [25], and supply chain systems [26], since neither
finite speeds of signal propagation nor finite speeds of processing signals can be
avoided. Such delays can be neglected when they are short. However, long delays
cannot be neglected, because they may induce self-excited oscillations in nonlinear
autonomous systems, such as metal-cutting tools [7, 8], contact rotating systems

2A static connection is the simplest type of diffusive connection.
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1.2. OUTLINE

Table 1.1: Previous studies on stabilization of oscillators

Static
connection

Delay
connection

Multiple
delay connection

Queue-based
delay connection

One
oscillator

N/A
Hövel & Scholl,
Phys. Rev. E.,
2005 [9]

Ahlborn & Parlitz,
Phys. Rev. Lett.,
2004 [11]

Konishi & Hara,
Dynam. Cont. Dis. B,
2011 [12]

Two
oscillators

Aronson et al.,
Physica D,
1990 [17] Reddy et al.,

Phys. Rev. Lett.,
1998 [18]

Konishi et al.,
Phys. Rev. E,
2010 [19]

Konishi, Le et al.,
Euro. Phys. J. B,
2012 [39] (Chapter 5)

Three
oscillators

Yamaguchi & Shimizu,
Physica D,
1984 [16]

Network
oscillators

[27], and oil-well drill-string systems [28]. Nonlinear autonomous systems with self-
excited oscillations that are induced by delays are called time-delay oscillators. Some
oscillations in time-delay oscillators are harmful for the performance of the system,
and it is desirable to suppress these. Stability analyses and the control of time-delay
oscillators have gained increasing attention from a theoretical viewpoint as well as
for practical applications [29–31]; however, these are not easy tasks, since, due to
the time delays, the dimension of oscillators is infinite.

Let us recall that the previous studies listed in Table 1.1 deal only with the
stabilization of non-time-delay oscillators. However, we have seen above that the
stabilization of time-delay oscillators is an important subject. The main purpose of
this thesis is to apply the previous studies listed in Table 1.1 to the stabilization
of time-delay oscillators (see Table 1.2). To begin with, we investigate amplitude
death in systems of two or three time-delay oscillators, in which each oscillator has
a different delay, and that are coupled by a static connection [32,33]. Our analytical
results are verified by circuit experiments. It was reported that a single time-delay
oscillator can be stabilized by the DFC method [34]. This result was applied to
a pair of time-delay oscillators coupled by a delay connection [35]. In this thesis,
this is extended to time-delay oscillator networks; the most important feature of
our extension is that robust control theory is employed to simplify the stability
analysis [36]. Furthermore, we apply the multiple DFC method to the stabilization
of a single time-delay oscillator [37] and extend it to the stabilization of a pair
of time-delay oscillators coupled by a multiple delay connection [38]. Finally, we
apply the queue-based DFC method to the stabilization of non-time-delay oscillator
networks with a queue-based delay connection [39] (see Table 1.1).

1.2 Outline

Chapter 2 investigates the dynamical behavior of both two and three time-delay
oscillators coupled by a static connection, and finds that amplitude death occurs
when their delay times are nonidentical [32, 33]. A cluster treatment of the charac-
teristic root paradigm is used to rigorously delineate the stability region. Stability

3



CHAPTER 1. INTRODUCTION

Table 1.2: Our studies on stabilization of time-delay oscillators

Static
connection

Delay
connection

Multiple
delay connection

Queue-based
delay connection

One
oscillator

N/A
Namajunas et al.,
Phys. Lett. A,
1995 [34]

Le et al.,
Nonlinear Dyn.,
2012 [37] (Chapter 4)

Two
oscillators

Le et al.,
Proc. of NOLTA,
2010 [32] (Chapter 2)

Konishi et al.,
Phys. Rev. E,
2008 [35]

Le et al.,
Proc. of NDES,
2012 [38](Chapter 4)

Three
oscillators

Le et al.,
Proc. of IUTAM,
2011 [33] (Chapter 2)

Le et al.,
Phys. Rev. E,
2013 [36] (Chapter 3)

Network
oscillators

analysis reveals that amplitude death still occurs when the delays are arbitrarily
long. These theoretical results are then experimentally verified with electronic cir-
cuits.

Chapter 3 deals with amplitude death in networks of identical time-delay oscil-
lators coupled by a delay connection [36]. Stability analysis allows us to derive a
systematic procedure to design the connection (i.e., coupling strength and connec-
tion delay) for induction of amplitude death. The main advantage of this procedure
is that the connection is guaranteed to induce amplitude death even if the oscillators
have long time delays. Our analytical results are verified by numerical examples.

Chapter 4 demonstrates that an unstable fixed point of a single time-delay os-
cillator can be stabilized by the multiple DFC method [37]. This method has an
advantage in that the stabilization occurs for any long delays in a feedback line,
providing the relationship is maintained between these delays and the delay time
in the oscillators. A systematic procedure is provided for designing the feedback
gain and the multiple delays. These analytical results are experimentally verified
with electronic circuits. Moreover, we also extend this control scheme to amplitude
death in a pair of time-delay oscillators coupled by a multiple delay connection [38],
which also allows us to obtain amplitude death even for long delays. The analysis,
a design procedure, and circuit experiments are provided.

Chapter 5 proposes a queue-based delay connection which can be implemented by
low-cost and simple delay devices [39]. This connection induces amplitude death in
non-time-delay oscillator networks, and the stability of amplitude death is analyzed
by a semi-discretization technique. The analytical results are checked with numerical
simulations.

Chapter 6 summarizes our results.
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Chapter 2

Stabilization of time-delay
nonlinear oscillators coupled
by a static connection

2.1 Introduction

Amplitude death, a diffusive connection-induced stabilization of unstable fixed
points in coupled oscillators, has been the subject of extensive investigation for the
past 15 years [16,17]. Aronson et al. analytically investigated the death phenomenon
for two coupled nonlinear oscillators [17]. They reported that death never occurs
when the coupled oscillators are identical. Reddy, Sen, and Johnston showed that a
time-delayed coupling effect, which exists due to the finite speed of data propagation,
is able to induce amplitude death even in identical coupled oscillators [18]. Their
report has considerably intrigued those working in the field of nonlinear physics
[40]. Atay showed that distributed time-delay connections facilitate amplitude death
[41]. Konishi et al. reported that multiple delay [42] and time-varying delay [43]
connections can also facilitate amplitude death in coupled oscillators.

In order to use amplitude death in practical situations, a mutual connection that
induces death must be designed. However, one inevitably confronts two problems
in such a design. The first is how to select the type of mutual interactions and
how to determine the coupling parameters. The second one is how to deal with
high-dimensional oscillators. Konishi et al. provided a solution for the above prob-
lems [35] and, in particular, focused on the amplitude death in a pair of time-delayed
chaotic oscillators [20] coupled by three types of mutual interactions: static connec-
tions, dynamic connections, and delayed connections.

Since time-delay systems have been widely used to model undesirable nonlinear
phenomena, such as chatter and chaos in metal-cutting tools [7, 8], the stabiliza-
tion of time-delay systems has been an important issue for engineering applications.
The previous paper [35] concluded that amplitude death can occur with dynamic
and delayed connections, but cannot with static ones. Although, due to their com-
plicated structure, dynamic and delayed connections are not easy to implement in
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OSCILLATORS COUPLED BY A STATIC CONNECTION

Figure 2.1: Block diagram of a pair of oscillators (2.1) coupled by a connection (2.2).

experimental situations, static connections have a simple structure. Therefore, static
connections are the best solution from a cost standpoint.

The present chapter theoretically and analytically considers the stability of a
pair of nonidentical time-delayed oscillators coupled by a static connection. It is
difficult to use the traditional procedure for stability analysis to derive the bound-
aries of the amplitude death, since its characteristic equation includes a cross-talk
term between the nonidentical delays. To overcome this difficulty, the present chap-
ter applies to the characteristic equation the methodology proposed by Sipahi and
Olgac [44]. This methodology allows us to derive directly, without trial-and-error
testing, boundary curves for the amplitude death which are useful for the design of
delay times. Furthermore, our theoretical results are verified with electronic circuit
experiments.

2.2 Stability analysis

2.2.1 Two time-delay nonlinear oscillators

Let us consider a pair of nonidentical scalar time-delayed chaotic oscillators (see
Fig. 2.1) [35]: {

ẋ1 = f(x1τ1)− αx1 + u1

ẋ2 = f(x2τ2)− αx2 + u2

, (2.1)

where x1,2 ∈ R and u1,2 ∈ R are the system states and coupling signals, respectively.
x1τ1,2τ2 := x1,2(t− τ1,2) are the delayed states; τ1,2 ≥ 0 are the delay times and α > 0
is a parameter. Furthermore, f : R → R represents a nonlinear function, and the
symbol R denotes the set of real numbers. These oscillators are coupled by the static
connection described as

u1,2 = k(x1,2 − x2,1), (2.2)

where k ∈ R is the coupling strength.
Each individual oscillator without coupling (i.e., u1,2 ≡ 0) has the fixed points

x∗ : 0 = f(x∗)− αx∗. (2.3)

Throughout this study, it is assumed that there is one unstable fixed point. The
location of the fixed point x∗ never changes even with coupling; in other words, the

6



2.2. STABILITY ANALYSIS

static connection changes only the stability of the point. The characteristic equation
of the linearized system at the fixed point x∗ can be rewritten as

a0(λ) + a1(λ)e
−λτ1 + a2(λ)e

−λτ2 + a3e
−λ(τ1+τ2) = 0, (2.4)

where

a0(λ) := s2 + 2(α− k)λ+ (α− k)2 − k2, (2.5)

a1(λ) = a2(λ) := −βλ− β(α− k), (2.6)

a3 := β2, (2.7)

β := {df(x)/dx}x=x∗ . (2.8)

The nonlinear function f is given by

f(x) =



0 if x ≤ −4/3

−1.8x− 2.4 if − 4/3 < x ≤ −0.8

1.2x if − 0.8 < x ≤ 0.8

−1.8x+ 2.4 if 0.8 < x ≤ 4/3

0 if x > 4/3

, (2.9)

as a typical case study [45]. The three fixed points of an individual oscillator located
at the intersection of f(x) and αx are x∗ = ±6/7 and 0. The slopes of f(x) at x∗

can be estimated as β(±6/7) = −1.8 and β(0) = 1.2. The parameters are fixed at
α = 1 and k = −2. Additionally, in the absence of delay (i.e., τ1 = τ2 = 0), the
characteristic equation (2.4) in the absence of delays has two roots, -6.79 and -2.80,
so the number of unstable roots is zero.

The cluster treatment of characteristic roots (CTCR) paradigm is capable of
deriving the boundary curves of a stability region in (τ1, τ2) space [44]. To simplify
the stability analysis, we only identify the roots lying on the imaginary axis: λ =
jλIm, where the symbol j is denoted as j =

√
−1. The stability posture in (τ1, τ2)

space is shown in Fig. 2.2, where the region of amplitude death is denoted by Ω.
Every point on the boundary curves correspond to the purely imaginary root. The
number of unstable roots in several regions are also indicated.

Figures 2.3(a) and 2.3(b) illustrate the time-series data of the two nonidentical
oscillators for the following two parameter sets: (A) τ1 = 4.4, τ2 = 6.8; (B) τ1 = 3.4,
τ2 = 6.8. These sets are indicated in Fig. 2.2. For the parameter set (A), the
two identical oscillators without coupling behave chaotically until t = 500, and they
become periodic after coupling. On the other hand, for the parameter set (B),
before coupling, the two individual oscillators have chaotic motion. After coupling,
the states x1,2(t) converge on x∗

1,2. When there is a wide-scale region of amplitude
death, as shown in Fig. 2.4, it seems that one may choose (τ1, τ2) arbitrarily large
and still obtain amplitude death, providing they are within the indicated area (see
the dotted lines in Fig. 2.4), τ1,2 = 2τ2,1 + ξ, 0 ≤ ξ ≤ 2. A static connection can
induce death over a region Ω that has a wide range of delay-times. However, we do
not yet have proof of this.
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Figure 2.3: Time series data x1,2(t) of coupled oscillators (numerical simulation)

2.2.2 Three time-delay nonlinear oscillators

Let us extend our results to three oscillators. For three time-delayed oscillators,
the characteristic equation includes cross-talk terms for three time delays. It is
difficult to deal with the cross-talk terms; therefore, the standard procedure for
analyzing the characteristic equation [18, 35, 41, 43, 46–48] is useless. To overcome
this difficulty, this section employs two novel methodologies: advanced clustering
with frequency sweeping (ACSF) [49] and cluster treatment of characteristic roots
(CTCR) [44]. The combination of the ACSF and CTCR methods is a powerful tool
that allows us to analyze the stability of the steady state and to obtain the stability
boundary curves in parameter space.

Consider the three time-delayed nonlinear oscillators,

ẋi = f(xτi)− αxi + ui, (i = 1, 2, 3),

8



2.2. STABILITY ANALYSIS

Figure 2.4: Wide-scale region of amplitude death and the boundary curves of sta-
bility.

where xi ∈ R and ui ∈ R denote the system state and coupling signal, respectively.
When xτi := xi(t − τi) is the delayed state, τi ≥ 0 is the delay time and α = 1 is a
parameter, the nonlinear function is

f(x) =


0.95x+ 1.4 if x ≤ 1.7

−1.6x+ 5.75 if 1.7 < x ≤ 4.3

−1.15 if x > 4.3

.

The oscillators are coupled by a static connection, with a coupling strength k ∈ R:

u1,2,3 =
1

2
k(x2,1,1 + x3,3,2 − 2x1,2,3).

Without coupling, each individual oscillator (i.e., u1,2,3 ≡ 0) has an unstable fixed
point x∗ : 0 = f(x∗) − αx∗. The location of the fixed point x∗ never changes even
with coupling; understandably, the static connection changes only its stability.
The combination of the ACSF and CTCR methods allow us to obtain the boundary
curves in three-dimensional (τ1, τ2, k) space with τ3 = 6, as shown in Fig. 2.5(a).
The cross-section surface of the three-dimensional curves at k = 2 is illustrated in
Fig. 2.5(b), where the region of amplitude death is denoted by Ω. Every point on
the curves corresponds to the purely imaginary root of the characteristic equation.
The numbers of unstable roots are stated in several of the regions. Figure 2.6 shows
the time-series data of the oscillators at points (A) and (B) in Fig. 2.5(b); they
are, respectively, outside and inside the region of amplitude death. At point (A), as
shown in Fig. 2.6(a), the state variables of the three oscillators, [x1(t), x2(t), x3(t)],
do not converge on the steady state after coupling at t = 500. In contrast, the
stabilization is induced at point (B) inside the region of amplitude death as shown
in Fig. 2.6(b). These time-series data agree with our boundary curves.
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Figure 2.6: Time-series data x1,2,3(t) before and after coupling.

2.3 Electronic circuit experiments

The two chaotic oscillators coupled by the static connection are sketched in Fig.
2.7. The delay units employ the bucket brigade delay line MN3011 (Panasonic) to
generate the delayed signal [35] and the nonlinear function is implemented by three
op-amps and two diodes.

Here, xi denotes the voltage of the i-th oscillator. The boxes labeled −τi and f are
the time-delay unit and the nonlinear function unit, respectively. These oscillators
are governed by 

Cnẋ1(t) =
1

Rn

{f(x1(t− τ1))− x1(t)}+ u1(t)

Cnẋ2(t) =
1

Rn

{f(x2(t− τ2))− x2(t)}+ u2(t)
, (2.10)

where Rn, Cn are a resistor and capacitor, respectively. The coupling terms u1,2(t)

10



2.3. ELECTRONIC CIRCUIT EXPERIMENTS

Figure 2.7: Two time-delay chaotic oscillators coupled by a static connection.

Figure 2.8: Nonlinear function f(x). Horizontal axis: x (1V/div); vertical axis: f(x)
(1V/div).

are the currents from the connection circuit to the oscillators. The static connection
is described by

u1,2(t) = − 1

R
{x1,2(t)− x2,1(t)} . (2.11)

It is sufficient to treat the above circuits as dimensionless oscillators (2.1) in the
following relations:

t̃ :=
t

RnCn

, τ̃1,2 :=
τ1,2

RnCn

,

ẋ1,2 :=
dx1,2(t̃)

dt̃
, x1,2 := x1,2(t̃), x1,2τ := x1,2(t̃− τ̃1,2),

u1,2 := u1,2(t̃), k := −Rn

R
.

These relations show that the circuit equation (2.10) is identical to equation (2.1)
with α = 1. The input–output characteristic of the nonlinear function unit is shown
in Fig. 2.8. From the characteristic, the fixed point x∗ = 2.2 V and the slope
β(x∗) = −1.8 are approximately estimated. The circuit parameters and the coupling

11
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(a) (b) (c)

Figure 2.9: Experimental verification with parameter set (A): (a) chaotic behavior of
oscillator 1; (b) chaotic behavior of oscillator 2 (horizontal axis: x(t−τ)
(0.5V/div), vertical axis: x(t) (0.5V/div)); (c) time series data x1,2(t)
(V) just before and after coupling.

(a) (b) (c)

Figure 2.10: Experimental verification with parameter set (B): (a) chaotic behavior
of oscillator 1; (b) chaotic behavior of oscillator 2 (horizontal axis:
x(t−τ) (0.5V/div), vertical axis: x(t) (0.5V/div)); (c) time series data
x1,2(t) (V) just before and after coupling.

resistor are fixed at Rn = 1.0 kΩ, Cn = 1.0 µF, and R = 0.5 kΩ. We consider two
parameter sets: (A) τ1 = 4.4 ms, τ2 = 6.8 ms; (B) τ1 = 3.4 ms, τ2 = 6.8 ms. In
dimensionless oscillators (2.1), τ̃1,2 for the two parameter sets correspond to (A)
τ̃1 = 4.4, τ̃2 = 6.8; (B) τ̃1 = 3.4, τ̃2 = 6.8, which are indicated as the points
A and B in Fig. 2.2. Figures 2.9(a) and 2.9(b) show that with parameter set
(A), the individual oscillators exhibit chaotic behavior. When the switch S shown
in Fig. 2.7 is closed, the two individual circuits are connected by the coupling
resistor. After S is closed, the chaotic behavior changes to a periodic motion, but
amplitude death is not observed, as shown in Fig. 2.9(c). With parameter set (B),
the individual oscillators exhibit chaotic behavior (see Figs. 2.10(a) and 2.10(b)).
The oscillators behave chaotically until S is closed. As shown in Fig. 2.10(c), the
states x1,2(t) gradually converge on x∗

1,2: amplitude death occurs, after S is closed.
This experimental study confirms that the region of amplitude death estimated by

12
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analytical insight in the preceding section agrees well with the electronic circuit
experiments.

2.4 Conclusion

The present chapter investigated amplitude death induced by a static connection
between two nonidentical time-delayed chaotic oscillators. The precise shape derived
by the CTCR paradigm for the region of amplitude death leads to the conclusion
that even relatively long delay times can induce amplitude death. This is impor-
tant, because systems with large delay times are frequently encountered in various
applications. Moreover, our analytical results were experimentally confirmed by real
electronic oscillators. The stability boundary curves in the parameter space were
derived by using a combination of the ACSF and CTCR methods.

13



Chapter 3

Stabilization of time-delay
nonlinear oscillators coupled
by a delay connection

3.1 Introduction

There has been some interest in coupled nonlinear oscillators from the view-
points of both academia [50, 51] and engineering applications [52–55]. A diffusive-
connection-induced stabilization of unstable steady states in coupled oscillators,
which is often referred to as amplitude death, has been investigated for over two
decades [16,17]. Although this phenomenon never occurs in coupled identical oscil-
lators [17,56], a time-delayed connection can induce it [18]. Such time-delay-induced
death has received considerable attention from analytical [19, 43, 46, 57–65] and ex-
perimental [66,67] points of view.

It is generally known, when engineering nonlinear systems, that time delays in-
duce self-excited oscillations, such as are seen in metal-cutting processes [7, 8] and
contact rotating systems [27]. These oscillations are generally considered to be harm-
ful in engineering applications. When self-excited oscillations occur in a number of
identical time-delayed nonlinear systems, the phenomenon of amplitude death has
a great deal of potential as a candidate for suppressing such oscillations 1. Most
previous studies on amplitude death, however, have dealt with the stabilization of
oscillators without time delays. Recently, amplitude death in a pair of time-delayed
oscillators coupled by a delayed connection was analytically investigated, and the
analytical results were experimentally confirmed by electronic circuits [35]. Fur-
thermore, Höfener, Sethia, and Gross investigated the stability of large networks
consisting of time-delayed oscillators coupled by a delayed connection [69].

The present chapter proposes a systematic procedure for designing the connection
parameters. This procedure has the following two advantages: the designed connec-
tion parameters are valid for any network topology, and the procedure is valid for any

1The relevant concept, using the connection control method to suppress harmful oscillations in
flexible structures (e.g., multistory buildings), was first proposed in the field of civil engineering [68].

14



3.2. PROBLEM STATEMENT

Figure 3.1: Illustration of a network system consisting of delayed oscillators (3.1)
coupled by a delay connection (3.2) with topology uncertainty and a
time-delay linear system with parameter uncertainty. The stability of
the steady state (3.4) in the network is equivalent to that of the linear
system.

length of delay in the oscillators. This procedure is based on the following facts: the
stability of time-delayed oscillators coupled by a delayed connection with topology
uncertainty can be reduced to that of a time-delay linear system with parameter
uncertainty; an uncertain linear system can be analyzed by using robust control
theory [70,71]. These analytical results are verified by numerical simulations.

3.2 Problem statement

Consider a network system consisting of scalar nonlinear time-delayed oscillators

ẋn = −αxn + f(xn,τ ) + un, (3.1)

where xn ∈ R and un ∈ R are the state variable and the coupling signal of oscillator
n, respectively; f : R → R denotes a nonlinear function; and xn,τ := xn(t − τ) is
the delayed variable with oscillator delay τ ≥ 0. Here α > 0 is a parameter. As
illustrated in Fig. 3.1, each oscillator is coupled by a delayed connection,

un = k

{
xn −

1

dn

(
N∑

m=1

cnmxm,T

)}
, (3.2)

where k ∈ R is the coupling strength. This is a kind of diffusive connection. N ≥ 2
denotes the total number of oscillators, and T ≥ 0 is the connection delay. The
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network topology is governed by cnm: if oscillator n is connected to oscillator m,
then cnm = cmn = 1, otherwise cnm = cmn = 0. The self-delayed signals xn,T :=
xn(t− T ) are not allowed to be injected, that is cnn = 0. The number of oscillators
that are connected to oscillator n, called the degree of oscillator n, is written as
dn =

∑N
m=1 cnm. Suppose that there is no isolated oscillator, that is, dn > 0. Each

oscillator (3.1) without coupling (i.e., k = 0) has the fixed point

x∗ : 0 = −αx∗ + f(x∗). (3.3)

A steady state of oscillators (3.1) coupled by a delayed connection (3.2) is described
by

[x1 · · · xN ]
T = [x∗ · · · x∗]T . (3.4)

The fixed point x∗ is assumed to be unstable throughout this study. Note that
a delayed connection (3.2) can change the stability of x∗, but it cannot change its
location. The diffusive-connection-induced stabilization of a steady state (3.4) is
often referred to as amplitude death. Note that this network system (N ≥ 2) is
an extension of the delay-coupled time-delayed oscillators (N = 2) proposed in a
previous study [35].

3.3 Stability analysis

In order to analyze the linear stability of the steady state, we have to consider
the dynamics of the linearized oscillators and connection,

˙δxn = −αδxn + βδxn,τ + δun, (3.5)

δun = k

{
δxn −

1

dn

(
N∑

m=1

cnmδxm,T

)}
, (3.6)

where δxn ∈ R denotes the variation of oscillator n around the fixed point x∗, that
is, δxn := xn − x∗. Here β := {df(x)/dx}x=x∗ is the derivative of f(x) at x = x∗.
The linearized dynamics around the steady state are governed by

˙δx = (k − α)δx+ βδxτ − kCδxT , (3.7)

where δx := [δx1 · · · δxN ]
T . The delayed variations are denoted by δxτ := δx(t− τ)

and δxT := δx(t− T ). The elements of C are given by {C}nm = cnm/dn for n ̸= m
and {C}nn = 0.

The characteristic equation of the linear system (3.7) is described by

det
[
(s− k + α)IN − βINe

−sτ + kCe−sT
]
= 0, (3.8)

where s is a complex number. This linear system is stable if and only if all the roots
s of Eq. (3.8) are in the open left-half complex plane. Hence, we shall focus on the
location of the roots s in the complex plane.Note that H := IN −C is similar to a
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3.3. STABILITY ANALYSIS

real symmetric matrix H̃ := IN −D−1/2AD−1/2, where D := diag{d1, . . . , dn} and
A := DC 2. Thus, H and H̃ have the same real eigenvalues ρq (q = 1, . . . , N). It
is generally known that a real symmetric matrix is similar to the diagonal matrix
whose diagonal elements are its real eigenvalues. As a consequence, H is similar to
this diagonal matrix, and can be diagonalized as

P−1HP = diag(ρ1, . . . , ρN),

where P is a diagonal transformation matrix. It should be noted that the eigenvalues
of H̃ , which are equivalent to those of H , are within the range ρq ∈ [0, 2] for any
network topology (see Lemma 1.7 in [72] and reference [58] for details):

0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρN ≤ 2. (3.9)

This fact allows us to simplify the characteristic equation (3.8):

g(s) = det
[
P−1

{
(s− k + α− βe−sτ ) IN + kCe−sT

}
P
]

= det
[(
s− k + α− βe−sτ + ke−sT

)
IN − ke−sTP−1HP

]
= det

[(
s− k + α− βe−sτ + ke−sT

)
IN − ke−sTdiag(ρ1, . . . , ρN)

]
= 0.

(3.10)

As g(s) is a determinant of the diagonal matrix, it can be expressed as a product of
the characteristic equations of scalar systems,

g(s) :=
N∏
q=1

ḡ(s, ρq) = 0, (3.11)

where the quasi-polynomial ḡ(s, ρ) is given by

ḡ(s, ρ) := s+ α− k
{
1− (1− ρ)e−sT

}
− βe−sτ . (3.12)

It is obvious that the steady state is stable for any network topology if all the roots
s of ḡ(s, ρ) = 0 are in the open left-half complex plane for all ρ ∈ [0, 2]. It must
be emphasized that ḡ(s, ρ),defined by Eq. (3.12), is equivalent to the characteristic
quasi-polynomial of a time-delay linear system with parameter uncertainty (see Fig.
3.1),

˙̄x = −αx̄+ βx̄τ + ū,

ū = k {x̄− (1− ρ)x̄T} ,
(3.13)

2From {A}nm = {DC}nm = cnm, we see that H̃ is a real symmetric matrix. Further, it is

obvious that H is similar to H̃ because H = D−1/2H̃D1/2 holds.
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where x̄ ∈ R is the state variable and ρ ∈ [0, 2] can be treated as an uncertain
parameter. We see that the stability of the steady state in the network with oscil-
lators (3.1) and connection (3.2) with topology uncertainty is equivalent to that of
the linear system (3.13) with parameter uncertainty. The next section proposes a
procedure to design the delayed connection parameters, k and T , such that all of
the roots of ḡ(s, ρ) = 0 are in the open left-half complex plane for all ρ ∈ [0, 2].

3.4 Design of connection

In the previous study [35], it was shown that, if α < β holds, amplitude death
never occurs at the steady state in a pair of oscillators (i.e., N = 2) 3. Now we extend
this property to a network system with oscillators (3.1) and connection (3.2).

Lemma 1. Amplitude death never occurs at steady state (3.4) in a network system
consisting of oscillators (3.1) coupled by connection (3.2) if α < β holds.

Proof. Consider the stability of ḡ(s, 0). This quasi-polynomial at s = 0 is ḡ(0, 0) =
α − β and, for real positive s, ḡ(s, 0) → +∞ as s → +∞. This implies that, if
α < β (i.e., ḡ(0, 0) < 0) holds, ḡ(s, 0) = 0 has at least one real positive root. Since
ρ1 = 0 is always true due to Eq. (3.9), the characteristic equation g(s) = 0 includes
ḡ(s, 0) = 0. Thus, the stability of ḡ(s, 0) is a necessary condition for that of g(s) = 0.
As a result, it is sufficient that α < β for g(s) to be unstable.

The fixed point x∗ of oscillators (3.1) without coupling (i.e., k = 0) is stable for
any τ ≥ 0 if |β| < α holds (see Sec. 5.2 in Ref. [73]). From this condition and
Lemma 1, the present study has to consider oscillators (3.1) satisfying

β < −α < 0. (3.14)

This assumption indicates that x∗ is unstable, and thus amplitude death may occur
at the steady state. Our main goal is to provide a systematic procedure for designing
the coupling strength k and the connection delay T such that the steady state in
a network system is stable for any topology C and for any oscillator delay τ ≥ 0.
The eigenvalue ρ ∈ [0, 2], which is the uncertain parameter of ḡ(s, ρ), depends on
the network topology C; therefore, if the family of quasi-polynomials,

Ω := {ḡ(s, ρ) | ρ ∈ [0, 2]} , (3.15)

is stable, the stability of the steady state is guaranteed regardless of the network
topology. Since all the coefficients of ḡ(s, ρ) are affine functions of ρ (see Eq. (3.12)),
the family Ω can be rewritten as a convex combination of the two quasi-polynomials,
ḡ(s, 0) and ḡ(s, 2), in the coefficient space,

Ω := {(1− µ)ḡ(s, 0) + µḡ(s, 2) | µ ∈ [0, 1]} , (3.16)

3This fact implies that, in a pair of delayed oscillators, the odd-number property remains even
for amplitude death.
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(a) (b)

Figure 3.2: Sketches of segment Ω and vectors ḡ(jω, 0) and ḡ(jω, 2): (a) Ω with ver-
tices ḡ(s, 0) and ḡ(s, 2) in the coefficient space; and (b) vectors ḡ(jω, 0)
and ḡ(jω, 2) on the complex plane.

where the one parameter is given by µ := ρ/2. As a result, ḡ(s, ρ) for ρ ∈ [0, 2]
defined by Eq. (3.15), which is equivalent to the one-parameter family ḡ(s, 2µ) for
µ ∈ [0, 1] defined by Eq. (3.16), forms a segment with vertices ḡ(s, 0) and ḡ(s, 2) in
the coefficient space as illustrated in Fig. 3.2(a). One may conclude that we must
to check the stability of the entire segment to guarantee the stability of Ω. This is
not true: we can check it by only examining the segment vertices ḡ(s, 0) and ḡ(s, 2).
In robust control theory [70, 71], it is known that Ω is stable if the following two
conditions are satisfied:

(condition 1) ḡ(s, 0) and ḡ(s, 2) are stable;

(condition 2) ϕ(ω) := arg [ḡ(jω, 0)] − arg [ḡ(jω, 2)] ̸= ±π for any ω ∈ [0,+∞),
where j2 = −1.

Condition 1 provides stability for the segment vertices ḡ(s, 0) and ḡ(s, 2): all the
roots of ḡ(s, 0) = 0 and ḡ(s, 2) = 0 are in the open left-half complex plane. These
roots never cross the imaginary axis for any µ ∈ (0, 1), since condition 2 implies
that (1 − µ)ḡ(jω, 0) + µḡ(jω, 2) ̸= 0, as illustrated in Fig. 3.2(b), holds for any
ω ∈ [0,+∞). This is a rough explanation of these conditions: see Ref. [70] and
Theorem 4.1.3 in Ref. [71] for a rigorous proof. The following lemmas and corollary
provide k and T such that the above two conditions hold.

Lemma 2. ḡ(s, 0) and ḡ(s, 2) are stable (i.e., condition 1 holds) if the connection
delay T > 0 is set as

T =
1

2
τ, (3.17)
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and the coupling strength k < 0 is chosen from

k ∈
(
4β − 2

√
2β(β − α), 4β + 2

√
2β(β − α)

)
. (3.18)

Proof. This proof is divided into two steps: for step (i) T = τ = 0; and for step (ii)
T = τ/2 ≥ 0. Step (i) shall prove that all the roots of ḡ(s, 0) = 0 and ḡ(s, 2) = 0
for T = τ = 0 are in the open left-half complex plane, and step (ii) shall show that
these roots with T = τ/2 ≥ 0 never cross the imaginary axis for any τ ∈ [0,+∞).

For step (i), T = τ = 0 is substituted into ḡ(s, 0) and ḡ(s, 2):

ḡ(s, 0) = s+ α− β, ḡ(s, 2) = s+ α− 2k − β.

From assumption (3.14), we notice that all the roots of ḡ(s, 0) = 0 and ḡ(s, 2) = 0
with T = τ = 0 are in the open left-half complex plane for any k < 0.

For step (ii), we consider ḡ(jω, 0) = Re[ḡ(jω, 0)] + jIm[ḡ(jω, 0)] and ḡ(jω, 2) =
Re[ḡ(jω, 2)] + jIm[ḡ(jω, 2)]. We see that ḡ(jω, 0) = 0 is not satisfied for any ω ∈ R
(i.e., none of the roots of ḡ(s, 0) = 0 ever cross the imaginary axis) if at least one
of Re[ḡ(jω, 0)] = 0 and Im[ḡ(jω, 0)] = 0 does not hold for any ω ∈ R. The same
holds true for ḡ(jω, 2) = 0. Let us show that Re[ḡ(jω, 0)] = 0 and Re[ḡ(jω, 2)] = 0
with T = τ/2 ≥ 0 do not hold for any ω ∈ R. Here Re[ḡ(jω, 0)] and Re[ḡ(jω, 2)]
are given by

Re[ḡ(jω, 0)] = α− k + β + h0(ωτ), Re[ḡ(jω, 2)] = α− k + β + h2(ωτ),

where

h0(ωτ) := k cos
ωτ

2
− 2β cos2

ωτ

2
, h2(ωτ) := −k cos

ωτ

2
− 2β cos2

ωτ

2
.

From a simple algebraic computation, we notice that these functions satisfy h0,2(ωτ) ≥
k2/(8β). As a result, we obtain Re[ḡ(jω, 0)] ≥ h(k) > 0 and Re[ḡ(jω, 2)] ≥ h(k) > 0
(see Fig. 3.2(b)), where

h(k) := α− k + β +
k2

8β
. (3.19)

These inequalities imply that Re[ḡ(jω, 0)] = 0 and Re[ḡ(jω, 2)] = 0 with T = τ/2 ≥
0 do not hold for any ω ∈ R. Condition (3.18) presents the range for k that satisfies
h(k) > 0.

This lemma is equivalent to a design procedure for a pair of oscillators (i.e.,
N = 2) [74], since g(s) = ḡ(s, ρ1)ḡ(s, ρ2) = ḡ(s, 0)ḡ(s, 2).

Corollary 1. ϕ(ω) ̸= ±π for any ω ∈ [0,+∞) holds (i.e., condition 2 holds), if the
connection delay T > 0 and the coupling strength k < 0 are as designed in Lemma
2.

Proof. ϕ(ω) ̸= ±π suggests that the two vectors ḡ(jω, 0) and ḡ(jω, 2) on the complex
plane (see Fig. 3.2(b)) never have opposite directions for any ω ∈ [0,+∞). This is
obviously true if the real parts of the two vectors are positive,

Re[ḡ(jω, 0)] > 0, Re[ḡ(jω, 2)] > 0, ∀ω ∈ [0,+∞). (3.20)

Inequalities (3.20) were proved in Lemma 2.
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Figure 3.3: Flow chart of our systematic procedure for designing k and T . This
procedure is based on a sufficient condition for the steady state to be
stable.

Note that Eq. (3.17) and the range (3.18) are independent of each other. This
independence implies that the designed k is valid for any τ > 0. As a consequence,
Lemmas 1 and 2 and Corollary 1, obtained above, lead to the following main result.

Theorem 1. Assume that oscillators (3.1) satisfy inequality (3.14). A steady state
(3.4) in the oscillators (3.1) coupled by connection (3.2) is stable for any network
topology C and for any oscillator delay τ > 0 if the connection delay T > 0 is set
according to Eq. (3.17) and the coupling strength k < 0 is chosen from the range
(3.18).

Proof. Since it is obvious from Lemmas 1 and 2, and Corollary 2, the proof is
omitted.

This theorem provides a systematic procedure for designing the coupling strength
k and the connection delay T (see Fig. 3.3): first, the oscillator parameters, α, β,
and τ , are known; second, if assumption (3.14) is not satisfied, then we have to
abandon this procedure for designing them; third, T is set according to Eq. (3.17),
and k < 0 is chosen from the range (3.18). It must be emphasized that k and T
designed in accordance with the flow chart illustrated in Fig. 3.3 are valid for any
network topology C and for any τ ≥ 0. Note that it is possible to reach the goal
by other design procedures, since this theorem is based on a sufficient condition for
the steady state to be stable.
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Figure 3.4: Roots of ḡ(s, ρ) = 0 (ρ = 0, 2) (τ = 5, T = 2.5, k = −2).

3.5 Numerical examples

This section numerically confirms the analytical results provided in the preceding
sections. Consider oscillators (3.1) with the parameter α = 1 and the nonlinear
function,

f(x) =


−2.0 if x ≤ −4.25

0.80x+ 1.40 if − 4.25 < x ≤ 1.85

−1.80x+ 6.21 if 1.85 < x ≤ 3.95

−0.9 if x > 3.95

. (3.21)

Each oscillator can be implemented by real electronic circuits [37]. We follow the
design procedure illustrated in Fig. 3.3: first, α = 1, β = −1.8, and τ = 5 are
known; second, confirm they satisfy assumption (3.14), and go to the next step;
third, T = τ/2 = 2.5 and k = −2 ∈ (−13.5498,−0.8502) are obtained.

Let us confirm that the designed parameters satisfy conditions 1 and 2 by perform-
ing numerical simulations. Figure 3.4 shows the roots of ḡ(s, 0) = 0 and ḡ(s, 2) = 0
with the designed parameters. There is no root in the right-half of the complex
plane. Thus, we see that ḡ(s, 0) and ḡ(s, 2) are stable; that is, condition 1 is sat-
isfied. Figures 3.5(a) and 3.5(b) illustrate the vector loci of ḡ(jω, 0) and ḡ(jω, 2),
respectively, with the designed parameters. It can be seen that each locus is always
located on the right side of h(−2) ≃ 0.92 > 0, defined by Eq. (3.19). This result
verifies that the two vectors ḡ(jω, 0) and ḡ(jω, 2) never have opposite directions;
that is, condition 2 is satisfied.

Now, we numerically check that the designed parameters are valid for various
networks. Note that since the parameters were designed on the basis of the sufficient
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Figure 3.5: Vector loci of ḡ(jω, 0) and ḡ(jω, 2) (τ = 5, T = 2.5, k = −2): (a)
ḡ(jω, 0), (b) ḡ(jω, 2).

condition, they must be a subset of the stability region in (τ, T ) space.This region
consists of the parameter sets (τ, T ) in which the steady state is stable. The marginal
stability curves are obtained by solving ḡ(jω, ρ) = 0 for T and τ . The direction in
which the roots of ḡ(jω, ρ) = 0 cross the imaginary axis depends on the sign of
Re[ds/dT ]s=jω on the cur ves. The numerical procedure for estimating the curves
and the direction is explained in Appendix 2. Note that if the network topology
is known in advance, the region of stability can be estimated by the numerical
procedure. However, the present chapter deals with the situation in which the
topology is unknown, so this region cannot be obtained. In order to check that
the designed parameters are valid for various networks, we employ the three typical
networks: complete networks, ring networks, and small-world networks.

Consider a complete network (i.e., all-to-all connections) consisting of two hun-
dred oscillators (N = 200). The eigenvalues of H are ρ1 = 0 and ρ2-200 = 200/199.
Figure 3.6(a) illustrates the region of stability and the marginal stability curves. The
bold (thin) lines indicate the curves with negative (positive) signs of Re[ds/dT ]s=jω.
When T increases and crosses the bold (thin) line upward at a fixed value of τ ,
we subtract (add) 2 from (to) the number of unstable roots. Since ḡ(s, ρ) = 0 at
the origin (i.e., τ = T = 0) does not have unstable roots, there are no unstable
roots in the region represented by Γ. Furthermore, it must be emphasized that Γ
has a long strip that includes T = τ/2, indicated by the dashed line (i.e., this line
is a subset of the region Γ). This line never crosses the marginal curves. There is
another long strip including T = τ ; however, this strip does not exist generally for
other networks, as we shall show later. Figure 3.6(b) shows the time-series data of
the first oscillator at point (A) in Fig. 3.6(a). Without coupling the state variable
x1 behaves chaotically until t = 500. At t = 500 the oscillators are coupled, and
then x1 and the coupling signal u1 converge on x∗ and zero, respectively. It can be
seen that, according to our systematic design procedure, the stabilization remains
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Figure 3.6: Marginal stability curves and time-series data of the complete network
(N = 200, k = −2). (a) Marginal stability curves: bold (thin) lines
indicate the curves with negative (positive) direction, from Eq. (3).
The dashed line indicates T = τ/2 where the sufficient condition for the
steady state to be stable always holds. (b) Time-series data of the state
variable x1 and the coupling signal u1 at point (A) (τ = 10, T = 5) in
(a).

even if the delay times τ and T are extended indefinitely.
Next, we consider networks on a ring topology and a small-world topology with

NC shortcuts 4. Figures 3.7(a) and 3.7(b) illustrate the marginal stability curves for
the ring topology (N = 100, k = −4) and the small-word topology (N = 50, NC =
20, k = −10), respectively. The eigenvalues of H for the ring topology are ρ1 = 0,
ρ2-99 ∈ [0.0020, 1.9980], and ρ100 = 2. For the small-world topology, we have ρ1 = 0,
ρ2-50 ∈ [0.0807, 1.9522]. The stability regions Γ in Figs. 3.7(a) and 3.7(b) contain
the long strip that includes T = τ/2 where the steady state is stable (i.e., this line
is a subset of the region Γ). It must be noted that even though there are other long
stability strips of (T, τ) in Fig. 3.6(a) and Fig. 3.7, these do not always appear for
other topologies. Therefore, these strips cannot be used in our topology-free design.

Let us clarify the root distribution of ḡ(s, ρ) = 0 on the line T = τ/2. Substituting
s = sR + jsI into ḡ(s, ρ) = 0 with T = τ/2, we obtain its real and imaginary parts
as follows:

Re [ḡ(s, ρ)] = sR + α− k + k(1− ρ)e−sRτ/2 cos sIτ/2− βe−sRτ cos sIτ = 0,

Im [ḡ(s, ρ)] = sI − k(1− ρ)e−sRτ/2 sin sIτ/2 + βe−sRτ sin sIτ = 0.
(3.22)

4For the small-world topology [75], every oscillator is coupled on a one-dimensional ring-type
lattice with a periodic boundary and NC shortcuts, the ends of which are randomly chosen, are
added to the lattice. In particular, the elements cnm are given by the following procedure: cn(n+1) =
c(n+1)n = 1, ∀n ∈ [1, N − 1], and c1N = cN1 = 1; choose NC pairs of nodes {n,m} randomly and
connect them as cnm = cmn = 1; set the other elements to zero.
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Figure 3.7: Marginal stability curves of the network system on (a) ring topology
(N = 100, k = −4) and (b) small-world topology (N = 50, NC = 20, k =
−10). The dashed line T = τ/2 indicates the sufficient condition for the
steady state to be stable.
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Figure 3.8: Root loci of ḡ(s, ρ) = 0 (ρ = 0, 2) for k = −2: (a) first right-most root
loci, (b) second right-most root loci.
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The roots of ḡ(s, ρ) = 0 are obtained by solving Eq. (3.22). Figures 3.8(a) and
3.8(b) illustrate the loci of the first and the second right-most roots for k = −2,
respectively 5. The bold curves with circles ⃝ (squares □) indicate the root loci
with ρ = 0 (ρ = 2) as τ varies from zero to infinity. The thin curves with ⃝ and
□ ends are the loci at τ = 1 and τ = 3 as ρ varies from zero to two. For any
ρ ∈ [0, 2], the root loci exist between the bold curves with ρ = 0 and ρ = 2. It
can be seen from the insets of Fig. 3.8(a) and 3.8(b) that as τ increases, the roots
asymptotically approach the imaginary axis sR = 0, but they never cross the axis.
These facts support the claim that there are no unstable roots on the line T = τ/2.

3.6 Conclusion

This chapter showed that the stability of a steady state in a network with topology
uncertainty is equivalent to the stability of a delayed linear system with parameter
uncertainty. On the basis of the robust stability analysis of the linear system, we
provided a simple systematic procedure for designing the connection parameters.
This procedure has two advantages: the designed parameters can be used for any
network topology, and the procedure is valid for long-delay oscillators. Our analyt-
ical results were numerically verified on complete, ring, and small-world networks.

5Since ḡ(s, ρ) = 0 has an infinite number of roots, an enormous number of loci can be obtained
numerically. In order to make clear the loci characteristics, we focus on the first and the second
right-most roots at τ = 1. Figure 3.8 shows the loci starting from these roots as τ varies. We
observed that the other loci have the similar characteristics.
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Chapter 4

Stabilization of time-delay
nonlinear oscillators controlled
by multiple delay feedback

4.1 Introduction

Various methods for controlling chaos have been proposed and applied to real
systems, such as electronic circuits, mechanical systems, and chemical reactions
[76–80]. One such method, delayed feedback control (DFC), proposed by Pyragas
[10], has created considerable interest in the field of nonlinear science [81] and the
control theory [82]. The DFC method has been used to stabilize unstable periodic
orbits (UPOs) and unstable fixed points (UFPs). Recently, the stabilization of UFPs
has been investigated theoretically [9, 83–86], and applied to inverted pendulums
[86,87] and laser systems [88].

Multiple delay feedback control (MDFC), in which the controller has two or
more time delays, was proposed by Ahlborn and Parlitz [11, 89, 90]. The UFPs are
stabilized using the MDFC, with an appropriate combination of time delays. This
method can achieve stabilization even for long delay times. Therefore, it is useful
when controlling fast dynamic systems [11] or when either a computer with an
analog-to-digital/digital-to-analog AD/DA converter [91] or a bucket brigade delay
(BBD) device [92] (i.e., a series of sample-and-hold circuits) are used to implement
the time delays. MDFC has been studied in detail from both physical [11] and
theoretical [89,93,94] viewpoints.

The dynamics of time-delay nonlinear oscillators have gained increasing attention
both from the theoretical viewpoint [20, 21] as well as for practical applications
[7, 8, 95–101]. In particular, as time delays in engineering nonlinear systems such
as the metal cutting process [7, 8] and the contact rotating systems [27] can induce
undesirable oscillations, it would be important to investigate the stabilization of the
time-delay induced oscillations. In order to avoid oscillations, the system parameters
must be chosen on the basis of stability analysis. If this avoidance requires a major
system change, it might have to be abandoned due to practical restrictions. An
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alternative method is to suppress the oscillations using feedback control. This is a
practical method, since it does not require a major system change.

In 1995, Namajūnas et al. showed both theoretically and experimentally that
the DFC method can stabilize UFPs in time-delay chaotic oscillators [34]. However,
it is not easy to provide a procedure for designing the controller parameters, the
feedback gain and the controller delay, since the characteristic equation includes the
two delay terms (i.e., the oscillator delay and the controller delay). Furthermore,
the controller delay must be chosen within several narrow stability intervals. Since
these intervals are almost smaller than the oscillator delay, the controller delay
should be set to around the oscillator delay or less than it. These features make it
difficult to design the controller: for example, (a) numerical calculations for solving
the characteristic equation including the two delay terms are needed to determine
the controller parameters; (b) the controller delay must be set within the narrow
stability intervals; (c) and the controller delay cannot be longer than around the
oscillator delay.

In recent years, these problems of the DFC method have been partially solved. For
problem (a), Guan et al. provided a systematic procedure for designing the delayed
feedback controller on the basis of the Lyapunov–Krasovskii functional approach
[102]. However, this procedure cannot be used for oscillators with long time delays.
For problem (b), Gjurchinovski and Urumov proposed a type of feedback control
with a time-varying delay [103]. Although the main advantage of this proposal is
that the stability regions in the controller parameter space are greater than those
for the original DFC, it is not easy to show a procedure for designing the controller
and employing a control with a long delay. From problem (c), we notice that, for
short time-delay oscillators, the controller delay of the DFC method has to be short.
However, it is difficult to realize the short controller delay by the computer or the
BBD device, since they have a finite speed operation.

The present study shows that the MDFC method provides answers to such un-
solved problems for the stabilization of UFPs in time-delay nonlinear oscillators.
The stability boundary curves in the control parameter space are derived using lin-
ear stability analysis. A simple procedure for designing the feedback gain and the
controller delays, which is based on the observation of the root locus movement of the
characteristic equation, is provided. The main advantages of this procedure are as
follows: it is guaranteed that the UFPs can be stabilized by the designed controller
for any oscillator delay if the oscillator parameters are within a large region in an os-
cillator parameter space; the controller delays, which retain a proportional relation
with a certain bias, can be freely selected. These advantages are useful for the fol-
lowing practical situations: the UFPs in long time-delay oscillators can be stabilized
by the designed controller; there is no need to numerically solve the characteristic
equation in designing the controller; the controller delays can be arbitrarily chosen.
This arbitrarily chosen indicates that the UFPs in short time-delay oscillators can
be stabilized even by the slow computer or the slow BBD device. Furthermore, these
analytical results are experimentally verified with electronic circuits.
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Figure 4.1: Block diagram of multiple delayed feedback control of time-delay oscil-
lators.

4.2 Problem statement

Consider a first-order delay differential equation [20],

ẋ = −αx+ f(xτ ) + u, (4.1)

where x ∈ R is the state variable, xτ := x(t − τ) is the delayed variable, α > 0 is
the system parameter, and f : R → R is the nonlinear function. The fixed point is
described by x∗ : 0 = −αx∗ + f(x∗). The MDFC signal u ∈ R is given by

u = k(2x− xT1 − xT2), (4.2)

where xTi
= x (t− Ti) , i = 1, 2 are the delayed state variables and k ∈ R is the

feedback gain (see Fig. 4.1). Note that controller (4.2) with T1 = T2 is identical to
the original (i.e., single) delayed feedback controller. Oscillator (4.1) with controller
(4.2) also has the fixed point x∗.

The control system linearized at x = x∗ is described by

ż = −αz + βzτ + k {2z − zT1 − zT2} , (4.3)

where z ∈ R is the variation of state x around x = x∗, that is, z := x− x∗. Here β
is the slope of f(x) at x∗, that is, β = {df(x)/dx}x=x∗ . The characteristic equation
of linear system (4.3),

g(λ) := λ+ α− βe−λτ − k
(
2− e−λT1 − e−λT2

)
= 0, (4.4)

can be used to evaluate the stability of x = x∗; the fixed point x∗ is stable if and
only if all of the roots of Eq. (4.4) lie in the open left-half of the complex plane. It
should be noted that the stability analysis is valid only in the vicinity of x∗; this
fact implies that our stability analysis cannot guarantee the global stability of x∗.
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(a) (b)

Figure 4.2: Sketches: (a) stability domain of x∗ without control (i.e., T1 = T2 = 0)
in the α-β plane; (b) function g(λ) with the odd number property.

4.3 Stability analysis

The present study assumes that the oscillator (4.1) without control (i.e., T1 =
T2 = 0) will oscillate; hence, the fixed point x∗ is assumed to be unstable throughout
this study. The stability of x∗ is governed by the characteristic equation, λ + α −
βe−λτ = 0. According to the well-known results of the first-order delay differential
equation [73], in the oscillator parameter plane as sketched in Fig. 4.2(a), we know
that there are three conditions: (C-0) |β| < α; (C-1) α < β; (C-2) β < −α. Since
x∗ is stable for any τ ≥ 0 under condition (C-0), there is no need to stabilize x∗.
Hence, we remove this condition from consideration. In contrast, x∗ is unstable for
any τ ≥ 0 under condition (C-1). Further, the stability of x∗ depends on τ under
condition (C-2); thus, β < −α is a necessary condition for x∗ to be unstable. From
these arguments, we have to focus only on the two conditions, (C-1) and (C-2).

For the oscillator (4.1) with control (i.e., T1,2 > 0), it is straightforward to derive
a simple instability condition: if limλ→+∞ g(λ) = +∞ and g(0) = α − β < 0,
then g(λ) crosses the positive real axis λ ∈ [0; +∞) at least once as sketched in
Fig. 4.2(b), that is, there exists at least one positive real root for g(λ) = 0. This
fact yields that, if condition (C-1) is satisfied, the fixed point x∗ in oscillator (4.1)
cannot be stabilized by a control signal (4.2) for any k ∈ R and T1,2 > 0. Therefore,
throughout this study, we focus only on the fixed points that satisfy condition (C-2).
The instability condition (C-1) can be considered as the odd-number property for
time-delay oscillators. It should be noted that the previous methods, such as the
original DFC [34] and the time-varying DFC [103], never stabilize x∗ under condition
(C-1) due to their odd-number property. Section 4.6.3 mentions this property in
detail.

Let us estimate the stability region in a control parameter space (T1, T2) on the
basis of Eq. (4.4). The stability changes only when at least one root crosses the
imaginary axis. To simplify the stability analysis, the roots on the axis are checked.
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4.4. CONTROLLER DESIGN

Substituting λ = iλI into Eq. (4.4), its real and imaginary parts are obtained:

−2k + α− β cosλIτ + k(cosλIT1 + cosλIT2) = 0,

λI + β sinλIτ − k(sinλIT1 + sinλIT2) = 0.

(4.5)

The marginal stability curves are given by the roots T1,2 of Eqs. (4.5). The procedure
for obtaining the curves is as follows: set a value of T1; solve Eqs. (4.5) numerically
for T2 and λI ; plot (T1, T2); change the value of T1; and then return to the first step.
To investigate the direction in which the roots cross the imaginary axis, the sign of
the real part of dλ/dT2,

Re

[
dλ

dT2

]
λ=iλI

= Re

[
iλIke

−iλIT2

1 + τβe−iλIτ − k (T1e−iλIT1 + T2e−iλIT2)

]
, (4.6)

is checked, where T2 and λI are the values estimated in the above procedure. With
increasing T2, a positive (negative) value of Eq. (4.6) corresponds to a root crossing
the axis from left to right (right to left).

A numerical example illustrates the above procedure. The parameters are fixed
at

α = 1.0, β = −3.0, τ = 5.0. (4.7)

Let the feedback gain be fixed at k ≈ −6.4641; the reason for setting this value
will be explained in Sec. 4.5.2. Figure 4.3(a) shows the marginal stability curves
estimated by this procedure. The bold (thin) lines express the curves with negative
(positive) term (4.6). These curves separate the parameter space into several regions.
We know that when T2 increases and crosses the bold (thin) line upward, we subtract
(add) 2 from (to) the number of unstable roots. Obviously, for T1 = T2 = 0, Eq.
(4.4) is reduced to g(λ) = λ + α − βe−λτ . According to the stability analysis on
scalar delayed systems [104], we notice that the number of unstable roots is 4. From
these results, the numbers of unstable roots in the parameter space (T1, T2) are
automatically obtained as shown in Fig. 4.3 (a). For example, in the regions labeled
2, there exist two unstable roots. Obviously, if (T1, T2) are within the region 0, the
fixed point x∗ is stable. Figure 4.3 (b) is a large-area display of Fig. 4.3 (a). It must
be emphasized that the single delay feedback control method (i.e., T1 = T2) can
stabilize x∗ only for a small range (e.g., T1 = T2 ≲ 5.4, as in Fig. 4.3(b)). Controller
(4.2) with an appropriate combination of T1 and T2, however, can stabilize it over a
wide parameter region (e.g., dotted line A-B).

4.4 Controller design

This section provides a simple procedure for designing controller (4.2), such that
both delay times, T1 and T2, are as long as possible. From Fig. 4.3(b), it can be
seen that there are two long stability strips, A-B and C-D1. On the strip A-B, T1

1Although there are several narrow strips in Fig. 4.3(b), this study focuses only on the two
typical strips A-B and C-D: diagonal strip and parallel strip to an axis.
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Figure 4.3: Marginal stability curves of x∗ (α = 1.0, β = −3.0, τ = 5.0, k ≈
−6.4641): (a) T1,2 ∈ [0, 5], (b) T1,2 ∈ [0, 20]

.

and T2 can be set to arbitrary long; however, on the strip C-D, T2 has to be fixed
at a finite time T2 ≈ τ = 5. Thus, the strip C-D is not suitable for designing the
controller. Figure 4.3(b) suggests that if T1 and T2 keep the relation with τ ,

T2 = T1 − τ, (T1 > τ), (4.8)

illustrated by the dotted line A-B, then the fixed point x∗ remains stable. Now
we provide an analytical design procedure, based on the assumption that T1 and
T2 maintain the relationship (4.8). In order to derive this procedure, the stability
analysis is divided into the following two cases: (i) T1 = τ and T2 = 0 (i.e., point
A in Fig. 4.3(b)); and (ii) T2 = T1 − τ with T1 ≥ τ (i.e., dotted line A-B in Fig.
4.3(b)).

For case (i), substitution of T1 = τ and T2 = 0 into Eq. (4.4) leads to λ +
α − k + (k − β)e−λτ = 0. From the well-known stability condition of the first-
order delay differential equation [73], we obtain a sufficient condition for g(λ) to be
stable: |k − β| < α − k. This condition can be rewritten as (C-3) β < α and (C-4)
k < (α + β)/2. Since α > 0 and (C-2) β < −α ↔ α + β < 0 are assumed to be
satisfied in the preceding section, we notice that (C-3) and (C-4) k < (α+ β)/2 < 0
always hold. This fact implies that if the gain is chosen as (C-4), then g(λ) in case
(i) is stable.

For case (ii), T1 and T2 are assumed to keep relation (4.8). Substituting this
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Figure 4.4: Sketch of the left and right-hand side of Eq. (4.13) (α = 1.0, β = −3.0,
τ = 5.0, k ≈ −6.4641).

relation and λ = iλI into Eq. (4.4) yields

k(1 + cosλIτ) cosλIT1 + k sinλIτ sinλIT1 = 2k − α+ β cosλIτ , (4.9)

k(1 + cosλIτ) sinλIT1 − k sinλIτ cosλIT1 = λI + β sinλIτ . (4.10)

We know that the following two statements are equivalent: (a) the root of g(λ) = 0
with T2 = T1 − τ , and T1 ≥ τ never crosses the imaginary axis; and (b) at least
one equation of (4.10) does not hold. Now, we shall employ the second statement
in order to design the controller. Both sides of Eqs. (4.10) are squared and added,

λ2
I + α2 + β2 − 4αk + 2k2 = 2h(k) cosλIτ − 2λIβ sinλIτ , (4.11)

where h(k) := k2 − 2βk + αβ. Here, the feedback gain is fixed at k = k̄: h(k̄) = 0.
As αβ < 0 holds due to (C-2) β < −α and α > 0, the equation h(k) = 0 has positive
and negative roots. However, k < 0 must hold, due to the stability condition of case
(i), and the feedback gain must be set to the negative root:

k̄ := β −
√
β2 − αβ < 0. (4.12)

The gain k̄ simplifies Eq. (4.11) to

λ2
I + α2 + β2 − 4αk̄ + 2k̄2 = −2λIβ sinλIτ . (4.13)

If Eq. (4.13) does not hold, then at least one equation of (4.10) does not hold.
Sketches of the left- and right-hand sides of Eq. (4.13) are shown in Figure 4.4:
the parabolic bold curve is the left-hand side of the equation; and the sine wave
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represents the right-hand side; the dotted lines, ±2|β|, are the upper and lower
limits of the sine wave. If the parabolic curve and the dotted lines do not cross, Eq.
(4.13) does not hold. Thus, it is easy to derive the sufficient condition under which
the curve and the lines do not cross,

α2 + 2k̄(k̄ − 2α) > 0. (4.14)

From inequality (4.12) (i.e., k̄ < 0), condition (4.14) always holds. In addition, k̄
denoted by Eq. (4.12) must satisfy (C-4):

β −
√

β2 − αβ < (α + β)/2 ⇐⇒ β − α− 2
√

β(β − α) < 0.

We notice that the above inequality holds under α > 0 and (C-2).

The above arguments are summarized as follows: For β < −α < 0, if controller
(4.2) uses k = k̄ := β −

√
β2 − αβ and T2 = T1 − τ , then the fixed point x∗ of

oscillator (4.1) is stabilized for any long T1 ∈ [τ,∞).

The above summary allows us to design controller (4.2) by the following steps:
(step 1) α, β, and τ are given; (step 2) if α and β satisfy β < −α < 0, then
go to the next step, otherwise we have to abandon to design it; (step 3) k is set
to k̄ := β −

√
β2 − αβ; (step 4) T1 and T2 are maintained to satisfy the relation

T2 = T1 − τ . Even for any long T1 ∈ [τ,∞), controller (4.2) designed by this
procedure stabilizes the fixed point x∗ of oscillator (4.1).

It must be emphasized that the previous methods never stabilize x∗ under con-
dition (C-1) due to their odd-number property and there is no guarantee that they
reliably stabilize it under condition (C-2) [34] [103]. The MDFC method never sta-
bilize it under condition (C-1); however, it is guaranteed that x∗ is stabilizable by
the designed controller for any oscillator delay τ > 0 under condition (C-2).

The procedure requires the parameter values (i.e., α, β, and τ) to design k, T1,
and T2; however, in practical situations, we may obtain the values with uncertainty
such as the lower and upper limits of the values. Ishii et al. provided a procedure
to design the single delayed feedback controller for one-dimensional discrete-time
chaotic systems [105]. This procedure required only the lower and upper limits of
the parameter values; the procedure is simple because the controlled systems do
not include time delays and have discrete-time dynamics. On the other hand, it is
not easy to provide a simple procedure for our problem, since the controlled system
includes three time delays (i.e., τ , T1, and T2) and have continuous-time dynamics.
The robust design which requires only the values with uncertainty for our problem
still remains as an attractive future work.

4.5 Experimental verification

In this section, the theoretical results derived in previous sections are confirmed
by electronic circuit experiments.
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Figure 4.5: Schematic drawing of the time-delay nonlinear oscillator with MDFC.

4.5.1 Time-delay electronic oscillators

The circuit diagram of the time-delay nonlinear oscillator with MDFC is illus-
trated in Fig. 4.5. Here, x(t) denotes the voltage of the oscillator. The boxes labeled
−τ , −T1, and −T2 are the time-delay units, and f is the nonlinear function unit.
The time-delay units are almost the same as were used in previous studies [35, 95].
The circuit diagrams of the delay units and the nonlinear function unit are described
in Appendix A. This oscillator is governed by the circuit equation,

C
dx(t)

dt
=

1

R
{f (x(t− τ))− x(t)}+ u(t), (4.15)

where R and C are a resistor and capacitor, respectively. The control signal u(t) is
the current from the MDFC circuit to the oscillator. The MDFC circuit exports the
current u(t),

u(t) = −1

r
{2x(t)− x(t− T1)− x(t− T2)} . (4.16)

In order to analyze the above circuits, we treat them as the dimensionless oscil-
lator (4.1) with the following relations,

t̃ :=
t

RC
, τ̃ :=

τ

RC
, T̃1,2 :=

T1,2

RC
, x := x(t̃),

ẋ :=
dx(t̃)

dt̃
, xτ := x(t̃− τ̃), xT1,2 := x(t̃− T̃1,2),

u := u(t̃), k := −R/r.

(4.17)
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(a) (b)

Figure 4.6: Nonlinear function f(x) and chaotic attractor: (a) x vs. f(x) charac-
teristic (horizontal axis: x(t) (1V/div), vertical axis: f(x(t)) (1V/div));
(b) chaotic attractor for parameter set (4.18) (horizontal axis: x(t− τ)
(1V/div), vertical axis: x(t) (1V/div)).

These relations indicate that circuit equation (4.15) with MDFC is identical to
oscillator (4.1) with controller (4.2) for α = 1.

4.5.2 Experimental results

The input-output characteristic of the nonlinear function unit, which is similar
to that of the well-known Mackey-Glass system [20, 34, 98], is shown in Fig. 4.6(a).
From this figure, the fixed point x∗ and the slope β(x∗) are estimated as x∗ = 2.7 V
and β(2.7) = −3.0, respectively. Throughout this study, the circuit parameters for
our experiments are as follows:

R = 1.0 kΩ, C = 1.0 µF, τ = 5.0 ms, (4.18)

where the oscillator exhibits chaotic behavior as shown in Fig. 4.6(b). The relations
(4.17) indicate that the circuit parameters (4.18) are identical to the dimensionless
parameters (4.7). Now let us design the controller according to the design procedure:
(step 1) α, β, and τ are given; (step 2) α = 1 and β = −3 satisfy β < −α < 0, then
go to the next step; (step 3) k is set to k̄ := β −

√
β2 − αβ ≈ −6.4641; (step 4) T1

and T2 are maintained to satisfy the relation T2 = T1 − τ . The designed gain k is
approximately implemented by setting r = 154 Ω. It is guaranteed that if T1, T2,
and τ follow relation (4.8), then the controller delays T1 and T2 can be as long as
required.

Figures 4.3 (a) and 4.3 (b) correspond to the stability curves for the parameter
set (4.18) and the designed feedback resistor r = 154 Ω. The stability regions for
the circuit experiments are shown in Fig. 4.7, where the symbol ⃝ (×) denotes
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Figure 4.7: T̃1 − T̃2 parameter space for comparison of theoretical and experimental
results: the symbol ⃝ (×) denotes the occurrence (non occurrence)
of stabilization in the experiment; the gray lines are the theoretically
estimated stability curves.

the occurrence (non occurrence) of stabilization in the experiment2. Stability was
judged by the following steps: (i) oscillator (4.15) without control runs chaotically;
(ii) control current (4.16) starts to flow into oscillator (4.15) at an arbitrary time;
(iii) x(t) converges on x∗ within x∗ ± 0.1 V; (iv) steps (i)∼(iii) are repeated several
times; (v) if we observe the convergence of x∗ (i.e., step (iii)) each time, then the
symbol ⃝ is filled in Fig. 4.7. Since the system dynamics, in principle, are not
influenced by interchanging of T1 and T2, our experiment checked experimentally
only the upper region of the diagonal line T2 = T1 in Fig. 4.7. The lower region is
a copy of the upper one. From a comparison of theory with experimental results, it
can be stated that the stability region estimated by the numerical procedure roughly
agrees with that obtained by our circuit experiments.

The above steps guarantee that the stabilization occurs for several initial states
embedded within the chaotic attractor. Therefore, we may say that our stability
analysis for the vicinity of x∗ is valid for most initial states on the chaotic attractor.

The time-series data of the electronic oscillator controlled by MDFC is shown in
Fig. 4.8(a). The control signal corresponding to point A in Fig. 4.3 (b) (T1 = 5.0
ms and T2 = 0.0 ms) was applied to the oscillator. The oscillator without control

2Since it is difficult in an experiment to realize a very small delay (less than 1.0 ms), data for
T1 = 0.5 ms and T2 = 0.5 ms could not be obtained.
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(a) (b)

Figure 4.8: Time series data of the circuit voltage x(t) [V] just before and just after
the control: (a) parameter set (A) (T1 = 5.0 ms and T2 = 0.0 ms); (b)
parameter set (B) (T1 = 20.0 ms and T2 = 15.0 ms). Horizontal axis: t
(20 ms/div); vertical axis: x (1 V/div).

behaved chaotically at first, and then x(t) converged to x∗. Figure 4.8(b) shows the
time-series data at point B in Fig. 4.3 (b) (T1 = 20.0 ms and T2 = 15.0 ms). This
figure shows that stabilization occurs even with long delay times.

These experiments employ popular-priced circuit devices, which have an error
of several percent. Thus, the designed controller inevitably has much more errors.
However, as shown in Fig. 4.7, the controller works well on the circuit experiments.
This fact experimentally verifies that the stabilization is robust to external noise
and parameter uncertainty.

4.6 Discussion

4.6.1 Competition with other methods

Let us investigate the control performance of the MDFC method for stabilizing
UFPs in time-delay oscillators. It is well known that a tracking filter and the original
DFC [34] are the typical control methods for stabilizing time-delay oscillators. This
subsection compares the MDFC method with these typical methods. The filter is
described by

u = k(x− v),
dv

dt
= ωc(x− v),

where v is the additional variable, k is the feedback gain, and ωc is the parameter.
The original DFC is given by Eq. (4.2) with T1 = T2. Figure 4.9 (a) shows the
largest real part of the roots Re[λmax] of the characteristic equation for the fixed
point x∗ controlled by the tracking filter. The parameter ωc corresponds to the
cutoff frequency. In order to stabilize x∗, the parameter should be within an interval
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Figure 4.9: Largest real part of the roots Re[λmax] of the characteristic equation for
the fixed point x∗: (a) the tracking filter; (b) the original DFC with
T1 = T2; and (c) the MDFC with T2 = T1 − τ . The parameters are
the same as the numerical and experimental results in previous sections
(α = 1.0, β = −3.0, τ = 5.0, k ≈ −6.4641).

ωc ∈ (0, 1.235). The largest real part for the original DFC with T1 = T2 is shown
in Fig. 4.9 (b). The controller delay time T1 = T2 should be chosen from several
narrow intervals for the stabilization. Figure 4.9 (c) illustrates the largest real part
for the MDFC on the dotted line A-B in Fig. 4.3(b). It can be seen that the largest
real part never exceeds zero for any T2 > 0. Thus, if the two controller delays retain
the proportional relation, T2 = T1 − τ , then the controller delays can be arbitrarily
chosen.

The convergence speed of the controlled orbit in the vicinity of x∗ depends on
Re[λmax]. From a practical point of view, it is desirable to reduce Re[λmax] to
improve the convergent performance. It is useful to design the optimal control
parameters which get the best convergent performance; this optimal control problem
is considered as an important future work.
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4.6.2 Previous studies related to our results

Although, to the authors’ knowledge, there have been few efforts to investigate the
stabilization of UFPs in time-delay nonlinear oscillators using the MDFC method,
there are a few previous methods for time-delay oscillators that are related to our
results. With the exception of the three studies [34, 102, 103] mentioned in Section
4.1, they are reviewed below.

Blyuss et al. analyzed the stability of UFPs in time-delayed pendulum-mass-
spring-damper systems controlled by the DFC method [106]. Xu et al. provided
a delay-dependent condition, which is described by a linear matrix inequality, for
the stabilization of UFPs in time-delay nonlinear oscillators controlled by the DFC
method [107]. Rezaie et al. applied a dynamic DFC method to the problem of Hopf
bifurcation control for time-delay nonlinear oscillators [108]. Vasegh and Sedigh
analyzed the stability of UPOs in time-delay oscillators controlled by the DFC
method [109,110]. Our previous study showed that UFPs in simple two-dimensional
oscillators without time delay can be stabilized using diffusive connections with two
long time delays [19]. If the two delay times retain a proportional relation with
a certain bias, the stabilization occurs independent of the delay times or the net-
work topology. Our present study considers the specific case of a single oscillator;
however, a time-delay oscillator is used instead of a two-dimensional one.

4.6.3 Odd–number property

It is well known that the DFC method has a crucial disadvantage, in that it
never stabilizes UPOs or UFPs which have the odd-number property [111–113]. This
property for UPOs has been refuted recently [114–116], whereas that for UFPs is
valid [85,86]. To overcome this property for UFPs, an observer-based controller [117]
and a dynamic controller [118], both of which can be designed by a systematic
procedure, have been proposed. Furthermore, an adaptive controller based on a
conventional low-pass filter, which is the same as the tracking filter, also has the odd
number property; however, an unstable filter was proposed to overcome this property
[119, 120]. The multiple DFC method [80, 93] and the time-varying-delay method
[121] also have this property [80, 93]. As in Sec. 4.3, the MDFC for time-delay
oscillators also has this property. Although this disadvantage could be overcome
using the above techniques, we do not discuss it in detail because it is a digression
from our main topic.

4.7 Extension to amplitude death

The present section extends the MDFC method for a single time-delayed chaotic
oscillator to amplitude death in a pair of time-delayed chaotic oscillators coupled
by a multiple delay connection (see Fig. 4.10). A simple systematic procedure
for designing the connection parameters, the coupling strength, and the connection
delays, is provided. The stability analysis and the design procedure are verified by
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Figure 4.10: Block diagram of pair oscillators coupled by a multiple delay connec-
tion.

a numerical simulation.

4.7.1 Problem statement

Let us consider a pair of identical time-delayed chaotic oscillators (see Fig. 4.10)
[35]: {

ẋ1 = −αx1 + f(x1τ ) + u1

ẋ2 = −αx2 + f(x2τ ) + u2

, (4.19)

where x1,2 ∈ R and u1,2 ∈ R are the system states and coupling signals, respectively,
x1,2τ := x1,2(t − τ) are the delayed states, τ ≥ 0 is the oscillator delay, α > 0
is a parameter, and f : R → R denotes the nonlinear function. The symbol R
denotes the set of real numbers. These oscillators are coupled by the multiple delay
connection described as

u1 = k(2x1 − x2T1 − x2T2),

u2 = k(2x2 − x1T1 − x1T2),
(4.20)

where k ∈ R represents the coupling strength, x1,2T1,2 := x1,2(t−T1,2) are the delayed
states, and T1,2 ≥ 0 are the connection delays.

Each individual oscillator without coupling (i.e., k = 0) has a fixed point x∗ :
0 = f(x∗)−αx∗. Throughout this study, the fixed point is supposed to be unstable.
It is noted that connection (4.20) changes the stability of x∗, but not its location.
Oscillators (4.19) coupled by connection (4.20) have the steady state [x∗ x∗]T .

4.7.2 Stability analysis

The coupled oscillators linearized in the steady state are governed by{
ż1 = −αz1 + βz1τ + k(2z1 − z2T1 − z2T2)

ż2 = −αz2 + βz2τ + k(2z2 − z1T1 − z1T2)
, (4.21)
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where z1,2 := x1,2 − x∗, z1,2τ := x1,2τ − x∗ and z1,2T1,2 := x1,2T1,2 − x∗ denote the
variations of oscillators 1 and 2 around x∗. Here, β := {df(x)/dx}x=x∗ represents
the slope of f(x) at x∗. The stability of the linearized system (4.21) is governed by
the characteristic equation,

g(λ) := g1(λ)g2(λ) = 0. (4.22)

g1(λ) and g2(λ) are defined by

gj(λ) := γ − k{2 + (−1)jε} = 0, j = 1, 2, (4.23)

where
γ := λ+ α− βe−λτ , ε := e−λT1 + e−λT2 .

The necessary condition for x∗ to be unstable without coupling is as follows: À β >
α > 0 or Á β < −α < 0 [73]. When the oscillators are coupled (i.e. k ̸= 0, T1,2 > 0),
it is easy to see that limλ→+∞g1,2(λ) = +∞ and g1(0) = α − β independently
of k, T1,2, τ . Condition À guarantees g1(0) < 0, and so g1(λ) = 0 has at least
one positive real root. This fact implies that amplitude death never occurs under
condition À; hence, we focus attention only on condition Á below.

The steady state is stable if and only if all the roots λ of Eq. (4.22) lie in the open
left-half complex plane. We shall investigate the roots of g1(λ) = 0 and g2(λ) = 0.
The stability changes only when at least one root of these equations crosses the
imaginary axis. To simplify the stability analysis, let us check the roots on the axis
and estimate the stability region in (T1, T2) space. Substituting λ = iλI into Eq.
(4.23), we obtain its real and imaginary parts

Re[gj(iλI)] = α− βcos(λIτ)− k{2 + (−1)jC} = 0,

Im[gj(iλI)] = λI + βsin(λIτ) + (−1)jkS = 0,
(4.24)

where
C := cos(λIT1) + cos(λIT2),

S := sin(λIT1) + sin(λIT2).

The boundary curves of the stability region are derived by using the roots T1,2 of
Eqs. (4.24). The sign of Re [dλ/dT2] at λ = iλI , where

dλ

dT2

=
−(−1)jλke−λT2

1 + τβe−λτ + (−1)jk (T1e−λT1 + T2e−λT2)
,

can give us an insight into the cross-axis direction of the roots of Eq. (4.23). If the
sign is positive (negative), then the roots cross the axis from left to right (right to
left).

The above stability analysis is now illustrated with the following numerical ex-
ample. The parameters of the oscillators are set to

α = 1.0, τ = 10.0, β = −1.8. (4.25)
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Figure 4.11: Region of amplitude death Ω and boundary curves of the stability re-
gion (α = 1.0, β = −1.8, τ = 5.0, k ≈ −4.045): (a) T1,2 ∈ [0, 5], (b)
T1,2 ∈ [0, 20]. Black and red (gray) curves correspond to g1(iλI) = 0
and g2(iλI) = 0, respectively.

Let the coupling strength be fixed at k ≈ −4.045; the reason for choosing this value
will be explained in the next section. Figure 4.11 shows the boundary curves consist-
ing of the bold (thin) lines which depict the negative (positive) sign. Additionally,
the black and red (gray) lines denote the curves for g1(iλI) = 0 and g2(iλI) = 0,
respectively. The curves separate (T1, T2) space into several regions. At T1 = T2 = 0,
Eq. (4.22) is reduced to

g(λ) = (λ+ α− βe−λτ )(λ+ α− βe−λτ − 4k). (4.26)

According to the stability analysis on scalar delayed systems [73], the number of
unstable roots is 2; thus, the boundary curves including the point (T1 = T2 = 0)
enclose an unstable region. This number turns out to be zero when T2 increases
and crosses the bold line in an upward direction. In other words, at a certain value
of T1, when T2 crosses the bold (thin) line upwards (downwards), 2 is subtracted
(added) from (to) the number of unstable roots. By this procedure, the numbers
of unstable roots in the other regions are easily obtained as shown in Fig. 4.11(a).
The region of amplitude death, where there are no unstable roots, is denoted by
Ω. From Fig. 4.11(b), it should be pointed out that the single delay connection
(i.e., T1 = T2 = T ) [35] can induce death only for a small range T ≲ 7.5; however,
the multiple delay connection, with an appropriate combination of T1 and T2, can
induce death in a wide parameter region Ω (e.g., dotted line A-B).

Note that g1(λ) is identical to the characteristic equation governing the dynamics
around x∗ in an isolated oscillator with the MDFC method. Thus, the black curves
correspond to the isolated oscillator with the MDFC method. Further, note that
the steady-state stabilization in the oscillators (4.19) coupled by connection (4.20)
can be regarded as an extension of the fixed-point stabilization with the MDFC of
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our previous work.

4.7.3 Design of connection

This subsection provides a simple systematic procedure for designing a multiple
delay connection (4.20), so that both connection delays, T1 and T2, can be as long
as possible and still induce amplitude death. From the boundary curves shown in
Fig. 4.11(b), we investigate the stability on the relation of (T1, T2, τ),

T2 = T1 − τ, (T1 ≥ τ). (4.27)

For the case (T1 = τ, T2 = 0) corresponding to the point A in Fig. 4.11(b),
substituting T1 = τ and T2 = 0 into Eq. (4.23) leads to

gj(λ) = λ+ α− {2 + (−1)j}k + {(−1)j+1k − β}e−λτ = 0.

From the stability analysis on scalar delayed systems [73], we derive the sufficient
condition for g(λ) to be stable: |(−1)j+1k−β| < α−{2+ (−1)j}k, for any j = 1, 2.
This condition can be expressed by Â β < α, Ã k < (α−β)/4, and Ä k < (α+β)/2.
Since the previous section assumes that condition Á is satisfied, condition Â always
holds. Moreover, if we choose the coupling strength as k < (α+β)/2 < 0, conditions
Ã and Ä always hold. Hence, according to these arguments, condition Â has to be
satisfied for the stability of g(λ).

For the case of condition (4.27) corresponding to the dotted line in Fig. 4.11(b),
substituting Eq. (4.27) into Eqs. (4.24), then squaring and adding both sides, leads
to

λ2
I + α2 + β2 − 4αk + 2k2

= 2(k2 − 2βk + αβ)cosλIτ − 2λIβsinλIτ.
(4.28)

Conditions Á and Ä obtained above, require that k be set to

k = k̃ := β −
√
β2 − αβ < (α + β)/2 < 0. (4.29)

Equation (4.28) with k = k̃ is simplified as

λ2
I + α2 + β2 − 4αk̃ + 2k̃2 = −2λIβsinλIτ. (4.30)

Since inequality (4.29) means that Eq. (4.30) does not hold, at least one of the
equations (4.24) does not hold. Since λ = iλI is not a root of characteristic equation
(4.23), no root of g(λ) crosses the imaginary axis. Hence, g(λ) remains stable.
Therefore, the unstable steady state is stabilized for T1 ≥ τ if k = k̃ and Eq. (4.27)
are maintained.

It must be emphasized that relation (4.27) and coupling strength (4.29) are iden-
tical to those of Section 4.4; hence, the k, T1, and T2 for the isolated oscillator, that
are designed with the MDFC method are valid for the coupled oscillators.

The above arguments can be reduced to a systematic design procedure, as follows:
For β < −α < 0, if connection (4.20) employs k = k̃ and T2 = T1−τ , then amplitude
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Figure 4.12: Time series data x1(t) of coupled oscillators (α = 1, τ = 5, β =
−1.8, k ≈ −4.045).

death is induced in the oscillators (4.19) coupled by connection (4.20), for any long
T1 ∈ [τ,+∞). We shall verify the design procedure with numerical simulations. The
following nonlinear function f(x) will be used as a typical example [31]:

f(x) =



0 if x ≤ −4/3

−1.8x− 2.4 if − 4/3 < x ≤ −0.8

1.2x if − 0.8 < x ≤ 0.8

−1.8x+ 2.4 if 0.8 < x ≤ 4/3

0 if x > 4/3

.

It has been reported that hyperchaos exists in Eq. (4.19) without coupling at α = 1
and τ = 5 [31]. The function f(x) has three fixed points: x∗ = ±6/7 and 0.
When the slope of f(x) at x∗ is 0, and β(0) = 1.2, amplitude death never occurs
for any k, T1, T2, due to condition À. In contrast, amplitude death may occur at
x∗ = ±6/7, because the slope β(±6/7) = −1.8 satisfies condition Á. The design
procedure provides the coupling strength k̃ ≈ −4.045 from Eq. (4.29). T1 and T2

can be set to any length when Eq. (4.27) holds. Now we choose two parameter sets
as typical examples: (A) T1 = 5, T2 = 0 and (B) T1 = 20, T2 = 15. The time-
series data x1(t) of the coupled oscillators is shown in Fig. 4.12. The individual
oscillator without coupling behaves chaotically until t = 500. At t = 500, multiple
delay coupling is achieved. The oscillator ceases to oscillate after a transition, and it
then converges to the steady state; amplitude death is induced at x∗ = +6/7. Note
that the numerical results for the two parameter sets, (A) and (B), are completely
consistent with the two points (A) and (B) on the dotted line in Fig. 4.11(b).
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4.8 Conclusion

This chapter demonstrated that the MDFC method can stabilize UFPs in time-
delay nonlinear oscillators. A simple procedure was provided for designing the feed-
back gain and the controller delays. The main advantage of this procedure is that
if T1, T2, and τ maintain the necessary relation, then the fixed point can be stabi-
lized with long controller delays T1 and T2. The stability analysis and the design
procedure were experimentally verified by electronic circuits. Furthermore, these re-
sults were extended to amplitude death in a pair of time-delayed chaotic oscillators
coupled by a multiple delay connection.

46



Chapter 5

Stabilization of nonlinear
oscillators coupled by a digital
delay connection

5.1 Introduction

The dynamics of coupled oscillators have been actively investigated in nonlinear
areas of science [50, 122, 123]. Recently, coupled oscillators have been used for en-
gineering applications such as central pattern generators for robotic-legged locomo-
tion [52], modular robots [53], sensor networks [54], and a car-following model [124].
Diffusive-coupling-induced stabilization of unstable steady states, one of the well-
known phenomena in coupled oscillators, has been studied for almost a quarter of
a century [16, 17]. This phenomenon, called amplitude death, has great industrial
potential, but never occurs in coupled identical oscillators [17, 56]. Reddy et al.
showed that a transmission delay in connections can induce this phenomenon even
in coupled identical oscillators [18]. This time-delay-induced death has been widely
investigated both experimentally [35, 66, 67] and analytically [56–64, 69, 125–128].
Furthermore, it was reported that amplitude death can be induced not only by using
a simple time-delay connection [18] but also by leveraging various connections such
as distributed-delay connections [125], dynamic connections [93, 129, 130], unsym-
metrical time-delay connections [46,65], connections via conjugate variables [48,131],
time-varying delay connections [43], two long-delay connections [19], and gradient
time-delay connections [132]. These connections represent the continuous-time mu-
tual influences of real oscillators for various situations.

In the field of control engineering, a networked control system whose subsystems
(i.e., sensors, actuators, and controllers) communicate through a digital commu-
nication network (e.g., Ethernet), as shown in Fig. 5.1(a), has been extensively
investigated. This is because this system has the following advantages: reduced
system wiring, ease of system diagnosis and maintenance, and increased system
agility [133]. The subsystems communicate with each other on the network by dig-
ital signals that are converted from continuous-time input–output signals of the

47



CHAPTER 5. STABILIZATION OF NONLINEAR OSCILLATORS COUPLED
BY A DIGITAL DELAY CONNECTION

(a) (b)

Figure 5.1: Conceptual diagrams of networked systems: (a) networked control sys-
tem; (b) networked oscillator system.

subsystems. Note that a communication delay, which may degrade the system per-
formance, is inevitably caused by the transmission of the signal on the network.
From the viewpoint of the engineering applications of coupled oscillators, it is im-
portant to investigate the dynamics of oscillators that are coupled through the digital
communication network. We call such a configuration, as is illustrated in Fig. 5.1(b)
a networked oscillator system. To the best of our knowledge, few studies have been
conducted on networked oscillator systems in the field of nonlinear dynamics.

This chapter proposes a prototype model of a networked oscillator system that
consists of oscillators coupled by a digital delayed connection. Figure 5.2 shows a
sketch of the prototype model with two oscillators, where the digital delayed connec-
tion is implemented by first-in-first-out (FIFO) queues. The main purpose of this
study is to investigate amplitude death induced by the digital delayed connection.
The semi–discretization technique [134–137] allows us to derive a simple charac-
teristic equation for steady-state stability. This equation can be expressed by real
polynomials whose coefficients depend on the network topology. Stability analysis
reveals that the digital delayed connection better facilitates the stabilization of the
steady state than does the continuous-time delayed connection.

5.2 Problem statement

A network consisting of two-dimensional oscillators,

Żn(t) =
{
µ+ iω − |Zn(t)|2

}
Zn(t) + εun(t) (n = 1, 2, . . . , N), (5.1)

is considered, where the complex number Zn(t) ∈ C is the state variable of oscillator
n. N ≥ 2 denotes the total number of oscillators. The parameters µ > 0 and ω > 0
represent the degree of instability of the fixed point and the oscillator frequency,
respectively. ε ∈ R is the coupling strength and i =

√
−1. For a normal delayed
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Figure 5.2: Block diagram of two oscillators coupled by a digital delayed connection
(i.e., FIFO queues).

connection, the coupling signal un(t) ∈ C is given by

un(t) =
1

dn

[
N∑
k=1

cnkZk(t− τ)

]
− Zn(t), (5.2)

where τ ≥ 0 is the delay time of the coupling signals. The network topology is
governed by cnk as follows: if oscillator n is connected to oscillator k, then cnk =
ckn = 1, otherwise cnk = ckn = 0. The self-delayed signal Zn(t − τ) is not allowed
to be injected, that is, cnn = 0. The number of oscillators that are connected to
oscillator n (the degree of oscillator n) is written as dn :=

∑N
k=1 cnk. Suppose that

there is no isolated oscillator, that is, dn > 0, ∀n ∈ {1, . . . , N}.
Instead of a normal delayed connection (5.2), the present study employs the

digital delayed connection

un(t) =
1

dn

[
N∑
k=1

cnkZk(tj−r)

]
− Zn(t) (5.3)

for t ∈ [tj, tj+1) (j = 0, 1, . . .). Figure 5.2 illustrates the two oscillators coupled
by the digital delayed connection (5.3). As shown in Figs. 5.2 and 5.3, Zk(t)
is periodically stored into the buffers on the FIFO queue with sampling period
h := tj+1 − tj, where j represents the sampling number. tj denotes the time at the
j-th sampling. Zk(tj−r) := Zk(tj−rh) is the past state variable, which is maintained
at a constant value during t ∈ [tj, tj+1). The integer (r+1) is the number of buffers;
thus, the time delay is given by τ = rh.

It may be worth pointing out the following remarks about these connections. In
the case of a single oscillator (i.e., N = 1, c11 = 1, and d1 = 1), the oscillator (5.1)
with normal delayed feedback (5.2) and the one with digital delayed feedback (5.3)
are identical to the original delayed feedback control system [9] and the queue-based
delayed feedback control system [12], respectively. The connection (5.3), with both
a large number of buffers and a short sampling period (i.e., 1 ≪ r and h ≪ 1),
is approximately identical to a normal delayed connection (5.2). In the field of
nonlinear science, a delayed signal is often realized by a bucket-brigade delay (BBD)-
line device in experimental situations [35, 66, 92, 138–140]. Such a device comprises
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Figure 5.3: Sketch of the state variable Zk(t) for oscillator k.

a series of sample-and-hold circuits. The BBD-line device is also described by the
FIFO queue; thus, the coupled oscillators in Fig. 5.2 are identical to oscillators
coupled by a BBD line [66].

5.3 Stability analysis

Oscillators (5.1) with connection (5.3) have the homogeneous steady state Z∗ :=[
0 0 · · · 0

]T
∈ CN . The coupled oscillators are linearized around Z∗:

żn(t) = (µ+ iω) zn(t) + ε

[{
1

dn

N∑
k=1

cnkzk(tj−r)

}
− zn(t)

]
(5.4)

for t ∈ [tj, tj+1) (j = 0, 1, . . .), where zn(t) ∈ C is the variation in oscillator n around
the fixed point Z∗

n = 0. System (5.4) can be written as

ẋ(t) = Ax(t) +Bx(tj−r), t ∈ [tj, tj+1) (j = 0, 1, . . .), (5.5)

where

x(t) :=

[
Re{z1(t)} Im{z1(t)} · · · Re{zN(t)} Im{zN(t)}

]T
, (5.6)

A := IN ⊗

µ− ε −ω

ω µ− ε

 , B := εD ⊗ I2. (5.7)

The elements of matrix D ∈ RN×N are {D}nk := cnk/dn for n ̸= k and {D}nn := 0.
Here an N -dimensional identity matrix is represented by IN .

The semi-discretization technique [134–137] allows us to derive the mapping from
the past state x(tj−r) and the current state x(tj) to the future state x(tj+1),

x(tj+1) = Lax(tj) +Lbx(tj−r),
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5.3. STABILITY ANALYSIS

where

La := exp {Ah}, Lb := exp {Ah}
∫ h

0

exp {−As}dsB. (5.8)

This mapping implies that the dynamics of the linear system (5.5) can be reduced
to that of a 2(r + 1)N -dimensional discrete-time system,

Xj+1 = ΦXj, (5.9)

where

Xj :=



x(tj)

x(tj−1)

x(tj−2)

...

x(tj−r)


, Φ :=



La 0 · · · 0 Lb

I2N 0 · · · 0 0

0 I2N · · · 0 0

...
. . .

...

0 0 · · · I2N 0


.

Note that Z∗ is stable if and only if the transition matrix Φ is a stable matrix (i.e.,
a Schur matrix).

The characteristic polynomial of the linear system (5.9) is described by

g(λ)

= det (λI2(r+1)N −Φ)

= det (H)

· det


λI2N −La −

[
0 0 · · · −Lb

]
H−1



−I2N

0

...

0




,

where H ∈ R2rN×2rN is given by

H :=



λI2N 0 · · · 0 0

−I2N λI2N 0 0

0 −I2N 0 0

...
. . . . . .

...

0 0 · · · −I2N λI2N


.
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Now P ∈ R2N×2N is denoted by

H−1 =

 ∗ ∗

P ∗

 . (5.10)

As det (H) = λ2rN and P = λ−rI2N , polynomial g(λ) can be further simplified to

g(λ) = det
{
λr+1I2N − λrLa −Lb

}
. (5.11)

Let us calculate Eq. (5.11), as follow. Substituting A and B in Eq. (5.7) into
La and Lb denoted in Eq. (5.8), we obtain

La = γIN ⊗Θ(h), Lb = η (IN −M )⊗Q (γΘ(h)− I2) ,

where
γ := e(µ−ε)h, η :=

ε

ω2 + (µ− ε)2
, M := IN −D, (5.12)

Θ(h) :=

cosωh − sinωh

sinωh cosωh

 , Q :=

µ− ε ω

−ω µ− ε

 . (5.13)

Since M is self-adjoint and positive semidefinite [58, 59], it can be diagonalized as
T−1MT = diag(ρ1, ρ2, . . . , ρN), where T is a diagonal transformation matrix and
ρq (q = 1, 2, . . . , N) are the eigenvalues of M . Therefore, we obtain

g(λ)

= det
{(

T−1 ⊗ I2

) (
λr+1I2N − λrLa −Lb

)
(T ⊗ I2)

}
= det

{
λr+1I2N − λrγIN ⊗Θ(h)− η

(
T−1 ⊗ I2

)
(IN −M )⊗Q (γΘ(h)− I2) (T ⊗ I2)}

= det
{
λr+1I2N − λrγIN ⊗Θ(h)− η

(
IN − T−1MT

)
⊗Q (γΘ(h)− I2)

}
= det

{
λr+1I2N − λrγIN ⊗Θ(h)

−η (IN − diag(ρ1, ρ2, . . . , ρN))⊗Q (γΘ(h)− I2)} . (5.14)

As a result, g(λ) = 0 can be expressed as

g(λ) =
N∏
q=1

ḡ(λ, ρq) = 0, (5.15)

ḡ(λ, ρq) = det
{
λr+1I2 − λrγΘ(h)− η (1− ρq)Q (γΘ(h)− I2)

}
. (5.16)

The function ḡ(λ, ρq) can be described by the following 2(r+ 1)-degree polynomial:

ḡ(λ, ρq) = λ2(r+1) + α4λ
2r+1 + α3λ

2r + α2(ρq)λ
r+1 + α1(ρq)λ

r + α0(ρq), (5.17)
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where

α0(ρq) := (1− ρq)
2φ0, α1(ρq) := (1− ρq)φ1,

α2(ρq) := (1− ρq)φ2, α3 := γ2, α4 := −2γ cosωh.

The parameters φ0, φ1, and φ2 are defined by

φ0 := η2 (γ2 − 2γ cosωh+ 1) {ω2 + (µ− ε)2} ,

φ1 := 2ηγ{(µ− ε)(γ − cosωh) + ω sinωh},

φ2 := −2η{(µ− ε)(γ cosωh− 1) + ωγ sinωh},

respectively. The homogeneous steady state Z∗ of the coupled oscillators on network
topology D is stable if and only if all the roots λ of ḡ(λ, ρq) = 0 (q = 1, 2, . . . , N)
lie within the unit circle on the complex plane.

5.4 Numerical verification

This section investigates the stability regions in the connection parameter space
ε – τ for the networked oscillator system on some typical network topologies. The
marginal stability curves are estimated in order to obtain these regions. The fol-
lowing steps are used for the estimation: (i) number of oscillators, N , and network
topology cnk are given; (ii) eigenvalues ρq of matrix M , as denoted in Eq. (5.12), are
calculated; (iii) ḡ(eiθ, ρq) = gR(θ, ρq) + igI(θ, ρq) is derived; (iv) marginal stability
curves are estimated by solving gR(θ, ρq) = 0 and gI(θ, ρq) = 0 for θ ∈ [0, π].

5.4.1 A pair of oscillators (N = 2)

Let us now focus on the simplest case, a pair of oscillators (i.e., N = 2), as
illustrated in Fig. 5.2. The eigenvalues of M are ρ1 = 0 and ρ2 = 2. The marginal
stability curves are shown in Figs. 5.4 (a) – (d). Figure 5.4 (a) presents the curves
with the normal delayed connection (5.2), which are estimated by solving

ḡ(iλI , ρq) := iλI − µ+ ε− iω − εe−iλIτ (1− ρq) = 0, λI ∈ R, (5.18)

with ρ1 = 0 and ρ2 = 2 (for more details, see our previous paper [19]). There
exists a thin stability region at around τ ≈ 0.5. The curves with the digital delayed
connection (5.3) for r = 1, 3, 10 are shown in Figs. 5.4 (b) – (d), respectively. For
small numbers of buffers, r = 1 and 3, the stability regions become much larger
compared with those of the normal connection. On the other hand, for a large
number r = 10, the curves closely resemble those of the normal connection. This
result is exemplified by the fact that the digital connection (5.3) with 1 ≪ r and
h ≪ 1 is approximately identical to the normal connection (5.2).
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Figure 5.4: Marginal stability curves for a pair of oscillators (N = 2, µ = 0.5, ω = π):
(a) normal delayed connection (5.2), (b) – (d) digital delayed connection
(5.3) (r = 1, 3, 10). Black and red curves correspond to ρ1 = 0 and
ρ2 = 2, respectively. The regions of stability are shaded.

Time-series data of real parts of Z1 and u1, i.e., Re{Z1} and Re{u1}, with r = 1
and the parameter sets A and B in Fig. 5.4 (b) are plotted in Figs. 5.5(a) and 5.5(b),
respectively. A pair of oscillators behave independently and are then coupled by the
digital connection at t = 20. For the parameter set A, Re{Z1} and Re{u1} continue
to oscillate even after coupling; that is, the connection fails to stabilize the steady
state. In contrast, for the parameter set B, the connection succeeds in stabilizing it:
Re{Z1} and Re{u1} converge to zero after coupling. These numerical results, which
are agree with our analytical results depicted in Fig. 5.4.

5.4.2 Networked oscillators (N = 5)

Here we consider five oscillators on two typical network topologies, a complete
network (i.e., all-to-all connections) and a ring network (i.e., chain connection with
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Figure 5.5: Time-series data, Re{Z1} and Re{u1}, for a pair of oscillators coupled
by digital delayed connection (5.3) (N = 2, µ = 0.5, ω = π, r = 1): (a)
ε = 0.3 and τ = 3 (i.e., A in Fig. 5.4 (b)), (b) ε = 2.0 and τ = 3 (i.e.,
B in Fig. 5.4 (b)).

a periodic boundary). The eigenvalues of M for the complete network are ρ1 = 0
and ρ2,3,4,5 = 5/4. The marginal stability curves for the normal connection (5.2),
which are estimated by solving Eq. (5.18) with ρ1∼5, are shown in Fig. 5.6 (a).
The stability region exists at around τ ≈ 1.0. Figure 5.6 (b) illustrates the curves
for the digital connection (5.3) with r = 3. It can be seen that there exists a large
stability region with τ ≳ 2.0: the stability regions become much larger than those
of the normal connection.

For the ring network, the eigenvalues of M are ρ1 = 0, ρ2,3 = 0.691, and ρ4,5 =
1.809. Figure 5.7 (a) shows the marginal stability curves for normal connection (5.2)
on the ring network. We see a stability region for 0.5 ≲ τ ≲ 1.3. The curves for the
digital connection (5.3) with r = 3 are shown in Fig. 5.7 (b). There exists a large
stability region with τ ≳ 2.0: the stability regions become much larger than those
of the normal connection, as was the case with the complete network.

From these numerical results shown in Figs. 5.4, 5.6, and 5.7, it may be concluded
that the digital delayed connection better facilitates stabilization than does the
continuous-time delayed connection. Note that this conclusion is consistent with
Ref. [137], which showed that digital delayed feedback signals facilitate stabilization
better than does continuous-time delayed feedback.

5.5 Discussion

We now discuss the influence of network topology and the number of buffers on
stability. According to the characteristic equation (5.15), the stability of the steady
state Z∗ depends on the eigenvalues ρq (q = 1, . . . , N) of M . This fact leads to
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Figure 5.6: Marginal stability curves for a complete network (N = 5, µ = 0.5, ω =
π): (a) normal delayed connection (5.2), (b) digital delayed connection
(5.3) with r = 3. Black and red curves correspond to ρ1 = 0 and
ρ2,3,4,5 = 5/4, respectively. The regions of stability are shaded.

the conclusion that the network topology does not have a direct influence on the
stability; for example, two different networks which have the same ρq have the same
stability region. Although this is valid only for local stability, we think that the
transient behavior far from the steady state might be influenced by not only ρq but
also the network topology. The transient behavior needs further consideration.

From our numerical results shown in Fig. 5.4, it can be seen that the number of
buffers, r, has a strong influence on the stability. In the numerical simulation, we
observed that the stability region tends to be large for a small number of buffers.
However, we were unable to obtain a theoretical relation between this number and
the stability region, so this is still an open question.
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Figure 5.7: Marginal stability curves for a ring network (N = 5, µ = 0.5, ω = π):
(a) normal delayed connection (5.2), (b) digital delayed connection (5.3)
with r = 3. Black, red, and blue curves correspond to ρ1 = 0, ρ2,3 =
0.691, and ρ4,5 = 1.809, respectively. The regions of stability are shaded.

5.6 Conclusion

The present chapter investigated the stability of the steady state in oscillators
coupled by a digital delayed connection. Such a connection can be described by an
FIFO queue. Using the semi-discretization technique, we derived a simple character-
istic equation for steady-state stability, with real polynomials whose coefficients de-
pend on the network topology. Our numerical results proved that the digital delayed
connection better facilitates stabilization than does the well-known continuous-time
delayed connection.
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Chapter 6

Conclusions

This thesis considered with amplitude death, the stabilization of a steady state
that is induced by diffusive-type connections, in coupled time-delay oscillators with
uncertain topology and with static, delay, multiple delay, and digital delay connec-
tions. In particular, we have shown that amplitude death can be induced by long
connection delays and the connection parameters can be designed by a systematic
procedure. This chapter presents our conclusions.

In Chapter 2, we investigated amplitude death in the time-delay oscillators cou-
pled by a static connection. It had been reported that static connections never
induce amplitude death in a pair of coupled identical time-delay oscillators. How-
ever, we have shown that the static connection can induce death when the oscillators
have different delay times. Its stability analysis was a difficult task, since the two dif-
ferent delays in its characteristic equation prevent a conventional stability analysis.
We have shown that the cluster treatment of characteristic roots (CTCR) method
can successfully perform this difficult task: the boundary curve of the region of
amplitude deaths in the parameter space were determined. For three coupled time-
delay oscillators, the three different delays in its characteristic equation prevent the
use of the CTCR method. We have shown that the CTCR method with advanced
clustering and frequency sweeping allows us to obtain the boundary curves.

In Chapter 3, we considered a network of time-delay oscillators coupled by a delay
connection. It had been shown that the stability of a steady state with uncertain
topology is equivalent to that of a linear delayed system with an uncertain parame-
ter. A simple sufficient condition for the steady state to be stable has been derived
on the basis of robust control theory. This condition provided us with a systematic
procedure for designing the connection parameters. The procedure has two advan-
tages: the designed parameters can be used for any network topology, and the design
procedure is valid even for oscillators with long delays. We used numerical examples
to verify the analytical results for complete, ring, and small-world networks.

In Chapter 4, we showed that the multiple delay feedback control (MDFC)
method can stabilize an unstable steady state in time-delay oscillators. We pro-
vided a simple systematic procedure for designing the feedback gain and the two
delays in the feedback loop. The advantage of this method is that arbitrarily long
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delay times can be used for the stabilization. An electronic circuit experiment was
performed to verify the stability region and the systematic design procedure. Fur-
thermore, we have shown that a multiple delay connection can induce amplitude
death in two identical coupled time-delay oscillators. A systematic procedure for
designing the coupling strength and the two delays in the delay connection was pro-
vided. The advantage of the multiple delay connection is the same as that of the
MDFC method.

In Chapter 5, we studied steady-state stability in limit-cycle oscillators coupled by
a digital delayed connection. The semi-discretization technique allowed us to derive
a characteristic equation with real polynomials whose coefficients depend on the
network topology. Our numerical results proved that the digital delayed connection
better induces amplitude death than does the conventional delay connection.
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Appendix

1 Electronic circuits

The delay unit circuit shown in Fig. 1 imports the voltage x(t) and exports the
delayed voltage x(t − τ). This circuit consists of four parts: delay, input, output,
and low-pass filter. The delay employs the main device MN3011 (Panasonic) as a
bucket-brigade delay-line device. This device exports the delayed voltage. The delay
time (1.0–20.0 ms) depends on the function generator frequency (10–240 kHz). It
should be noted that this device can delay the voltage only in the range 3.5–6.0 V.
However, the voltage of the oscillator (4.15) is not within this range. To solve this
problem, the input and output were added to the delay unit. The input transforms
the voltage x(t) into a value in the required range. Since the output has the opposing
function, the output exports the delayed voltage to a value within the original range.
As the delay device has a high-frequency switch operation, its output includes high-
frequency noise. The low-pass filter removes the noise from the delayed voltage.

The nonlinear unit circuit is shown in Fig. 2. This circuit consists of the inverting
amplifier, the half-wave rectifier, and the summing amplifier. The inverting amplifier
inverts and amplifies the input voltage x(t). The half-wave rectifier works as a
piecewise linear function which has a break point. The summing amplifier adds up
the voltages that are output from the inverting amplifier and the half-wave rectifier.
As a result, a relation between the input x(t) and the output f(x(t)) is obtained as
shown in Fig. 4.6(a). The break point at the peak can be adjusted by R1 and R2.
The nonlinear function can be shifted up and down by changing R3.

2 Marginal stability curves

The marginal curves of a stability region are obtained by

ḡ(jω, ρ) = jω + α− k
{
1− (1− ρ)e−jωT

}
− βe−jωτ = 0. (1)

The real and imaginary parts are described by

Re [ḡ(jω, ρ)] = α− k + k(1− ρ) cosωT − β cosωτ = 0,

Im [ḡ(jω, ρ)] = ω − k(1− ρ) sinωT + β sinωτ = 0.
(2)
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Figure 1: Delay unit circuit.

Figure 2: Nonlinear function circuit.
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The marginal stability curves are sketched by using the roots T and τ of the
above equations. The direction in which the roots cross the imaginary axis is given
by the sign of the real part of ds/dτ at s = jω,

Re

[
ds

dT

]
s=jω

= Re

[
jωk(1− ρ)e−jωT

1− kT (1− ρ)e−jωT + βτe−jωτ

]
, (3)

where T , τ , and ω satisfy Eq. (2). With increasing T , a positive (negative) value of
Eq. (3) corresponds to a root crossing the axis from left to right (right to left). The
marginal stability curves are estimated by using the following numerical procedure:
set a value for τ ; numerically solve ḡ(jω, ρ) = 0 for T and ω; check the sign of Eq.
(3); plot (τ, T ); change the value of τ ; and return to the first step.
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