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Abstract

Superconductivity with the internal degree of freedom is called unconventional or exotic super-
conductivity. The present dissertation discusses how to identify the unconventional pairing state
through low energy excited states within a quantized vortex in superconductors. The following
topics are focused on: (i) the phase structure of anisotropic Cooper pairing states and (ii) the
effect of the spin-orbit coupling on the electronic structure of a vortex core.

The phase structure of the Cooper pair comes from remaining its relative angular momentum.
So it is crucial to probe the phase of the Cooper pair in order to discriminate unconventional
superconductors from conventional ones. The flux-flow resistivity can be a potentially effective
probe to identify the phase structure of the Cooper pair, since it is dominated by the phase-
sensitive quantity. The flux-flow resistivity is estimated by measuring the microwave surface
impedance, which is applicable for more various materials than the existing phase-sensitive test
fabricating a Josephson junction. This is the great advantage of the phase-sensitive test proposed
in the present dissertation. The flux-flow resistivity is calculated with use of the quasiclassical
Green’s function method and the Kramer-Pesch approximation. The in-plane field angle depen-
dence of the flux-flow resistivity shows contrasting behavior between a line node s-wave pair and
a d-wave one, directly reflecting the internal phase structure of the Cooper pairs. This findings
clearly indicate that measuring the flux-flow resistivity with changing the magnetic field direction
within the plane can be a new experimental probe to identify the pairing symmetry including
the phase structure of the Cooper pair.

Exotic superconducting states arising in noncentrosymmetric systems are based on the anti-
symmetric spin-orbit coupling. One of the notable features of noncentrosymmetric superconduc-
tors is the mixing of the Cooper pair wave function with the different parity. The effect of the
spin-orbit coupling on the vortex core structure is mainly investigated. The numerical calculation
reveals that the impurity effect on the local density of states depends on the spin-orbit coupling
strength α in the presence of the p-wave component, whereas it is independent of the spin-orbit
coupling in the case of the s-wave pair. The key factor of α dependent impurity scattering is
the interband impurity scattering between the Fermi surfaces split due to the anti-symmetric
spin-orbit coupling.

The vortex core structure in locally noncentrosymmetric superconductors is also investigated
numerically. Due to the spatially inhomogeneous anti-symmetric spin-orbit coupling reflecting
the local noncentrosymmetricity, novel superconducting phases stabilize under a magnetic field.
Especially, an inhomogeneous superconducting state called the pair-density wave (PDW) state
in multilayered systems is focused on in the present dissertation. The self-consistent quasiclas-
sical calculations clarify that the vortex core structure changes drastically in the vicinity of the
BCS/PDW phase transition. The difference of the core structure comes from whether or not
there is the phase difference of the order parameter between the layers.

Finally, the excitation spectra and the wave functions of the vortex and the edge bound
states in the bilayer Rashba superconductor are calculated numerically. The PDW state in
bilayer systems undergo the phase transition into the topologically non-trivial phase when a
magnetic field exceeds the critical values, and then the zero energy vortex and the edge bound
states appear.
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Chapter 1

General Introduction

Superconductivity occurs with the quasiparticle states forming the Cooper pairs. The Cooper
pair wave function may have the additional symmetry breaking other than U(1) gauge sym-
metry breaking. The additional symmetry breaking of superconductivity reflects the remaining
internal degree of freedom of the Cooper pair such as the relative angular momentum, the total
spin and center of mass momentum. Such superconductivity is called unconventional or exotic

superconductivity [1, 2]. Fist of all, I describe the vortex bound states. Then, I consider the case
in which the Cooper pair wave function has the relative angular momentum (i.e., anisotropic
superconductivity). We also consider the case in which the total spin of the Cooper pair is
remaining in the context of noncentrosymmetric superconductivity where the spatial parity of
the Cooper pair wave function is broken. Then, I give the background and the motivation of the
dissertation.

1.1 Vortex core bound states

In type-II superconductors, a magnetic flux penetrates into a superconductor as a quantized

magnetic flux above the lower critical field. Around a quantized magnetic flux, supercurrent flows.
The supercurrent is proportional to the phase gradient of superconducting order parameter. The
order parameter of superconductivity is expressed as a complex scalar field, ψ = |ψ| exp(iθ).
ψ is considered as the wave function of Cooper pairs, which are introduced later, and |ψ|2 is
proportional to the superconducting electron density. The quantized magnetic flux with the
vortex rotational superflow is called a vortex. At the center of the vortex, the order parameter
phase is not defined and the order parameter amplitude becomes zero. Near the vortex center,
i.e., at the core of the vortex, the order parameter is locally suppressed and recovers its amplitude
in the bulk. So the order parameter varies spatially ψ(r) = |ψ(r)| exp(iθ·n). The spatial variation
scale of the order parameter is estimated by the Ginzburg-Landau (GL) equation, which is of
the order of the coherence length ξ = ~vF/∆∞. ∆∞ is the bulk gap energy and vF is the Fermi
velocity. Usually singly quantized vortices (n = 1) is the most stable.

In the presence of vortices, there are low energy excitation states around them. The GL
theory is good at treating spatially inhomogeneous systems, but cannot treat excitations. For
purpose of investigating the excitations around vortices, one has to use the theory capable to treat
the excitations. Caroli et al. discussed the low energy excitations around a vortex in an s-wave
superconductor for the first time, solving the Bogoliubov-de Gennes equation analytically [3].
They obtained the low energy excitation spectra proportional to angular quantum number and
the inter-level spacing of the excitation spectra ω0 ∼ ∆2

∞/EF. EF is the Fermi energy. The same
formula for excitation spectra was obtained also by Kramer and Pesch using the quasiclassical
theory [4]. The lowest bound states level ω0 is much smaller than the superconducting transition
temperature Tc. So there are excitations from the superconducting condensates even at low
temperature ∼ (∆∞/EF)Tc.

The first spectroscopic experiment on electronic states at the vortex core was conducted on
NbSe2 by Hess et al. in 1989, using the scanning tunneling microscopy/spectroscopy (STM/STS)
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[5]. They succeeded to observe the large peak in the differential conductance (tunneling conduc-
tance) in the vicinity of the vortex center at zero energy. This peak is suppressed away from the
vortex. The peak of the zero energy differential conductance stems from localized excitations at
the vortex core, i.e., vortex core bound states. After that, the comprehensive numerical study on
the vortex bound states was conducted by Gygi and Schlüter [6]. The fundamental properties
of a vortex in an isotropic s-wave superconductor are covered in their paper. They showed the
numerical result of the tunneling conductance explaining well the STM/STS experiment, namely
they reproduced the split zero energy peak into the two ridge lines of the vortex bound states
reaching the gap edges in the bulk. However, the origin of the star-shaped STM images observed
in NbSe2 [7] was still unclear. Hayashi et al. revealed the origin of the anisotropic vortex bound
states taking into account the anisotropy of the superconducting order parameter [8, 9]. They
explained in detail the concept of quasiparticle trajectory in the quasiclassical picture [9].

It is difficult to capture the physical picture of the vortex bound states. As mentioned above,
the low energy excitation energy at the vortex core is proportional to the angular quantum
number. This property of the vortex core bound states can be understood as a circular motion
of quasiparticles about a vortex line in the quasiclassical picture. Besides, the zero energy peak
of the vortex bound states splits into the two branches evolving to higher energy and finally
reaching the gap edges as approaching to the bulk, which is called the spectral evolution. This
means that the quasiparticles running around a vortex line have the higher energy as the radius
of quasiparticle rotation gets larger. The quasiparticle rotating with its radius ∼ ξ from the
vortex center has the energy ∼ (~2/2m)(1/ξ)2 ∼ ω0. The angular frequency of the rotation
is estimated as ω0. If there is an anisotropy or gap nodes of the order parameter, the rotating
quasiparticles around the core run away from the core in the direction of the nodes in momentum
space [9, 10]. The gap nodes are the zeros of the superconducting gap (the absolute value of the
order parameter) in the momentum space.

1.2 Anisotropic superconductivity in spatially isotropic sys-

tems

1.2.1 Cooper instability

First, we consider superconductivity or superfluidity in an isotropic system such as superfluid
3He. In this situation, we can neglect the anisotropy of the crystal lattice. Single particle states
are occupied up to the Fermi energy in the ground states of free electron gases. However, in the
presence of an attractive interaction between at least one electron pair in momentum space, no
matter how weak it is, the ground state becomes unstable and the electron system goes to more
stable state. This is called the Cooper instability.

We start with the Schrödinger equation for the two electrons:

− ~
2

2m

(

∇
2
1 +∇

2
2

)

ψαβ (r1, r2) + V (r1 − r2)ψαβ (r1, r2) =

(

E +
~
2k2F
2m

× 2

)

ψαβ (r1, r2) , (1.1)

where E is the energy of an electron pair measured from the energy of two electrons at the Fermi
level. The pair electron wave function is composed of the orbital wave function with respect to
the center of mass coordinate and the relative one, and the spin wave function. Assuming the
translational symmetry of the system, the center of mass wave function becomes plane wave.
Then, the pair electron wave function is written as

ψαβ (r1, r2) = eiK·Rφ(r1 − r2)χ(α, β), (1.2)

where P = ~K and R are the center of mass momentum and coordinate, respectively. We
assume P = 0. Using the relative wave vector k̄, the two electron wave function is expressed as

ψαβ(r̄) = (2π~)−3

∫

dk̄eik̄·r̄φ(k̄)χ(α, β). (1.3)
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[In sufficiently large systems, the summation converts into the integral over the continuous wave
vector]. Here r̄ = r1 − r2 is the relative coordinate. Substitute Eq. (1.3) into Eq. (1.1). Then,
multiplying exp[−ik̄′ · r̄] both sides and integrating over r̄, we obtain

~
2|k̄|2
m

φ(k̄) + (2π~)−3

∫

dk̄′V (k̄ − k̄′)φ(k̄′) =

(

E +
~
2k2F
m

)

φ(k̄). (1.4)

In isotropic systems, we can expand the pairing interaction as

V (k̄ − k̄′) =

∞
∑

l=0

Vl(k̄, k̄
′)

l
∑

m=−l

4πYlm(ˆ̄k)Y ∗
lm(ˆ̄k′) (1.5)

Here we assume

Vl(k̄, k̄
′) =







−Vl (εF − εc < ε(k̄) < εF + εc,
εF − εc < ε(k̄′) < εF + εc),

0 (otherwise) ,
(1.6)

where ε(k̄) = ~
2k̄2/2m and εc is the cutoff energy. Let us replace the integral over the wave

vector in Eq. (1.4) by the integral over the quasiparticle energy ξk̄ = ε(k̄) − εF and the angles,
that is,

(2π~)−3

∫

dk̄′ → NF

∫

dξ′
k̄

∫

dΩk̄′

4π
. (1.7)

NF is the density of states at the Fermi level in the normal states per spin.
∫

dΩk̄′ ≡
∫ 2π

0
dφk̄′

∫ π

0
dθk̄′ sin θk̄′

for isotropic three dimensional systems. Expanding the orbital wave function as

φ(k̄′) =
∑

l′

l′
∑

m′=−l′

φl′m′(k̄′)Yl′m′(ˆ̄k′) (1.8)

and substituting it into Eq. (1.4), we have the following Schrödinger equation for each quantum
number of the relative orbital angular momentum l.

{

~
2

m
(|k̄|2 − kF)− El

}

φl(k̄)−NFVl

∫ εc

0

dξk̄′φl(k̄) = 0, (1.9)

where we used the orthonormality for spherical harmonics. Finally we obtain the eigen energy
(two electrons bound state energy) for the weak coupling limit NFVl ≪ 1,

El ≈ −2εce
−2/(NFVl)(< 0). (1.10)

When attractive interaction acts between the electrons on the Fermi surface, the two electrons
state bound energy becomes lower than 2εF. The eigen wave function of the orbital part is

φl(k̄) =
NFVlC

2ξ(k̄)− El
, (1.11)

where C is the dimensionless constant. In the presence of an attractive interaction between two
electrons, the bound states is formed with respect to the relative orbital angular momentum l.
For non-zero l, the bound electron pair has the orbital angular momentum l.

1.2.2 Anisotropic Cooper pair

In the superconducting ground state, a macroscopic number of electrons condensate into the
paired states in momentum space. However, we can apply the similar analysis discussed above
to superconductivity as many body problem using the second quantization for many electron
systems (see the text book of superconductivity [11, 12] or superfluidity [13]). Investigating the
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pair condensed state with use of the mean field approximation, following physical quantity is
introduced:

∆ss′ (k̄) = −
∑

k̄′

V (k̄, k̄′)
〈

ck̄′sc−k̄′s′
〉

. (1.12)

This is the superconducting order parameter. At finite temperature, we have

∆(k̄) = −
∑

k̄′

V (k̄, k̄′)
∆(k̄′)

2E(k̄′)
tanh

(

E(k̄′)

2kBT

)

. (1.13)

This equation is called the gap equation. E(k̄) =
√

ξ2(k̄) + |∆(k̄)|2 is the excitation energy of a
quasiparticle in the superconducting state. |∆(k̄)| is the excitation energy gap of the quasiparticle
relative to the chemical potential, which can be understood from E(k̄) ≥ |∆(k̄)|. This is a
physical meaning of the order parameter amplitude. The phase of the order parameter is also
detectable by phase-sensitive probes.

Assuming the translational symmetry, the pairing interaction depends only on k̄ − k̄′. For
isotropic systems, in the same way as the two electron bound state, we expand the pairing

interaction and substitute it into the gap equation. Then we find that ∆(k̄) = ∆lmYlm(ˆ̄k) is the
solution of the gap equation (1.13). The transition temperature is calculated as

T l
c =

1.13εc

kB
e−1/(NFVl). (1.14)

The transition temperature does not depend on the magnetic quantum number m. Then T l
c

has the m = 2l + 1-fold degeneracy. Correspondingly, the order parameter is also 2l + 1-fold
degenerated. These consequences are due to the rotational symmetry of a continuous system.

In isotropic system where rotational symmetry is maintained, the order parameter symme-
try of anisotropic superconductivity is classified by the quantum number of the relative angular
momentum of the Cooper pair l. The superconductivity with l = 0 corresponds to an s-wave
one and that with l ≥ 2 is anisotropic one. For example, l = 1 corresponds to p-wave supercon-
ductivity and l = 2 corresponds to d-wave one. In isotropic systems, we cannot distinguish the

orbital wave functions Ylm(ˆ̄k) with different magnetic quantum numbers m.
However, in the presence of the anisotropy of the background, the orbital wave functions with

the same absolute value of the magnetic quantum number are mixed [2]. For instance, the orbital

symmetry of the dx2−y2-wave pair is Y22(
ˆ̄k)+Y2−2(

ˆ̄k) ∝ [exp(2iφk)+exp(−2iφk)]/2 = cos(2φk).
Strictly speaking, the real crystal lattice lacks the rotational symmetry and then the relative
angular momentum of the Cooper pair is not defined. Thus we need to classify the symmetry of
the orbital wave function of the Cooper pair by means of the irreducible representation of the
point group [1].

1.3 Superconductivity in noncentrosymmetric systems

In this section, we consider superconductivity in the system lacking in an inversion center.

1.3.1 Anti-symmetric spin-orbit coupling

We start with the interaction between valence electron spin and electrostatic potential φ(r) in
an atomic nucleus, which is called the LS coupling. We consider the orbital motion of a valence
electron with the velocity v, suffering the electric field E = −∇φ(r). The atomic nucleus runs
with the relative velocity −v seen from the coordinate system moving with the electron. Thus,
the magnetic field H = −(1/c)v×E appears at the position of the electron. This magnetic field
couples the electron spin. The interaction energy is given by

−µs ·H = −
g~e

2mc2
[v ×E] · S, (1.15)
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where the mass of an electron m, the absolute value of the electron charge e(> 0), the velocity
of light c. The electronic g-factor is given by g = 2.0023. By the relativistic treatment with the
Dirac equation, one can obtain a factor 2 smaller value. Thus, the LS coupling is obtained as

HLS = − ~e

2m2c2
[p×E] · S. (1.16)

Here we used p = mv. If we view the momentum as the crystal momentum of the electron
(p = ~k) and consider the electric field parallel to z axis (E = Eẑ), we have [14, 15]

HLS = − ~
2eE

2m2c2
g(k) · S. (1.17)

g(k) = (ky,−kx, 0) is the Rashba type orbital vector. The expectation value of the electric field
(E || ẑ) for the wave function ψk(r) = exp(ik · r) is

−
∫

u.c.

drψ∗
k(r) [∇φ(r)]z ψk(r) = −

∫

u.c.

dr
∂

∂z
φ(r)

= −
∫

dx

∫

dy

∫ c/2

−c/2

dz
∂

∂z
φ(r)

= −
∫

dx

∫

dy [φ(x, y, c/2)− φ(x, y,−c/2)]

= −
∫

dx

∫

dy [φ(x, y, c/2)− φ(−x,−y,−c/2)] . (1.18)

∫

u.c. denotes the integral over a unit cell. The expectation value is zero for φ(x, y, c/2) =
φ(−x,−y,−c/2) and finite for φ(x, y, c/2) 6= φ(−x,−y,−c/2). Thus, when φ(r) has the asym-
metric form lacking in an inversion center, the finite expectation value of the electric field appears
in the direction of the z axis.

At the beginning of the discussion, we considered the electric field arising from electrostatic
potential in atomic nucleus. At the middle of the discussion, we considered the z-axis electric
field arising from the electrostatic potential asymmetry due to the noncentrosymmetricity of the
crystal lattice. Besides, we took into account only the plane wave part of the wave function
when calculating the expectation value of the electric field. This simplification might be justified
for electrons moving away from the atomic nucleus. However, as pointed out by Yanase [15]
following the discussion to derive the antisymmetric spin-orbit coupling (ASOC) [16, 14], we
have to take into account the momentum of the electron instead of the crystal momentum when
the electron is in the vicinity of atomic nucleus. Considering the expectation value for the Bloch
wave function ψk(r) = exp(ik · r)u(r), Eq. (1.16) yields the following ASOC.

HASOC =
~e

2m2c2

[∫

u.c.

drψ∗
k(r)(p×∇φ(r))ψk(r)

]

· S

=
~e

2m2c2

[∫

u.c.

dr(Jk(r)×∇φ(r))

]

· S, (1.19)

with

Jk(r) ≡
~

2mi
[ψ∗

k(r)∇ψk(r)− ψk(r)∇ψ∗
k(r)] . (1.20)

Neglecting the spatial derivative of uk(r) and u
∗
k(r), we obtain

HASOC = − ~
2e

2m2c2
(k ×EAVL.) · S, (1.21)

EAVL. ≡
∫

u.c.

dr|ψk(r)|2E(r). (1.22)

EAVL is the expectation value of the electric field for the Bloch wave function ψk(r) = exp(ik ·
r)u(r). This formula estimates the value of the ASOC much larger than that in metals, which
is caused by neglecting the spatial derivative of uk(r) and u

∗
k(r) [15]. The detailed derivation of

the ASOC on the basis of the microscopic model is given in Ref. [15].
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Figure 1.1: Spin structure on the split Fermi surface. The dotted circle indicates the Fermi
surface in the absence of the spin-orbit coupling.

1.3.2 Spin structure on the Fermi surface

The lack of inversion symmetry is incorporated by an ASOC. The normal state Hamiltonian in
the wave vector representation is

H =
∑

k,s

ξ(k)c†kscks + α
∑

k,s,s′

g(k) · σ̂ss′c
†
kscks′ . (1.23)

Here, c†ks and cks are the creation and annihilation operators for a quasiparticle with wave
vector k and spin s, respectively. α is the SOC strength and σ̂T = (σ̂x, σ̂y , σ̂z). We con-
sider the Rashba type SOC in three dimensional systems and take the orbital vector as g(k) =
√

3/2(−ky, kx, 0)/kF. Considering the periodic system in a lattice model, the orbital vector
becomes periodic to satisfy the periodicity of the Brillouin zone. This model Hamiltonian was
introduced to describe the electronic structure of the noncentrosymmetric material CePt3Si [17].
This model can describe two dimensional electron systems such as an oxide heterostructure or
an interface between transition metal oxides, too.

The normal state Hamiltonian (1.23) is expressed by the 2× 2 matrix in spin space

H =
∑

k

(

c†k↑ c†k↓

)









ξ(k) −iα
√

3

2

k−

kF

iα

√

3

2

k+

kF
ξ(k)









(

ck↑
ck↓

)

. (1.24)

kF is the Fermi wave number and k± ≡ kx ± iky. Now the spin quantization axis is oriented
parallel to the z axis. Let us transform the basis into the band basis in which the normal state
Hamiltonian is diagonalized. Inserting the unitary matrices, Eq. (1.24) becomes

H =
∑

k

(

c†k↑ c†k↓

)

ÛkÛ
†
k









ξ(k) −iα
√

3

2

k−

kF

iα

√

3

2

k+

kF
ξ(k)









ÛkÛ
†
k

(

ck↑
ck↓

)

=
∑

k

(

a†k↑ a†k↓

)

(

EII(k) 0
0 EI(k)

)(

ak↑
ak↓

)

. (1.25)
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The excitation energies are EI,II(k) = ξ(k)± α|g(k)|. This two band feature is the consequence
of lifting the spin degeneracy due to the SOC. We have defined the canonical transformations:
(

a†k↑ a†k↓

)

=
(

c†k↑ c†k↓

)

Ûk and
(

ak↑ ak↓
)T

= Û †
k

(

ck↑ ck↓
)T

with

Ûk =
1√
2

(

1 −ik̄−
−ik̄+ 1

)

, Û †
k =

1√
2

(

1 ik̄−
ik̄+ 1

)

, (1.26)

where k̄± ≡ k±/|k±|. When transforming the basis from the real spin basis into the band basis,
we operate the unitary matrix, which represents the rotation in spin space. Here the unitary
matrix depends on the wave vector. The unitary matrix rotates the spin quantization axis with
respect to each wave vector. Hence, as depicted in Fig. 1.1, the spin quantization axis rotates
on the Fermi surface. The way of lifting the spin degeneracy in noncentrosymmetric systems is
different from other systems. One example is the Zeeman splitting electron systems under a high
magnetic field, in which the Fermi surface is split with respect to a certain quantization axis.
The Dirac electron system is another example.

1.3.3 Anderson’s theorem

First of all, we assume that the system has an spatial inversion center. In this situation, we can
label the single particle state occupying the certain energy band with the spin projection. We
express this electronic state as the state vector |kσ〉 with the wave vector k and the spin vector
σ. Let us consider the case with the time-reversal symmetry. The time-reversal operation T̂
reverses momentum, spin and orbital angular momentum [18]:

T̂ |kσ〉 = | − k − σ〉, (1.27)

where we choose the phase such that the phase factor is unity (eiφ = 1). The spatial inversion
(parity) operation P̂ reverses momentum only:

P̂ |kσ〉 = | − kσ〉. (1.28)

Combining the parity operator with the time-reversal operator, we obtain the following relation

P̂ T̂ |kσ〉 = P̂ | − k − σ〉 = |k − σ〉. (1.29)

Hence, in the presence of the spatial inversion symmetry and the time-reversal symmetry, the
four electronic states |kσ〉, | − k − σ〉, | − kσ〉 and |k − σ〉 are degenerated, i.e., E(k,σ) =
E(−k,−σ) = E(−k,σ) = E(k,−σ). E is the energy spectra of conduction electrons.

If the time reversal symmetry is broken (e.g., under a magnetic field), the system has only the
spatial inversion symmetry. Then, the two electronic states |kσ〉 and | − kσ〉 are degenerated,
i.e., E(k,σ) = E(−k,σ).

Next, let us consider the case without an inversion center. In this case, two electronic states
|kσ〉 and | −k−σ〉 are degenerated due to the time-reversal symmetry [E(k,σ) = E(−k,−σ)].
Note that there remains the degeneracy at the Γ point (k = 0) in the presence of the time-reversal
symmetry, which is called Kramers degeneracy.

Anderson discussed which quasiparticle states degenerated on the Fermi surface can form the
Cooper pairs. According to Ref. [19], the time-reversal symmetry is essential for the spin-singlet
pairing. The quasiparticle states can form the Cooper pairs using the degenerated quasiparticle
states |kσ〉 and | − k − σ〉 in the vicinity of the Fermi surface. The spin-singlet pairs are
fragile against the time-reversal symmetry breaking perturbations such as magnetic impurities,
ferromagnetism and Zeeman field. On the other hand, both the time-reversal symmetry and the
spatial inversion symmetry are essential for the spin-triplet pairs [20]. They are fragile against
breaking spatial inversion symmetry.

1.3.4 Parity mixing

According to the discussion in the subsection 1.3.3, inversion symmetry is essential for spin-
triplet pairing. One would question whether or not the lack of an inversion center always prevent
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degenerated quasiparticles from forming spin-triplet pair. Under a certain condition, the answer
is No. That is, the spin-triplet state remains stable when the d vector is parallel to the orbital
vector [d(k) || g(k)] (see Appendix A as for the d vector) [17].

In the presence of an inversion center, the orbital part of the Cooper pair wave function is
classified by the spatial parity (the eigen values of the parity operator are ±1). Correspondingly,
the spin part of the wave function is classified to spin singlet or triplet in order to satisfy the
Pauli principle. In the absence of a spatial inversion center, however, the Cooper pair wave
function needs not to be the eigen wave function of the parity operator. Thus the parity mixing
of the wave function occurs.

1.4 Background and motivation

It is of great interest and of importance to identify the internal degree of freedom of the Cooper
pair wave functions in unconventional superconductors. In this dissertation, through vortex core
bound states, I focus on the different three unconventional superconductivity, namely anisotropic,
noncentrosymmetric and locally noncentrosymmetric ones. In anisotropic pairing states, the
relative orbital angular momentum of the Cooper pair remains. In noncentrosymmetric systems,
the admixture of the Cooper pairs with the non-zero total spin and without the total spin occurs
due to the breaking of the spatial parity. The local noncentrosymmetricity influences the internal
structure of the Cooper pair. I address the following three topics: (i) Flux-flow resistivity under
a rotating magnetic field in anisotropic superconductors, (ii) Impurity effect on the vortex bound
states in noncentrosymmetric superconductors, and (iii) Electronic structure of a vortex core in
multilayered superconductors.

First, I describe the background and the motivation for the first topic. My theoretical study
stems from the measurement of the field-angle dependent flux-flow resistivity (FFR) by Yasuzuka
et al. [21] They conducted the experiment of measuring the Josephson vortex flow resistance in
the layered organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 [22, 23] and found the four-fold
in-plane anisotropy of the FFR. They mentioned the relation between the observed four-fold
anisotropy of the FFR and the d-wave pairing symmetry. Yasuzuka et al. reported the in-plane
anisotropy of the FFR of the layered organic superconductor λ-(BETS)2GaCl4, too [24]. Through
a series of the flux-flow experiments, I became interested in the in-plane field-angle dependent
measurement of the FFR in three dimensional system. In the three dimensional system, the
vortices with the core around the vortex center are formed even under an in-plane field. In
this situation, there are two possible interpretations of the field-angle dependence of the FFR.
One is the anisotropy of the upper critical field Hc2. According to the theoretical study on the
anisotropy of Hc2 [25, 26], Hc2 with a magnetic field H parallel to the anti-node is larger than
that with H parallel to the gap node direction [Hc2(node)<Hc2(anti-node)]. Correspondingly,
Tc(anti-node) is larger than Tc(node). Thus, the FFR with H || the gap node direction is larger
than that with H || the anti-node direction. In this study, I neglect the contribution of the
anisotropy of Hc2 to the FFR, since the contribution is not important unless considering the
FFR in a high field. Another possible interpretation is the anisotropy of the quasiparticle (QP)
relaxation inside a vortex core. The field-angle dependence of the QP scattering rate in a vortex
core is still elusive. In moderately clean systems, the FFR is proportional to the QP scattering
rate inside a vortex core [27] Our theoretical study is devoted to elucidating the relation between
field direction and the FFR.

Next, I would like to present the background and motivation of the second topic. In clean
noncentrosymmetric superconductors, off-diagonal components of the Green’s function in the
band basis vanishes in the bulk [28, 29] and even in the vicinity of a vortex [29, 30]. That is,
the electronic state is decoupled with respect to each band split due to the SOC as introduced
in section 1.3. As Frigeri et al. pointed out [28], the splitting two bands are not mixed by the
position averaged impurity scattering in the bulk. I summarize the treatment of bulk impurity
effects in noncentrosymmetric superconductors with use of the quasiclassical theory in appendix
D. Up to now, several authors have theoretically investigated bulk impurity effects on the su-
perconducting properties in noncentrosymmetric systems; the transition temperature Tc [28, 31],
the spin susceptibility [32], the NMR relaxation rate [33] and the Hc2 with the approach from
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the strong SOC [34]. Bao et al. experimentally investigated the non-magnetic impurity effect
on the Tc and the T -H phase diagram in Li2Pd3B [35]. In addition, they reported the impurity
scattering effect of Li2Pt3B in comparison with Li2Pd3B with changing the impurity content
systematically [36].

However, under inhomogeneous situations, the impurity effect is different from that in the
bulk. In the presence of impurities around a vortex, off-diagonal components of the normal and
anomalous Green’s functions remain in the band representation for s + p-wave pair. Then, the
Green’s functions cannot be separated with respect to each Fermi surface which is splitting up
due to the SOC. This consideration comes from the impurity effect around a vortex core, which
is different from that in the bulk. Around a vortex, there is the superflow. Thereby anomalous
Green’s function becomes not invariant under the transformation k → −k and the formula of
the anomalous self-energy changes from that in the bulk (see appendix D and Ref. [37] for more
detailed discussions). Hence, the impurity scattering affects the quasiparticle structure of a
vortex core and interesting phenomena in the vortex bound states are expected. The purpose
of our theoretical study is to elucidate the impurity effect around a vortex core through vortex
core states. The first STM/STS experiment on vortex core states in the noncentrosymmetric
superconductor is conducted for BiPd [38]. This experiment also motivates our calculation of
the quasiparticle structure at the vortex core.

At last, I present the background and motivation for the third topic. Recently, much interest
has been focused on superconductivity in locally noncentrosymmetric systems (LNCS) [39, 40].
Yanase conducted the pioneering work pointing out the importance of the broken local inversion
symmetry on the superconductivity focusing on the random SOC effect in Sr2RuO4 and CePt3Si
[41]. After that, the Niigata University and ETH-Zürich groups have actively investigated su-
perconductivity in LNCS focusing mainly on the heavy Fermion superlattice CeCoIn5/YbCoIn5
and pnictide superconductor SrPtAs. Yoshida et al. found that exotic inhomogeneous supercon-
ducting phases stabilize in multilayered systems under a high magnetic field. They numerically
investigated the stability of the exotic superconducting state in the T -H phase diagram and
showed the staggered anti-symmetric SOC arising from local noncentrosymmetriciry is essential.
They found that the pair-density wave (PDW) phase is stabilized in a high field perpendicular
to the atomic lattice layers [42] and the complex-stripe (CS) phase is stabilized under a field
parallel to the layers [43]. In the PDW phase, the phase of the superconducting order parameter
modulates layer by layer due to the spatially inhomogeneous spin-orbit coupling. The length
scale of the modulation is the order of the atomic lattice constant, which is much shorter than
that of the Fulde-Ferrell-Larkin-Ovchinnikov state [42, 44]. The uniform superconducting phase
is more stable in a low magnetic field and is destroyed by the paramagnetic deparing in a high
field, whereas the PDW phase can survive up to a high magnetic field by the presence of the
SOC in the system where the paramagnetic depairing is dominant. On the other hand, in the CS
phase, the amplitude and the phase of the order parameter modulates within the layer, which is
in contrast with the helical vortex phase in noncentrosymmetric superconductors. In the helical
vortex phase, only the order parameter phase modulates [45], and then a phase-sensitive probe
is needed to detect experimentally the helical phase [45]. As for the CS state, the phase-sensitive
probe is not necessary and the high resolution local probe such as the STM might detect the CS
phase.

The exotic superconducting phases introduced above stabilize in a magnetic field. Although
vortices do not affect the phase modulation and not play a crucial role in the stability of the
PDW phase, the effect of vortices is of importance for transport and thermodynamic properties.
In addition, the observation of quasiparticle states around a vortex gives us rich information on
the pairing state in general. I believe that the observation of the vortex core states will be a
key to identify the PDW state experimentally. Hence, I try to elucidate the vortex structure
in the PDW state at the beginning stage of the theoretical study on vortex states in the exotic
superconducting states.

1.5 Outline

In this dissertation, I address the following four topics.
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• Chapter 3 Field-angle Resolved Flux-flow Resistivity as a Phase-sensitive Probe of Un-
conventional Cooper Pairing:
Y. Higashi, Y. Nagai, M. Machida, and N. Hayashi, Physical Review B 88, 224511 (2013),
Y. Higashi, Y. Nagai, M. Machida, and N. Hayashi, Physics Procedia 45, 137-140 (2013).

• Chapter 4 Impurity Effect on the Local Density of States around a Vortex in Noncen-
trosymmetric Superconductors:
Y. Higashi, Y. Nagai, and N. Hayashi, JPS Conference Proceedings 3, 015003 (2014).

• Chapter 5 Vortex Core Structure in Multilayered Rashba Superconductors:
Y. Higashi, Y. Nagai, T. Yoshida, and Y. Yanase, Journal of Physics: Conference Series
568, 022018 (2014),
Y. Higashi, Y. Nagai, T. Yoshida, Y. Masaki, and Y. Yanase, Submitted to Physical Review
B.

• Chapter 6 Excitation Spectra and Wave Functions of Quasiparticle Bound States in Bi-
layer Rashba Superconductors:
Y. Higashi, Y. Nagai, T. Yoshida, M. Kato, and Y. Yanase, Submitted to Physica C.

In chapter 3, we investigate the flux-flow resistivity (FFR) under rotating magnetic field
in anisotropic superconductors (SCs). First, on the basis of the quasiclassical theory and the
Kramer-Pesch approximation, the FFR is analytically calculated from the impurity scattering
rate inside a vortex core. Next, assuming the anisotropic superconducting pairing state (d-wave
pair or line node s-wave one), we numerically calculate the in-plane field-angle dependence of
the FFR.

In chapter 4, we focus on the impurity scattering effect on the local density of states (LDOS)
around a vortex core in noncentrosymmetric SCs within the Born approximation. We discuss
the spin-orbit coupling strength dependence of the impurity effect on the LDOS structure for
both an s-wave and an s+ p-wave pairing.

In chapter 5, we numerically investigate the vortex core structure in bilayer Rashba SCs by
means of the self-consistent calculations using the quasiclassical theory. Especially, we discuss
the spin-orbit coupling strength dependence of the core structure for both the BCS and the
pair-density wave (PDW) states.

In chapter 6, we investigate the energy spectra and the wave functions of bound Bogoliubov
quasiparticles at a vortex and an edge in the PDW state in bilayer systems on the basis of the
Bogoliubov-de Gennes theory.

In chapter 7, we conclude our discussions.
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Chapter 2

Mean Field Theory of

Superconductivity

In this chapter, we would like to describe the quasiclassical Green’s function method. In partic-
ular, we address the derivation of the quasiclassical theory of superconductivity in multilayered
systems with the Rashba type spin-orbit coupling. For simpler systems, one can formulate in
the same way.

2.1 System

We consider a multilayered superconductor with the Rashba-type spin-orbit coupling taking into
account the paramagnetic effect. Each layer is connected through the inter-layer coupling. The
system we consider is described by the Hamiltonian

H = Hkin + HZ + HSO + Hinter + HSC = H0 + HSC, (2.1)

where HSC is the two body interaction reproducing superconductivity. The kinetic energy term
is

Hkin =
∑

s,s′,m

∫

dr

∫

dr′δss′δ(r − r′)ξ (r′,−i∇′)ψ†
sm(r)ψs′m(r′), (2.2)

where ψ†
sm(r) [ψsm(r)] is the field operator creating (annihilating) a quasiparticle with the spin

s at the position r in the m-th superconducting layer in the Schrödinger representation, and the
energy dispersion measured from the chemical potential µ,

ξ (r′,−i∇′) =
1

2m
[−i∇′ + eA(r′)]

2 − µ, (2.3)

with the mass of an electron m, the absolute value of the electron charge e, the velocity of light
c and the vector potential A(r). From now on, we use units in which ~ = kB = c = 1. The
Zeeman term is

HZ =
∑

s,s′,m

∫

dr

∫

dr′ψ†
sm(r) [−δ(r − r′)µBH ] · σss′ψs′m(r′), (2.4)

where µB is the magnetic moment of the quasiparticle,H is a magnetic field and σ = (σx, σy, σz)
T

is the vector consisting of the Pauli spin matrix. The spin-orbit coupling is described by

HSO =
∑

s,s′,m

∫

dr

∫

dr′ψ†
sm(r)αmg(r − r′) · σss′ψs′m(r′), (2.5)

where αm is the spin-orbit coupling energy in the m-th layer [e.g., (α1, α2) = (α,−α) in the
bilayer system]. g(r − r′) is defined through g(k̄) as

g(k̄) =

∫

dre−ik̄·r̄g(r̄ = r − r′). (2.6)
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Here k̄ denotes the relative momentum. The inter-layer hopping is

Hinter = t⊥
∑

s,〈m,m′〉

∫

drψ†
sm(r)ψs,m′(r). (2.7)

〈m,m′〉 indicates the summation over the nearest neighbor layers. Hence, the normal state
Hamiltonian is written as

H0 =
∑

s,s′,m

∫

dr

∫

dr′ψ†
sm(r)H 0

ss′m (r, r′,−i∇′)ψs′m(r′) + t⊥
∑

s,〈m,m′〉

∫

drψ†
sm(r)ψs,m′(r),

(2.8)

H
0
ss′m (r, r′,−i∇′) = δss′δ(r − r′)ξ (r′,−i∇′)− δ(r − r′)µBH · σss′ + αmg(r − r′) · σss′ .

(2.9)

At last, the interaction term for superconductivity is

HSC =
1

2

∑

s,s′,m

∫

dr

∫

dr′ψ†
sm(r)ψ†

s′m(r′)V (r − r′)ψs′m(r′)ψsm(r), (2.10)

where the pairing interaction V (r − r′) is defined by

V (r̄ = r − r′) =
∑

k̄

V (k̄)eik̄·r̄. (2.11)

2.2 Wigner representation of Gor’kov equation

The Gor’kov equation for multilayered systems is given by

∫

dr′





{

iωnσ0 ⊗ IN×N − Ĥ0 (r
′ − i∇′)

}

δ (r − r′) ∆̂(r, r′, iωn)

∆̂†(r, r′, iωn)
{

iωnσ0 ⊗ IN×N + Ĥ ∗
0 (r′, i∇′)

}

δ (r − r′)





[

Ĝ (r′, r′′, iωn) F̂ (r′, r′′, iωn)
ˆ̄

F (r′, r′′, iωn)
ˆ̄

G (r′, r′′, iωn)

]

= τ̌0δ(r − r′′), (2.12)

with

Ĥ0 (r
′,−i∇′) = ξ (r′,−i∇′)σ0 ⊗ IN×N − µBHσz ⊗ IN×N + t⊥σo ⊗ T⊥ + αg (−i∇′) · σ ⊗ Sd,

(2.13)

Ĥ
∗
0 (r′, i∇′) = ξ′ (r′, i∇′)σ0 ⊗ IN×N − µBHσz ⊗ IN×N + t⊥σo ⊗ T⊥ + αg (i∇′) · σ∗ ⊗ Sd,

(2.14)

where IN×N is the unit matrix. Here we restrict the discussion to bilayer systems (N = 2).
T⊥ = offdiag(1, 1) and Sd = diag(1,−1). These are the matrices in the space composed of the

layer degree of freedom. Ĝ and F̂ are the normal and anomalous temperature Green’s functions,
respectively, represented by the 4 × 4 matrix in the space composed of spin and layer degree of
freedom. The orbital vector satisfies the relation g(i∇′) = −g(−i∇′) due to the time-reversal
symmetry of the spin-orbit coupling term. By inserting τ̌23 = τ̌0 into the Gor’kov equation (2.12),
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we obtain

∫

dr′





{

iωnσ0 ⊗ IN×N − Ĥ0 (r
′,−i∇′)

}

δ (r − r′) −∆̂(r, r′, iωn)

∆̂†(r, r′, iωn) −
{

iωnσ0 ⊗ IN×N + Ĥ ∗
0 (r′, i∇′)

}

δ (r − r′)





[

Ĝ (r′, r′′, iωn) F̂ (r′, r′′, iωn)

− ˆ̄
F (r′, r′′, iωn) − ˆ̄

G (r′, r′′, iωn)

]

= τ̌0δ(r − r′′),

∫

dr′

[

iωnδ(r − r′)τ̌3 −
(

Ĥ0(r
′,−i∇′)δ(r − r′) 0̂

0̂ Ĥ ∗
0 (r′, i∇′)δ(r − r′)

)

−
(

0̂ ∆̂(r, r′, iωn)

−∆̂†(r, r′, iωn) 0̂

)

][

Ĝ (r′, r′′, iωn) F̂ (r′, r′′, iωn)

− ˆ̄
F (r′, r′′, iωn) − ˆ̄

G (r′, r′′, iωn)

]

= τ̌0δ(r − r′′),

(2.15)

where we define the Pauli matrix in Nambu space as

τ̌3 =

(

σ0 ⊗ IN×N 0̂

0̂ −σ0 ⊗ IN×N

)

. (2.16)

Here we have neglected the vector potential. Then, the normal state Hamiltonian depends only
on the spatial derivative [i.e., Ĥ0(r

′,−i∇′) → Ĥ0(−i∇′)].
Next, we would like to have the Wigner representation for the Gor’kov equation. The Gor’kov

equation is composed of the product of the BdG mean field Hamiltonian and the Green’s function
matrix in Nambu space. To obtain the Wigner representation of the product of the matrices,
the circle product or the Moyal product is introduced (see Appendix B) [46, 47, 48, 49, 50, 51].
Before obtaining the Wigner representation of the Gor’kov equation, we first consider the Wigner
representation of the normal state Hamiltonian.

Ĥ0(R, k̄) =

∫

e−ik̄·r̄
Ĥ0

[

−i
(

1

2
∇R +∇r̄

)]

δ(r̄)dr̄

=

∫

e−ik̄·r̄
Ĥ0 (−i∇r̄) δ(r̄)dr̄. (2.17)

The superconducting order parameter ∆ varies spatially over the coherence length ξ, which is
the characteristic distance of the electronic state in superconductivity. ξ is much longer than the
wavelength of the band electrons in the vicinity of the Fermi energy 2π/kF. In the energy axis,
the characteristic energy scale for superconductivity is much smaller than the electron energy at
the Fermi level (∆≪ EF). Then the band electron dispersion is nearly linear in k̄ in the energy
scale of ∆ around the Fermi level. Hence, we can expand the band electron energy with respect
to −i∇r̄,

ε
[

k̄ + (−i∇r̄)
]

− µ ≈ ξ(k̄) +∇k̄ε(k̄) · (−i∇r̄),

= ξ(k̄) + v(k̄) · (−i∇r̄). (2.18)

Here we assume that the Zeeman field, the spin-orbit coupling and the interlayer coupling are
sufficiently small. So the split of the Fermi surface due to the spin degeneracy lifting is also
small. Then, we can define the velocity of the band electron on a spin degenerated single Fermi
surface. If Ĥ0(k̄) can be expanded in a power series of −i∇r̄,we obtain Ĥ0(R, k̄) = Ĥ0(k̄).

Consequently, using the circle or Moyal product described in Appendix B, the Wigner repre-
sentation of the Gor’kov equation is obtained as

[

iωnτ̌3 − ξ(k̄)τ̌0 − Ǩ (k̄)− ∆̌(R, k̄, iωn)
]

◦ Ǧ (R, k̄, iωn) = τ̌0, (2.19)
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where

Ǩ (k̄) = −µBH · Š + αǧ(k̄) · Š + t⊥(σ0 ⊗ T⊥)⊗ τ̌0, (2.20)

Š =

(

σ ⊗ IN×N 0̂

0̂ σ∗ ⊗ IN×N

)

, (2.21)

ǧ(k̄) =

(

g(k̄)σ0 ⊗ Sd 0̂

0̂ g(−k̄)σ0 ⊗ Sd

)

, (2.22)

∆̌(R, k̄, iωn) =

(

0̂ ∆̂(R, k̄, iωn)

−∆̂†(R, k̄, iωn) 0̂

)

, (2.23)

Ǧ (R, k̄, iωn) =

(

Ĝ (R, k̄, iωn) F̂ (R, k̄, iωn)

− ˆ̄
F (R, k̄, iωn) − ˆ̄

G (R, k̄, iωn)

)

. (2.24)

2.3 Quasiclassical Green’s function method

First of all, we expand the circle or Moyal product in the Gor’kov equation up to first order (see
Appendix B),

ξ(k̄)τ̌0 ◦ Ǧ ≈ ξ(k̄)Ǧ − i

2
∇k̄ξ(k̄)τ̌0∇RǦ (2.25)

Ǩ ◦ Ǧ ≈ Ǩ Ǧ − i

2
∇k̄Ǩ ∇RǦ (2.26)

∆̌ ◦ Ǧ ≈ ∆̌Ǧ +
i

2

(

∇R∆̌∇k̄Ǧ −∇k̄∆̌∇RǦ
)

≈ ∆̌Ǧ +
i

2
∇R∆̌∇k̄Ǧ . (2.27)

Here we neglect k̄ dependence of the order parameter. This is because the superconducting gap
can be viewed as nearly flat in k̄ in the vicinity of k̄F (i.e., around the Fermi energy EF) if the
gap size is much smaller than EF. Thus, the Gor’kov equation is obtained as

[

iωnτ̌3 − ξ(k̄)τ̌0 − Ǩ (k̄)− ∆̌(R, k̄, iωn)
]

Ǧ (R, k̄, iωn) +
i

2
v(k̄)τ̌0 ·∇RǦ (R, k̄, iωn)

+
i

2
∇k̄Ǩ (k̄)∇RǦ (R, k̄, iωn)−

i

2
∇R∆̌(R, k̄, iωn)∇k̄Ǧ (R, k̄, iωn) = τ̌0. (2.28)

In the same way, another Gor’kov equation is obtained as

Ǧ (R, k̄, iωn)
[

iωnτ̌3 − ξ(k̄)τ̌0 − Ǩ (k̄)− ∆̌(R, k̄, iωn)
]

− i

2
∇RǦ (R, k̄, iωn) · v(k̄)τ̌0

− i

2
∇RǦ (R, k̄, iωn)∇k̄Ǩ (k̄) +

i

2
∇k̄Ǧ (R, k̄, iωn)∇R∆̌(R, k̄, iωn) = τ̌0. (2.29)

Subtracting Eq. (2.29) from Eq. (2.28), we have

[

iωnτ̌3 − Ǩ (k̄)− ∆̌(R, k̄, iωn), Ǧ (R, k̄, iωn)
]

−
+ iv(k̄)τ̌0 ·∇RǦ (R, k̄, iωn)

+
i

2

[

∇k̄Ǩ (k̄),∇RǦ (R, k̄, iωn)
]

+
−
i

2

[

∇R∆̌(R, k̄, iωn),∇k̄Ǧ (R, k̄, iωn)
]

+
= 0̌. (2.30)

In superconducting states, the energy gap opens in the quasiparticle energy spectrum corre-
sponding to the vicinity of the Fermi surface. If the condition ∆ ≪ EF is satisfied, we can put
the quasiparticle energy ξk̄ = vF(k̄ − k̄F). Then the derivative with respect to k̄ is proportional
to that to ξk̄. Integrating Eq. (2.30) over the quasiparticle energy in the vicinity of the Fermi sur-
face ξk̄, the derivative terms with respect to k̄ vanish from the equation. The Green’s functions
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describe the low lying quasiparticles in the vicinity of the Fermi surface, and their excitation en-
ergy correspond to the poles of the Green’s function. Thus, we define the ξk̄ integrated Green’s
function, namely, the quasiclassical Green’s function as [51]

ǧ(R, ˜̄k, iωn) ≡
∮

dξk̄Ǧ (R, k̄, iωn) (2.31)

≡ −iπ
(

ĝ(R, ˜̄k, iωn) if̂(R, ˜̄k, iωn)

−if̂(R, ˜̄k, iωn) −ˆ̄g(R, ˜̄k, iωn)

)

, (2.32)

where the contour integral takes in the contribution from the poles in the vicinity of the Fermi
surface. Consequently, we obtain the Eilenberger equation

ivF(
˜̄k)τ̌0 ·∇Rǧ(R,

˜̄k, iωn) +
[

iωnτ̌3 − Ǩ (˜̄k)− ∆̌(R, ˜̄k, iωn), ǧ(R,
˜̄k, iωn)

]

−
= 0̌. (2.33)

We have replaced the quasiparticle velocity with the Fermi velocity when introducing the quasi-
classical Green’s function.
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Chapter 3

Field-angle Resolved Flux-flow

Resistivity as a Phase-sensitive

Probe of Unconventional Cooper

Pairing

We theoretically investigate the applied magnetic field-angle dependence of the flux-flow resis-
tivity ρf(αM) for both a uniaxially anisotropic Fermi surface and an in-plane anisotropic one. ρf
is related to the quasiparticle scattering rate inside a vortex core, which reflects the sign change
in the superconducting pair potential. We find that ρf(αM) is sensitive to the sign change in
the pair potential and has its maximum when the magnetic field is parallel to the gap-node
direction. We propose the measurement of the field-angle dependent oscillation of ρf(αM) as a
phase-sensitive field-angle resolved experiment.

3.1 Introduction

It is of great importance to elucidate the symmetry of a superconducting pair potential when
studying the Cooper pairing mechanisms in unconventional superconductors (SCs). The pair po-
tential is composed of spin and orbital wave functions. The orbital wave function is characterized
by its amplitude and phase (sign of the wave function).

In the past decade, experimental techniques for the field-angle resolved specific heat and
thermal conductivity measurements have developed to identify the Cooper pairing symmetry
in various superconducting systems [52, 53]. These angle-resolved measurements are powerful
techniques that can detect the anisotropy of the pair potential amplitude. The theory proposed
by Vorontsov and Vekhter has successfully explained these experiments for CeCoIn5 assuming
d-wave Cooper pairing [54, 55]. However, these field-angle resolved experiments cannot probe
the sign change in the pair potential. That is, they are not phase-sensitive probes. In addition
to detecting the anisotropy of the pair potential, it is crucial to probe the phase of the Cooper
pair in order to discriminate unconventional SCs, including iron-based SCs, from conventional
ones.

Until now, only a few phase-sensitive probes have been developed and succeeded, e.g., the
half-flux quantum observation in the tricrystal geometry by a scanning SQUID (superconducting
quantum interference device) microscope [56], and detecting the quasiparticle interference pat-
tern by scanning tunneling spectroscopy (STS) [57]. Another phase-sensitive probe is measuring
bound states at an interface by point-contact spectroscopy or STS experiments. If both sides of a
SC/SC junction are of the same pair potential amplitude but with opposite signs, the quasiparti-
cle (QP) path through the interface acquires a π phase shift and generating bound states around
the interface. This situation is similar to a vortex line in superconductors. However, there is
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the difficulty of fabricating a junction in terms of nono-structured processing techniques. Actu-
ally, the phase-sensitive test using SC/SC junctions succeeds only for cuprate superconductors
[58, 59]. In addition to these existing experiments, a new phase-sensitive test is highly desired.

In this study, we propose a new experiment that can detect the phase (sign-change) of the
pair potential free from fabricating a SC/SC junction. This is the great advantage of the phase-
sensitive test proposed in the present work. We theoretically study the in-plane field-angle
dependence of the flux-flow resistivity ρf(αM) for typical gap functions and Fermi surface (FS).
From our numerical calculations, we show that the phase-sensitive QP scattering inside a vortex
core leads to different behavior of ρf(αM) between conventional and unconventional Cooper
pairing. In addition, we show that ρf(αM) has its maximum when the applied magnetic field H

is parallel to the gap-node directions. Our results show that the field-angle dependence of the
flux-flow resistivity can detect both the sign change of the pair potential and the direction of the
gap nodes.

3.2 Flux-flow resistivity and quasiparticle scattering rate

The flux-flow resistivity ρf is dominated by the quasiparticle within a vortex core. We assume the
system belongs to the moderately clean regime, in which there are two important contributions
to ρf . One is the QP scattering rate Γ inside a vortex core, and the other is the momentum-
dependent quantum level spacing of the vortex bound states ω0(kF) [60, 61, 62, 63]. Here, the
QP scattering is due to non-magnetic impurities randomly distributed in the system.

We attribute the flux-flow resistivity ρf to the energy dissipation of the vortex bound states
due to the impurity scattering inside a vortex core [27]. ρf is characterized by the two quantities
mentioned above [60, 61, 62, 63],

ρf(T ) ∝
Γn

∆0

[

1

ν0

∫

dSF

|vF(kF)|
ω0(kF)

∆0

Γn

Γ (ε = kBT,kF)

]−1

, (3.1)

where Γn is the impurity scattering rate in the normal state and ∆0 is the bulk amplitude
of the pair potential. We assume that the temperature T dependence of ρf comes predomi-
nantly from Γ with the QP energy ε = kBT . Here, we have made a rough estimate. Actually,
the QPs distributed with the energy width ∆ε ∼ kBT contribute to Γ . The total density of
states on a FS is ν0 =

∫

dSF/|vF(kF)|, with dSF = |kF(φk, θk)|2 sin θkdφkdθk being an area
element on the FS, the Fermi velocity vF(kF) = ∇kǫ(k)|k=kF

, and the Fermi wave vector
kF = |kF(φk, θk)|(ā cosφk sin θk + b̄ sinφk sin θk + c̄ cos θk). ǫ(k) is the energy dispersion of elec-
trons. φk (θk) is the azimuthal (polar) angle on the FS. ā, b̄, and c̄ denote orthogonal unit
vectors spanning crystal coordinates. We use the unit system in which ~ = 1.

The momentum-dependent inter-level spacing of the vortex bound states ω0(kF) is obtained
analytically as [64, 65, 66, 67] ω0(kF) = 2|d(kF)|2∆2

0/[|kF⊥||vF⊥(kF)|] using the quasiclassical
Green’s function method and the Kramer-Pesch approximation [68, 10, 69]. d(kF) indicates the
anisotropy of pair potential and the vector with ⊥ denotes the vector component projected onto
the plane perpendicular to H . We treat the non-magnetic impurity scattering by means of the
Born approximation [27, 70, 71, 72]. The quasiparticle scattering rate for the QPs with the
energy ε inside a vortex core is obtained as [69, 73]

Γ (ε)

Γn
=

〈〈

Γ (kF,k
′
F, ε)

Γn

〉

FS′

〉

FS

, (3.2)

Γ (kF,k
′
F, ε)

Γn
=
π

2
C(kF,k

′
F)D(kF,k

′
F)F (ε,kF,k

′
F), (3.3)

C(kF,k
′
F) = 1− sgn[d(kF)d(k

′
F)] cosΘ, (3.4)

D(kF,k
′
F) =

1

| sinΘ| , (3.5)

F (ε,kF,k
′
F) =

|vF⊥(k
′
F)|

|vF⊥(kF)|
|d(kF)|
|d(k′

F)|
e−u(s0,kF)e−u(s′0,k

′

F). (3.6)
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Figure 3.1: The schematic figures of (a) the forward scattering and (b) the backward scattering
in the vicinity of a vortex. s and s′ indicate the QP trajectory before and after scattering, respec-
tively. Reprinted figure with permission from [Yoichi Higashi, Yuki Nagai, Masahiko Machida,
and Nobuhiko Hayashi, Physical Review B 88, 224511 (2013)] Copyright (2013) by the American
Physical Society.

Here, 〈· · · 〉FS ≡ (1/ν0)
∫

dSF · · · /|vF(kF)|, Θ(kF,k
′
F) ≡ θv(kF)− θv′(k′

F) for the scattering angle

[see Fig. 3.1]. Γ has the decay factor exp[−u(s0,kF)] with u(s0,kF) = [2|d(kF)|/|vF⊥(kF)|]
∫ |s0|

0
ds′∆̃(s′).

We adopt ∆̃(s′) = ∆0 tanh(s
′/ξ0) as the spatial variation of the pair potential. The coherence

length is defined by ξ0 = vF⊥/(π∆0) with vF⊥ ≡ 〈|vF⊥(kF)|〉FS. Here, we define the field-angular
dependent effective coherence length for the later discussions as

ξeff(kF) = |vF⊥(kF)|/[∆0|d(kF)|]. (3.7)

This length scale ξeff(kF) characterizes the size of the bound states of the QP with the momentum
kF. Figure 3.1 shows the QP trajectories on the plane perpendicular to the magnetic field H .
The quantities with a prime are those after scattering. s0 and |s′0| denote the length between the
point that is the nearest from the vortex center on the QP trajectory and the scattering point
[69, 73].

3.3 System

In this study, we consider the case in which H is applied parallel to the a-b plane and rotated.
The field angle measured from a axis is αM. Here, a, b, and c are crystal axes. When calculating
the dependence of ρf on the magnetic field angle αM, we need a coordinate system fixed to H

which is spanned by āM, b̄M, and c̄M (vortex coordinate system). Here, these axes are orthogonal
unit vectors with c̄M set parallel to H (c̄M ‖ H). vF⊥, θv, and those with a prime are defined
in the vortex coordinates. However, kF and k′

F are identified by (φk, θk) on a FS in the crystal
coordinates spanned by ā, b̄ and c̄, which characterize the crystal axes. In order to calculate the
field-angle αM dependence of ρf , we need to derive the relation between vF⊥, θv, and vF, θk [73].
Then, the component of vF(kF) projected onto the plane perpendicular to H is finally obtained
as

|vF⊥(φk, θk)| = |vF(φk, θk)|Ω(φk, θk), (3.8)

Ω(φk, θk) =

√

cos2 θk + sin2(φk − αM) sin2 θk, (3.9)

cos θv(φk, θk) =
−|vF(φk, θk)|
|vF⊥(φk, θk)|

cos θk, (3.10)

sin θv(φk, θk) =
|vF(φk, θk)|
|vF⊥(φk, θk)|

sin(φk − αM) sin θk. (3.11)
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Figure 3.2: Field-angle (αM) dependence of the flux-flow resistivity ρf in the case of (a) line-
node s-wave and (b) d-wave pair for a spheroidal FS (γ = 3). Each curve indicates different
temperature. The vertical axis is normalized by the minimum value of ρf min for each plot.
Reprinted figure with permission from [Yoichi Higashi, Yuki Nagai, Masahiko Machida, and
Nobuhiko Hayashi, Physical Review B 88, 224511 (2013)] Copyright (2013) by the American
Physical Society.

Thus, the relation between the vortex coordinate and the crystal coordinate is derived. Here we
give the expression of the projected Fermi velocity for an arbitrary anisotropic FS (see Ref. [74]
for the expression for a uniaxially anisotropic FS). We have now reached the position where we
can perform the numerical integration on FS and calculate the field-angle dependence of Eq.
(3.1).

We consider the following two types of the simple pair potential model. One is a line-node
s-wave pair: d(kF) = | cos 2φk| sin2 θk. The other is a dx2−y2-wave one: d(kF) = cos 2φk sin

2 θk.
Each one has gap nodes from the north pole of the FS to the south one in the φk = (1 +
2n)π/4 [rad] directions (gap-node directions) with n = 0, 1, 2, 3. φk = nπ/2 [rad] directions
correspond to anti-node directions. In the momentum space, these two pair potentials have the
same anisotropy in their amplitude |d(kF)|. However, only the d-wave pair has the sign change
and the s-wave pair does not.

Our calculations are performed for a uniaxially anisotropic FS with the mass anisotropy
parameter γ =

√

mc/mab [74]. mc and mab are masses characterizing charge transport along
the c-axis and within the a− b plane, respectively.

3.4 Results

3.4.1 Field-angular dependence of flux-flow resistivity

We show numerical results for a uniaxially anisotropic FS with γ = 3. In Fig. 3.2, we show
the field-angle dependence of the flux-flow resistivity ρf(αM) for the two pair potential models.
As shown in Fig. 3.2(a), in the case of the line-node s-wave pair, a broad maximum appears
when H is applied parallel to the gap-node direction (αM = π/4). Note that the field-angle
dependence of the QP scattering rate Γ (αM) has its minimum when H is parallel to the node
direction.[73, 74] The oscillation amplitude of ρf(αM) remains small compared with the d-wave
case when the temperature T is increased. ρf(αM) has little dependence on T in the case of the
line-node s-wave pair.

On the other hand, in the d-wave case [Fig. 3.2(b)], a sharp maximum appears when H is
applied to the gap-node direction. The oscillation amplitude grows with increasing T in contrast
to the line-node s-wave pair. This behavior indicates that the peak of ρf(αM) has a strong
temperature dependence in the d-wave case.

The field-angle dependence of ρf is quite contrasting between the line-node s-wave pair and
the d-wave one. One would question what the reason for this prominent difference is. We consider
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Figure 3.3: kF dependence of Γ in the case of (a) the line-node s-wave pair when H || the
gap-node direction, (b) d-wave pair when H || the gap-node direction, (c) the line-node s-wave
pair when H || the anti-node direction and (d) d-wave pair when H || the anti-node direction
on a spheroidal FS (γ = 3). The quasiparticle energy ε is set to 0.2∆0 in each plot. The
vertical and horizontal axes denote the polar angle θk and the azimuthal angle φk respectively.
The dotted lines indicate the anti-node directions. The field directions are indicated by arrows.
Reprinted figure with permission from [Yoichi Higashi, Yuki Nagai, Masahiko Machida, and
Nobuhiko Hayashi, Physical Review B 88, 224511 (2013)] Copyright (2013) by the American
Physical Society.

that this difference comes from whether there is a sign change in the pair potential or not.

3.4.2 Quasiparticle scattering on the Fermi surface

First, we list the characteristics of the kF dependence of the QP scattering rate Γ (kF)/Γn.
Γ (kF)/Γn is obtained by integrating Eq. (3.3) with respect to k′

F. Next, we explain the behavior
of Γ (αM).

To clarify why ρf(αM) behaves contrastingly between the two pair potential models, we
investigate the kF dependence of Γ first. Γ (kF)/Γn indicates which QPs are easy to be scattered
on the FS. We find the following characteristics of the QP scattering: (i) The QPs in the vicinity of
the anti-node direction predominantly contribute to Γ , as seen in Figs. 3.3(a)–3.3(d). Γ (kF)/Γn

has a higher value around anti-node directions (see around the dotted lines). We describe the
physical picture for this characteristics as follows. The QPs flowing in the direction of the gap
nodes feel the small amplitude of the pair potential [i.e., small ∆0|d(kF)|] even in the bulk. Then,
ξeff(kF) = |vF⊥|/[∆0|d(kF)|] becomes large. Thus a vortex core spreads out effectively because
of the large effective coherence length ξeff , and the QP wave function extends outside a vortex
core. The wave function is damped exponentially by a factor exp[−u(s0,kF)] and Γ for the
QPs in the node directions becomes small [see Eq. (3.6)]. On the other hand, the QPs flowing
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Table 3.1: The QP scattering types. Reprinted figure with permission from [Yoichi Higashi,
Yuki Nagai, Masahiko Machida, and Nobuhiko Hayashi, Physical Review B 88, 224511 (2013)]
Copyright (2013) by the American Physical Society.

Forward scattering Backward scattering
Θ(kF,k

′
F) = 0 Θ(kF,k

′
F) = π

sign-conserved suppressed small
sign-reversed enhanced suppressed

in the direction of the anti-nodes feel the full amplitude of the pair potential (∆0). Then, a
vortex core gets small effectively because ξeff becomes small. Hence, the QP wave function is
strongly localized inside a vortex core and scattered inside it, giving a large contribution to Γ .
(ii) There is the tendency that the QPs in the direction of H are easy to be scattered. As seen
in Figs. 3.3(a) and 3.3(b), this property of the QP scattering is confirmed by the fact that the
weight of Γ shifts a bit toward the field direction. The tendency is obvious in Figs. 3.3(c) and
3.3(d). The reason why the QPs have above tendency is because |vF⊥(kF)| of the QPs in the field
direction is small and the contribution to Γ becomes large [see Eq. (3.6) and Fig. 3.5]. (iii) The
other contribution to Γ is expressed by the coherence factor C(kF,k

′
F) [69], which reflects the

sign of the pair potential in Eq. (3.4). This characteristic is discussed in detail in Ref. [69]. Here
we summarize their results (i.e., the dependence of Γ on the QP scattering types) in Table 3.1.

3.5 Field-angular dependence of quasiparticle scattering

rate

First of all, we consider Γ , which is a part of the contribution to ρf as shown in Eq.(3.1). In the
case of the line-node s-wave pair, taking into account the characteristics of the QP scattering (i)
– (iii), we can explain qualitatively the behavior of Γ (αM). In the line-node s-wave pair, Γ (αM)
has its minimum when H is applied to the gap-node direction [73, 74]. In this case, according
to the factor (iii), the effect of the coherence factor on Γ (kF)/Γn is small. In addition, in the
line-node s-wave pair, we confirmed that the coherence factor has no field-angle dependence.
Hence, we can neglect the factor (iii) in the line-node s-wave pair.

When H is parallel to the gap-node direction, the weight of Γ (kF)/Γn shifts toward the field
direction (i.e., the gap-node direction) due to the factor (ii). Therefore, the QPs around the gap
node become easier to be scattered. However, according to the factor (i), the contribution of
the QPs in the vicinity of the gap nodes to Γ (kF)/Γn is small. Hence, the large contribution to
Γ (kF)/Γn due to the factor (ii) gets small due to the factor (i).

On the other hand, when H is parallel to the anti-node direction, the QPs in the direction
of H (i.e., the anti-node direction), which have small vF⊥(kF), can give a large contribution to
Γ (kF)/Γn due to the factor (ii). In this case, contrary to the case of H parallel to the node
direction, Γ remains large due to the factor (i). As a result of the above consideration, the
minimum of Γ (αM) appears when H is parallel to the gap-node direction.

In the case of the d-wave pair, the backward scattering is suppressed (see Table 3.1) since the
coherence factor becomes zero and the scattering point is far from the vortex core. However, the
forward scattering with the sign change of pair potential is enhanced (see Table 3.1). So the coher-
ence factor gives the large contribution to Γ (kF)/Γn. In Fig. 3.4, we show the field-angle depen-
dences of 〈〈C(kF,k

′
F)D(kF,k

′
F)〉FS′〉FS, which is the part of Γ (ε)/Γn containing the coherence fac-

tor C(kF,k
′
F). We also calculate the field-angle dependences of 〈〈F (ε,kF,k

′
F)〉FS′〉FS, which does

not contain the coherence factor. WhenH is parallel to the node direction, 〈〈C(kF,k
′
F)D(kF,k

′
F)〉FS′〉FS

shows a sharp maximum. On the other hand, 〈〈F (ε,kF,k
′
F)〉FS′〉FS shows little field-angle de-

pendence. This sharp maximum reproduces the behavior of Γ (αM) in the d-wave case [73, 74].
Let us explain the physical picture of the QP scattering rate in the d-wave case. First of all,

we should note that the intensity of the forward scattering is the important factor of the QP
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Figure 3.4: Field-angle (αM) dependences of the part of Γ containing the coherence factor and
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by the minimum value. Reprinted figure with permission from [Yoichi Higashi, Yuki Nagai,
Masahiko Machida, and Nobuhiko Hayashi, Physical Review B 88, 224511 (2013)] Copyright
(2013) by the American Physical Society.

scattering around a vortex, since the forward scatterings occur when the scattering point is near
the vortex center (i.e., the QP scattering occurs inside a vortex core), as shown in Fig. 3.1. Thus,
we consider the field-angle dependence of the intensity of the forward scattering. We note that
the intensity of the forward scattering becomes larger upon decreasing the effective coherence
length ξeff(kF). The effective coherence length ξeff(kF) defined by Eq. (3.7) is proportional to
the projected Fermi velocity vF⊥(kF) and is inversely proportional to the amplitude of a pair
potential ∆0|d(kF)|. The minimum effective coherence length is zero when the Fermi velocity
vF(kF) is parallel to H [i.e., vF⊥(kF) becomes zero]. As shown in Fig. 3.3, the intensity of Γ (kF)
becomes large in the region where vF⊥(kF) becomes small. This is the reason for the factor (ii).

The most important factor of the intensity of the forward scattering is the factor (iii). As
shown in Table 3.1, the sign-conserved forward scattering is suppressed even when the effective
coherence length becomes small. Therefore, the sign-reversed forward scatterings with the small
effective coherence length dominantly contribute to the QP scattering rate in the d-wave case.
When H is parallel to the gap-node direction, we have confirmed numerically that the forward
scattering is realized by calculating the contribution of anti-nodal QPs to Γ (ε,k′

F, αM = π/4).
As shown in Fig. 3.5, the forward scattering occurs through the QP scattering in the parallel
direction ofH whenH is parallel to the gap-node direction. Moreover, this QP scattering process
is sign-reversing, since the quasiparticles with vF are scattered across the gap-node perpendicular
to H . Hence, the sign-reversed forward scattering occurs when H is parallel to the gap-node
direction even in a single-band superconductor.

On the other hand, when H is parallel to the anti-node direction, it was revealed through the
same analysis that although the sign-reversed scattering occurs, not only the forward scattering
but also the backward scattering occurs. As a result of the above discussion, the quasiparticle
scattering rate is enhanced when H is parallel to the gap-node direction in the d-wave case.

3.6 Field-angular dependence of flux-flow resistivity

The other contribution to ρf is ω0(kF). When Γ (ε,kF) = const., the field angle dependence of
ω0(kF) for a spheroidal FS is not qualitatively different from that for an isotropic FS [64]. When
ω0(kF) = const., ρf(T ) ∝ Γ (ε = kBT ). In the d-wave case, the dependence of ω0(kF) on the
field-angle makes the behavior of Γ (αM) stand out. As a result, ρf(αM) has a sharp maximum
when H is parallel to the gap-node direction. On the other hand, in the s-wave case, the field
angle dependence of ω0(kF) makes the oscillation amplitude of Γ (αM) inverted and ρf(αM) has
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Figure 3.5: Schematic figure of the forward QP scattering, which is characterized by the angle
between the projections of the Fermi velocities onto the plane perpendicular to an in-plane
magnetic field H . Reprinted figure with permission from [Yoichi Higashi, Yuki Nagai, Masahiko
Machida, and Nobuhiko Hayashi, Physical Review B 88, 224511 (2013)] Copyright (2013) by the
American Physical Society.

its broad maximum when H is parallel to the gap-node direction.

3.7 Effect of anisotropic Fermi surface on the flux-flow re-

sistivity

In this subsection, we investigate effects of in-plane FS anisotropy on the field-angle dependence
of flux-flow resistivity ρf(αM). Most materials have the anisotropy in their FS reflecting the
anisotropy of crystal structures. Thus, it is more realistic to investigate ρf(αM) in the case of
anisotropic FS. We consider two model FSs with in-plane anisotropy and numerically calculate
ρf(αM) for those FSs with changing the anisotropy of FS. Our numerical results show that one
can detect the gap-node direction by measuring ρf under rotating magnetic field even if the FS
has an anisotropy.

We consider two model FSs I, II with in-plane anisotropy depicted in Fig. 3.6. The model FS
I is characterized by the energy dispersion ǫI(k) = −µI−2t {cos(kxa) + cos(kya)}+k2z/(2m) [see
Fig. 3.6(a)], where t and a are the hopping integral and the lattice constant, respectively. µI is the
chemical potential. The dispersion in the kx-ky plane is given by the the tight-binding (TB) model
and that in the kz direction is free electron model. As characteristics of the TB model, there
are Van Hove singularities in the direction of (π, 0) and (0, π), at which |∇kǫ(k)| = 0 [75, 76].
In addition to this point, the anisotropy of the FS grows larger gradually with increasing the
chemical potential below the half filling. The model FS II is given by the anisotropic dispersion
ǫII(k) = −µII + 1/(2m)

{

k2x + k2y + a2(k4x + k4y)/2 + 3a2k2xk
2
y + k2z

}

[77, 78] [see Fig. 3.6(b)]. m
is the mass of charge. In numerical calculation, we set the parameter mta2 = 1.

For an isotropic FS, the position on the FS is identified by the azimuthal and the polar
angle (φk, θk). However, in anisotropic FSs, it is identified by φk, θk and the Fermi radius
|kF(φk, θk)|. We can parametrize the Fermi wave numbers in spherical coordinates: kFx =
|kF(φk, θk)| cosφk sin θk, kFy = |kF(φk, θk)| sinφk sin θk, kFz = |kF(φk, θk)| cos θk. Substituting
these Fermi wave numbers into the above two dispersions ǫI(k) and ǫII(k), and using a bisection
method, we can determine numerically |kF(φk, θk)| such that ǫ(k) = 0 (see Fig. 3.6).

For FS I, the absolute value of the Fermi velocity is

|vF(φk, θk)| = 2ta

√

sin2(kFxa) + sin2(kFya) +
1

4(mta2)2
(kFza)2 (3.12)

23



0kx π/a

0 ky
-π/a

0

π/a

kz

-π/a

(a)

kx π a

0 ky
-π a

0

π a

kz

-π/a

(b)

Figure 3.6: Anisotropic Fermi surfaces characterized by the energy dispersion ǫI(k) (a) and ǫII(k)
(b). The contour plots projected on to the kx-ky plane indicate the Fermi surfaces at kz = 0,
which correspond to µI = −0.01t,−0.5t and −1.5t from the outside to the inside (a) and µII = 9t
(b).

and for FS II,

|vF(φk, θk)| =
1

m

√

k2Fx

(

1 + a2k2Fx + 3a2k2Fy

)2

+ k2Fy

(

1 + a2k2Fy + 3a2k2Fx

)2

+ k2Fz. (3.13)

When integrating Eq. (3.1) numerically, we need a relation between vF⊥(φk, θk) and vF(φk, θk)
[73]. The component of vF(φk, θk) projected onto the plane perpendicular to H is given by the
same formulae as Eq. (3.8)-(3.11),

|vF⊥(φk, θk)| = |vF(φk, θk)|
√

cos2 θk + sin2 θk sin
2(φk − αM), (3.14)

cos θv(kF) = − |vF(φk, θk)|
|vF⊥(φk, θk)|

cos θk, (3.15)

sin θv(kF) =
|vF(φk, θk)|
|vF⊥(φk, θk)|

sin θk sin(φk − αM), (3.16)

where θv(kF) is the angle of the QP trajectory measured from the aM-axis. The aM - bM plane is
perpendicular to H (cM || H). αM is the magnetic field angle measured from the (π, 0) direction.

In order to investigate the relation between the anisotropy of the pair potential and that
of the FSs, we consider the following four model pair potentials: (i) Line-node s|x2−y2|-wave:

d(kF) = | cos(2φk) sin2 θk|, (ii) Line-node s|xy|-wave: d(kF) = | sin(2φk) sin2 θk|, (iii) dx2−y2-

wave: d(kF) = cos(2φk) sin
2 θk, and (iv) dxy-wave: d(kF) = sin(2φk) sin

2 θk. While s|x2−y2|

(s|xy|)-wave and dx2−y2 (dxy)-wave pair potentials have the same anisotropy, only dx2−y2 (dxy)-
wave one has the sign change. s|x2−y2| (dx2−y2)-wave pair potential coincides with s|xy| (dxy)-
wave one when the pair potential is rotated by π/4 [rad].

In Figs. 3.7 and 3.8, we show the numerical results of the field-angle αM dependence of the
flux-flow resistivity ρf for the model FS I and II. The inset shows the schematic figure of the
pair potential on the anisotropic FS. We fix the temperature in this calculation at T = 0.35Tc.
Each plot corresponds to different chemical potential. For the energy dispersion II, the chemical
potential µII is fixed to µII = 9t.

In Figs. 3.7(a) and 3.7(b), we can see that ρf has the maximum value when H is applied
parallel to the gap-node direction. This behavior in the s|x2−y2|-wave pair is consistent with the
result for both an isotropic [64] and an uniaxially anisotropic FS (Fig. 3.2). The same behavior
is seen also for the dx2−y2 and the dxy-wave pair [see Fig. 3.8(a) and 3.8(b)]. However, the
oscillation amplitude of ρf(αM) for the dx2−y2 and the dxy-wave pair becomes larger than that
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Figure 3.7: The field angle αM dependence of the flux-flow resistivity ρf in the case of the
(a) line-node s|x2−y2|-wave pair and the (b) line-node s|xy|-wave one. The temperature is set
to T = 0.35Tc. Each curve is plotted for the different chemical potential. For FS II, the
chemical potential is set to µII = 9t. The vertical axis is normalized by (a) minimum value
and (b) maximum value for each curve. Reprinted figure with permission from [Yoichi Higashi,
Yuki Nagai, Masahiko Machida, and Nobuhiko Hayashi, Physics Procedia 45, 137-140 (2013)]
Copyright (2013) by Elsevier.

for the s|x2−y2| and the s|xy|-wave one. In addition, for the dx2−y2-wave pair, a rather sharper
peak appears when H || π/4. These characteristics originate from the sign-change in the pair
potential because its amplitude is the same between the s|x2−y2| and the dx2−y2 (or the s|xy| and
the dxy)-wave pair.

We notice that the curve of ρf(αM) for FS I approaches the curve for FS II with decreasing the
FS anisotropy (µI = −0.01t→ −1.5t) in Figs. 3.7 and 3.8. The anisotropy of FS II with µII = 9t
is almost the same as that of FS I with µI = −1.5t. The cusp-like sharp peak appearing in an
isotropic FS for the dx2−y2 -wave pair [64] is not observed in the case of these in-plane anisotropic
FSs. For any pairing states, when H || gap node, the peak becomes sharp with increasing the
anisotropy of the FS. We consider that this behavior comes from the anisotropy of the FS. The
important point is that one can detect the gap-node direction from the field-angle dependence of
the flux-flow resistivity even if there is an anisotropy of a FS. That is, a peak of ρf(αM) appears
in the gap-node direction irrespective of a FS anisotropy.

3.8 Discussions

Finally, we comment on the experimental condition for measuring the flux-flow resistivity under
a rotating magnetic field. Our theory is based on the vortex bound states formed inside a vortex
core. Therefore, an extremely two-dimensional system, in which a Josephson vortex is formed
parallel to the layer, is beyond our theoretical framework. However, we should note that our
method can be applied to iron-pnictides, which have a warped cylindrical Fermi surface such as
that found in 11-compounds (FeSe or FeTe) and 122-compounds [BaFe2(As1−xPx)2], since the
angular-resolved specific heat and thermal conductivity measurements have successfully detected
the gap minima in FeSe0.45Te0.55 [79] and the position of the gap-nodes in BaFe2(As0.67P0.33)2
[80], respectively, under a rotated magnetic field within the basal plane. In layered organic
compounds κ-(ET)2Cu(NCS)2, in-plane field angular dependence of the Josephson-vortex flow
resistance has already been measured by Yasuzuka et al. [22, 23], but in a three-dimensional
system, measurement of the flux-flow resistivity has not been performed yet. An anisotropic FS
might affect the ρf(αM). However, as shown in Ref. [81] (Section 3.7), the behavior of ρf(αM) in
the case of the in-plane anisotropic FS is not qualitatively different from that in the isotropic FS
case within the range of our model calculations. When considering multiband superconductors
such as iron-based superconductors, we need to take into account the contribution from holelike
FS to the flux-flow resistivity in addition to that from electronlike FS [60]. In this study, we con-
sider the contribution only from electronlike FS. The multiband effect on the flux-flow resistivity
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is left for future study.

3.9 Conclusion

In conclusion, we theoretically studied the in-plane magnetic field-angle dependence of the flux-
flow resistivity for both a uniaxially anisotropic FS and an in-plane anisotropic one. We showed
that the measurement of the flux-flow resistivity changing the field direction within the a-b plane
can detect both the position of the gap nodes and the sign change of the pairing potential. One
can estimate the flux-flow resistivity by means of microwaves. Instead of fabricating a junction,
one can obtain the information on the phase of the pair potential by measuring the microwave
surface impedance under a rotating magnetic field.
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Chapter 4

Impurity Effect on the Local

Density of States around a Vortex

in Noncentrosymmetric

Superconductors

We numerically study the effect of non-magnetic impurities on the vortex bound states in non-
centrosymmetric systems. The local density of states (LDOS) around a vortex is calculated
by means of the quasiclassical Green’s function method. We find that the zero energy peak of
the LDOS splits off with increasing the impurity scattering rate in the non-self-consistent Born
approximation. We also demonstrate that the mixing of the p-wave component of the order
parameter causes the impurity effect different from that in the bulk, in which the impurity effect
on the LDOS dependes on the spin-orbit coupling due to the interband scattering.

4.1 Introduction

Much attention has been focused on the superconductivity in noncentrosymmetric systems be-
cause of its novel superconductivity due to spin-orbit coupling (SOC). Recently, active inves-
tigations have been conducted on the inhomogeneous superconducting state in noncentrosym-
metric systems such as the helical phase in a magnetic field [45, 82, 83, 84], the vortex state
[85, 10, 86, 30], and the exotic superconducting state in locally noncentrosymmetric systems
[87, 42, 43].

In this study, we investigate the non-magnetic impurity scattering effect on the local density
of states (LDOS) around a single vortex. Impurity effects on the vortex core structure in non-
centrosymmetric systems can differ from the simple two-gap systems because there is SOC in
this system. So unusual phenomena are expected in the LDOS inside a vortex core. There are
several previous studies for the impurity effect on the noncentrosymmetric superconductivity in
the bulk without vortices [28, 34, 32, 31, 33]. However, there is no research on the impurity effect
in spatially inhomogeneous situations such as vortex state in noncentrosymmetric systems.

Through our formulation using the quasiclassical Green’s function method, it turned out
that the form of the impurity self-energy around a vortex is quite different from that in the
bulk. This comes from the effect of the superflow on the impurity self-energy. In addition, the
Green’s function cannot be separated with respect to each Fermi surface (FS) split due to the
Rashba-type SOC in the presence of both impurities and vortices. This fact might also influence
the impurity effect on the vortex core structure.

In this study, we numerically investigated the effect of non-magnetic impurities on the LDOS
around a vortex. We found that the zero-energy peak (ZEP) of the LDOS splits off with increasing
the impurity scattering rate. We give the rough physical interpretation for the numerical results.
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4.2 Formulation

The noncentrosymmetricity of the system induces the anitisymmetric SOC and permits the
mixing of the Cooper pair wave function with different parity. We assume the Rashba-type
SOC, which is described as gk =

√

3/2(−ky, kx, 0)/kF by the orbital vector gk. kF is the Fermi
wave number. We consider a single vortex line along the z axis situated at the origin (r = 0).
We assume that the FS is spherical. The lack of spatial inversion symmetry of the system is
detrimental to spin-triplet state [20]. However, the spin-triplet state is not suppressed under the
particular situation in which dk || gk [17]. Then we consider the parity mixing of the Cooper
pair.

The parity-mixed pairing state is expressed as ∆̂(r, k̃) = [Ψ(r)σ̂0 + dk(r) · σ̂] iσ̂y = [Ψσ̂0 +

∆(−k̃y σ̂x + k̃xσ̂y)]f(r) exp[iφr]iσ̂y, where the spin-singlet s-wave component Ψ(r), the d vector

dk = ∆(r)(−k̃y, k̃x, 0) with the unit vector k̃ = (k̃x, k̃y, k̃z) = (cosφk sin θk, sinφk sin θk, cos θk),
Ψ(∆) is the bulk amplitude of the pair potential for singlet (triplet) component, σ̂ = (σ̂x, σ̂y, σ̂z)
is the vector consisting of the Pauli spin matrices and σ̂0 is the unit matrix in the spin space.
We assume that the both components of the pair potential have the same real space profile
around a vortex and set f(r) = r/

√

r2 + ξ20 . Here, ξ0 = vF/Tc is the coherence length, Tc is the
superconducting critical temperature, vF(= |vF|) is the Fermi velocity. In this study, we does
not solve the gap equations for the pair potentials Ψ(r) and ∆(r) self-consistently. We conduct
the numerical calculation for zero temperature and take into account the effect of temperature
through the energy smearing factor η.

In order to obtain the LDOS and the impurity self-energy, we consider the following quasi-
classical Green’s function, which is defined in the particle-hole space.

ǧ(r, k̃, iωn) = −iπ
(

ĝ if̂

−i ˆ̄f −ˆ̄g

)

. (4.1)

Here, ωn is the Matsubara frequency. ·̂ denotes the 2× 2 matrix in the spin space and ·̌ denotes
the 4 × 4 matrix in the particle-hole and spin space. The Eilenberger equation with the SOC
term and impurity self-energy is given as [49, 88, 89, 90, 91]

ivF(k̃) ·∇ǧ(r, k̃, iωn) +
[

iωnτ̌3 − ∆̌− Σ̌ − αǧk · Š, ǧ(r, k̃, iωn)
]

= 0̌, (4.2)

where

τ̌3 =

(

σ̂0 0̂

0̂ −σ̂0

)

, Š =

(

σ̂ 0̂

0̂ σ̂tr

)

, σ̂tr = −σ̂yσ̂σ̂y , (4.3)

ǧk =

(

gkσ̂0 0̂

0̂ g−kσ̂0

)

, ∆̌ =

(

0̂ ∆̂(r, k̃)

−∆̂†(r, k̃) 0̂

)

. (4.4)

Here, α is the strength of the SOC. gk =
√

3/2(−k̃y, k̃x, 0), which is odd in k (i.e., g−k =
−gk). We use the units in which ~ = kB = 1. The quasiclassical Green’s function satisfies the
normalization condition ǧ2 = −π2τ̌0 with the 4 × 4 unit matrix τ̌0. The bracket [· · · , · · · ] is a
commutator.

The Eilenberger equation is separated into two equations without spin degree of freedom
using the band basis both in the clean vortex state [30] and in the bulk clean system [29, 92].
The normal-state Hamiltonian in the clean limit, which is a 2 × 2 matrix in the spin space,
becomes diagonal in the band basis. The off-diagonal components of the quasiclassical Green’s
function decay to zero around a vortex and the quasiclassical Green’s function in the band basis
becomes diagonal in the spin space (see the appendix of Ref. [29]). Each diagonal component
obeys the Eilenberger equation, which is defined on the two FSs split due to the SOC. Then, we
can solve the Eilenberger equation without the SOC term with respect to each FS in the clean
limit. This situation is not changed in the presence of impurities in the bulk.

However, the quasiclassical Green’s function is not diagonal in the band basis in the presence
of both impurities and vortices. Therefore the Eilenberger equation is not separated into two
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equations with respect to each FS. Thus, we use the orbital basis, in which the spin quantization
axis is oriented parallel to the z axis. Under this basis, we transform Eq. (4.2) into the two matrix
Riccati type differential equations, which is the first-order differential equations (see Appendix
C). Then we obtain the stable numerical solution solving the Eq. (C.9) and (C.10) by means of
the adaptive stepsize control Runge-Kutta method [93].

In this study, we investigate the s-wave non-magnetic impurity scattering in the Born limit
(We set the scattering phase shift exactly zero). In this limit, the impurity self-energy is given
as [27, 72]

Σ̌(r, E) =
Γn

π

〈

ǧ(r, k̃, iωn → E + iη)
〉

k̃
, (4.5)

= Γn

(

−i〈ĝ〉
k̃

〈f̂〉
k̃

−〈 ˆ̄f〉
k̃

i〈ˆ̄g〉
k̃

)

, (4.6)

where Γn is the impurity scattering rate in the normal state, 〈· · · 〉
k̃
denotes the average over

the FS and Σ̌ ≡ {Σ̂ij}i,j=1,2. Now we consider the system with the rotational symmetry about
a vortex line. In the clean limit, the parity mixing pair potential has a form ∆I,II(r, φr ; θk) =
[Ψ(r) ±∆(r) sin θk] exp [iφr] around a vortex using the band basis [30]. These forms of the pair
potentials have the θk dependence only. We assume that the pairing state does not change
with non-magnetic impurities. Under an axial rotation about a vortex line, the pair potential
has the azimuthal angle dependence in the form of the phase factor in the real space. From
Eq. (C.9) and (C.10), we can see that the anomalous self-energies Σ̂12,21 have the same phase

factor as the pair potentials, whereas the normal self-energies Σ̂11,22 are invariant under the

axial rotation. Thus the anomalous self-energies Σ̂12,21 have the following φr dependence [72]:

Σ̂12,21(r, φr , E) = Σ̂12,21(r, E) exp[±iφr]. The plus (minus) sign corresponds to Σ̂12(Σ̂21). In the
actual numerical calculation, the self-energies are discretely calculated in a radial r direction.
Thus they are linearly-interpolated in this direction. As for the direction of an azimuthal angle,
the self-energies have the continuous φr dependence.

The LDOS per spin is obtained from

N(r, E) = −NF

2

1

π

〈

Im
[

Tr ĝ(r, k̃, iωn → E + iη)
]〉

k̃
, (4.7)

where NF is the density of states per spin at the Fermi level in the normal state.

4.3 Results

Throughout this section, we set α′/Tc = 1 with α′ =
√

3/2α. We call the Born approximation
using the quasiclassical Green’s function in the clean limit the bare Born approximation. Besides,
we call the Born approximation in which the spatial profiles of the self-energies are determined
self-consistetly the self-consistent Born approximation in this study.

4.3.1 Bare Born approximation with equal point spacing

We show in Fig. 4.1(a) the energy dependence of the LDOS at the vortex center for several values
of the impurity scattering rate Γn for the s-wave case (Ψ/Tc = 1, ∆/Tc = 0). Γn/Tc is roughly
estimated of the order of ξ0/l. l is the mean free path. In the clean limit (Γn/Tc = 0), the peak
of the LDOS is seen at the zero energy. In the presence of impurities, the ZEP splits into two
peaks. We confirmed that the split of the ZEP does not occur for α′/Tc = 0. The splitting width
becomes larger and the peak height decreases with increasing the impurity scattering rate Γn.
For Γn = 0.7Tc, the value of the zero energy LDOS at the vortex center equals to the normal
state density of states NF. In Fig. 4.1(b), we show the energy and the spatial profile of the LDOS
inside a vortex core for Γn = 0.3Tc. We see clearly that the ZEP of the LDOS splits off at the
vortex center. Far from the vortex center, the zero energy density of states decays to zero and
the fully opened superconducting energy gap appears in the bulk, which is understood from the
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Figure 4.1: s-wave case. The energy smearing factor η is set to 0.05Tc. (a) The energy de-
pendence of the local density of states at the vortex center for several values of the impurity
scattering rate Γn. (b) The local density of states within a vortex core for Γn = 0.3Tc. Reprinted
figure with permission from [Yoichi Higashi, Yuki Nagai, and Nobuhiko Hayashi, JPS Conference
Proceedings 3, 015003 (2014)] Copyright (2014) by the Physical Society of Japan.

Anderson’s theorem for non-magnetic impurities [19, 94]. We can see that the ridge lines of the
vortex bound states approach the gap edges of the s-wave component E/Tc = Ψ/Tc = ±1.

As shown in Fig. 4.2(a), the ZEP splits off also in the case of the s+ p-wave (Ψ/Tc : ∆/Tc =
0.7 : 1.4). The ridge lines related to the vortex bound states of the quasiparticles on the split
FS are broaden due to impurity scattering [see Fig. 4.2(b)]. We cannot observe the two-gap like
quasiparticle spectra within a core, which is seen in the clean limit [30]. Within the supercon-
ducting gap energy, there exists the non-zero density of states which comes from excitations in
the vicinity of the horizontal line nodes. Nodes can appear under Ψ < ∆ [92], which corresponds
to the present condition.

4.3.2 Bare Born approximation with dense point spacing near the vor-

tex center

In the subsection 4.3.1, we calculated the impurity self-energies at equally-spaced discrete points
along the radial line. However, we calculated the impurity self-energy on only a few points within
a vortex core (r < ξ0). We could not calculate the impurity self-energy around a vortex core
with sufficient accuracy. Then, we take the dense point spacing near the vortex center and take
the sparse point spacing far from a vortex in subsections 4.3.2 and 4.3.3. In the same way as
Ref. [95], we adopt ri = r̃[exp(Ri) − 1] as the function producing non-equally-spaced discrete
points ri. Here, Ri is equally-spaced discrete point. We set r̃ = 0.001ξ0 and the cutoff distance
rc = 10ξ0.

We show the LDOS around a vortex core for s-wave [Fig. 4.3(a)], s+ p-wave (Ψ/Tc : ∆/Tc =
0.7 : 1.4) [Fig. 4.3(b)] and s + p-wave (Ψ/Tc : ∆/Tc = 0.2 : 0.8) pair [Figs. 4.3(c) and 4.3(d)].
The impurity scattering rate is set to Γn/Tc = 0.3. The zero energy peak is split in the bare
Born approximation (BBA) with non-equally point spacing. This feature is the same as that in
the BBA with equal point spacing (Figs. 4.1 and 4.2), but the detailed structure of the LDOS
is different between them. The split zero energy peak is seen when changing the mixing ratio of
the order parameter [Fig. 4.3(b) and 4.3(c)]. The splitting width becomes larger with increasing
Γn. The LDOS structure in the s + p-wave case for α′/Tc = 1 [Fig. 4.3(c)] is subtly different
from that for α′/Tc = 30 [Fig. 4.3(d)] and not altered qualitatively for two dimensional Fermi
surface. This α dependence is discussed in section 4.4.
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Figure 4.2: s + p-wave case. The energy smearing factor η is set to 0.05Tc. (a) The energy
dependence of the local density of states at the vortex center for several values of the impurity
scattering rate Γn. (b) The local density of states within a vortex core for Γn = 0.3Tc. Reprinted
figure with permission from [Yoichi Higashi, Yuki Nagai, and Nobuhiko Hayashi, JPS Conference
Proceedings 3, 015003 (2014)] Copyright (2014) by the Physical Society of Japan.

4.3.3 Self-consistent Born approximation

Figs. 4.4(a)-4.4(c) and Figs. 4.4(d)-4.4(f) show the LDOS around a vortex core for s-wave and
s+p-wave, respectively. The split zero energy peak disappears in the self-consistent Born approx-
imation for both pairing states. The zero energy peak is suppressed gradually with increasing the
impurity scattering rate from Γn/Tc = 0.01 to 1 for both pairing states. These LDOS structures
are not altered for α′/Tc = 50 for the s-wave pair. However, for s + p-wave pair, the impurity
effect on the LDOS depends on α. The LDOS profile in the s + p-wave case for α/Tc = 30 is
nearly identical to that for α/Tc = 1, but there is a difference. The zero energy LDOS value at
the vortex center for α/Tc = 30 is N(E = 0, r = 0)/NF ≈ 2.232, whereas that for α/Tc = 1 is
N(E = 0, r = 0)/NF ≈ 2.218. This α dependence is discussed in section 4.4.

4.4 Discussions

4.4.1 Dependence of the spin-orbit coupling strength

The impurity self-energies around a vortex core with use of the bare Born approximation are
expressed by the Green’s function in the clean limit. The normal and anomalous self-energies in
the orbital basis are given as

Σ̂0
11 = −iΓn

1

2

[

〈gI + gII〉k̃σ̂0 + 〈(gI − gII)ḡk · σ̂〉
k̃

]

, (4.8)

Σ̂0
12 = Γn

1

2

[

〈fI + fII〉k̃σ̂0 + 〈(fI − fII)ḡk · σ̂〉
k̃

]

, (4.9)

which are different from the formulae in the bulk (see Appendix D), but are identical with those if
there is no p-wave component (i.e., there is the s-wave component only) and the difference of the
DOS between FS I and II. In this case, gI = gII and fI = fII. Here gI,II and fI,II are the normal
and anomalous quasiclassical Green’s function in the band basis, respectively. ḡk = gk/|gk|.
Thus, the impurity self-energies are proportional to σ̂0,

Σ̂0
11 = −iΓn

1

2
〈gI + gII〉k̃σ̂0 = −iΓn〈gI〉k̃σ̂0 = −iΓn〈ĝ0〉k̃, (4.10)

Σ̂0
12 = Γn

1

2
〈fI + fII〉k̃σ̂0 = Γn〈fI〉k̃σ̂0 = Γn〈f̂0〉k̃, (4.11)
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Figure 4.3: The local density of states within a vortex core for s-wave (Ψ/Tc = 1) (a), s+p-wave
(Ψ/Tc : ∆/Tc = 0.7 : 1.4) (b), s+p-wave (Ψ/Tc : ∆/Tc = 0.2 : 0.8) case (c) and (d). The impurity
scattering rate is set to Γn/Tc = 0.3. Other parameters are α′/Tc = 1 (a)-(c), α′/Tc = 30 (d)
and η/Tc = 0.05.

which are same as the impurity self-energies in the bulk (see Appendix D). We have confirmed also
numerically that the impurity self-energies become diagonal in spin space. gI, fI and gII, fII are
the solutions of the Eilenberger equation on the split FSs I and II, respectively. The solutions are
obtained by the Riccati transformation as gI,II = (1− aI,IIbI,II)(1 + aI,IIbI,II)

−1, fI,II = 2aI,II(1 +
aI,IIbI,II)

−1. Hence, in the case of the s-wave pair, the Eilenberger equations are separated into
the two equations defined on the split FSs I and II, respectively in the band basis. The procedure
is the same as Appendix D. So the SOC strength α does not appear in the Eilenberger equation
and then the impurity effect on the LDOS is independent of α in the s-wave case.

However, in the presence of the p-wave component, the second terms in Eqs. (4.8) and (4.9)
do not disappear. Then the finite off-diagonal components in spin space appear, which we have
confirmed also by numerical calculations (see Appendix E). The finite off-diagonal components
result in the appearance of the off-diagonal components of the impurity self-energies in the band
basis for s+p-wave pairing. Thereby the Eilenberger equations are not separated with respect to
each band split due to the SOC. In this case the SOC terms remain in the Eilenberger equations.
So it is expected that the impurity effect on the LDOS depends on α for s+p-wave pair. Indeed,
as shown in Figs. 4.3(c) and 4.3(d), the impurity effect on the LDOS depends on α. The zero
energy values of the LDOS at the vortex center are N(E = 0, r = 0)/NF ≈ 0.980 for α′/Tc = 1
[Fig. 4.3(c)] and N(E = 0, r = 0)/NF ≈ 1.033 for α′/Tc = 30 [Fig. 4.3(c)], respectively. The α
dependence of the zero energy peak is understood as follows. Now the FS is split due to the SOC,
which is described by the two band picture in the band basis (see subsection 1.3.2). As discussed
above, there is the interband scattering for s+p-wave pairing. For small α, the splitting width of
the FS is small. Then, the interband scattering easily occurs. However, for larger α, the splitting
width of the FS becomes larger, since it is proportional to α. Then, the quasiparticles cannot
be easily scattered between the largely split FSs, which are away from each other in momentum
space. Thus, the interband scattering is suppressed. Consequently, the effect of the impurity
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Figure 4.4: The local density of states within a vortex core for s-wave case (Ψ/Tc = 1) (a)-(c)
and for s+ p-wave case (Ψ/Tc : ∆/Tc = 0.2 : 0.8) (d)-(f). The impurity scattering rate is set to
Γn/Tc = 0.01 (a), (d); 0.1 (b), (e); and 1 (c), (f). Other parameters are α′/Tc = 1, η/Tc = 0.05.

scattering on the LDOS around a vortex core becomes small for large α, and then the suppression
of the zero energy peak due to impurity scattering also becomes small.

The α dependence of the impurity scattering effect for s + p-wave pair is seen also in the
self-consistent Born approximation. However, α dependence of the impurity scattering effect on
the LDOS structure is subtle. In the quasiclassical regime, the Fermi energy EF is sufficiently
large measured from the bottom of energy bands, and then Tc ≪ α ≪ EF in general. So the
energy scale of the FS splitting α is much smaller than that of the electron system EF. Thus,
the effect of the FS splitting is limited. We consider that this might be a reason of the subtle α
dependence of the impurity scattering effect on the LDOS structure for s+ p-wave pair.

4.4.2 Split of the zero energy peak in the bare Born approximation

As shown in Fig. 4.3, the p-wave component of the order parameter is not essential for the split
of the ZEP, since the ZEP splits even in the case of the s-wave pairing. Then, we consider the
impurity effect in the case of the s-wave. As shown in the subsection 4.4.1, in this case, the
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Figure 4.5: The real part (a) and the imaginary part (b) of the normal self-energy σg(E, r) for
s-wave pair. The impurity scattering rate is set to Γn = 0.7Tc and the energy smearing factor η
is set to 0.05Tc.

impurity self-energy is the same as that in the bulk (see Appendix D). The normal self-energies
couple with the Matsubara frequency in the Eilenberger equation. At the electron (hole) side,
the Matsubara frequency is modified to ωn + σg(E, r) [−(ωn + σg(E, r))], where

σg(iωn → E + iη, r) = Γn

[

〈gI(E, r, k̃)〉k̃ − 〈ḡI(E, r, k̃)〉k̃
]

. (4.12)

We assume that the density of states at the Fermi level in the normal state is the same on each
split FS. We show the numerically calculated σg(E, r) in Fig.4.5. Considering from i(ωn+σg) →
E − Imσg + i(η + Reσg), the imaginary part of σg [Fig. 4.5(b)] contributes to the energy shift
and the real part [Fig. 4.5(a)] contributes to the broadening of the quasiparticle spectra. In
Fig. 4.5(a), at the zero energy, the large value of Reσg gives the large broadening of the zero
energy LDOS, and the peak of Imσg at the low energy region contributes to the energy shift of
the zero energy peak. Then, the zero energy peak splits into the broad two peaks in Fig. 4.3(a).

4.5 Conclusion

In conclusion, we calculated the local density of states around a vortex core in the presence of
non-magnetic impurities in noncentrosymmetric systems. We found that the zero-energy peak
of the vortex bound states splits off with increasing the impurity scattering rate for both s-wave
and s+ p-wave pairing state in the bare Born approximation. We also showed that the impurity
effect in the vicinity of a vortex core is independent of the spin-orbit coupling (SOC) for an
s-wave pairing in the bare Born approximation, which is the same feature as that in the bulk,
namely, the Eilenberger equation is separated into the two equations defined on the each split
Fermi surface. This is the case with the impurity scattering effect in the self-consistent Born
approximation. On the other hand, in an s+ p-wave pairing, we found that the impurity effect
can depend on the SOC in the bare and the self-consistent Born approximation. This means that
the Eilenberger equation is not separated into the two equations, since the interband impurity
scattering occurs around a vortex core for the s+ p-wave pairing.
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Chapter 5

Vortex Core Structure in

Multilayered Rashba

Superconductors

We numerically study the electronic structure of a single vortex in two dimensional supercon-
ducting bilayer systems within the range of the mean-field theory. The lack of local inversion
symmetry in the system is taken into account through the layer dependent Rashba spin-orbit
coupling. The spatial profiles of the pair potential and the local quasiparticle density of states
are calculated in the clean spin-singlet superconductor on the basis of the quasiclassical theory.
In particular, we discuss the characteristic core structure in the pair-density wave state, which
is spatially modulated exotic superconducting phase in a high magnetic field.

5.1 Introduction

Intensive studies on locally noncentrosymmetric systems (LNCS) has been conducted [39, 40].
The LNCS are realized in various materials such as multilayered cuprates [96], the doped topo-
logical insulator CuxBi2Se3 [97], the pnictide superconductor SrPtAs [98] and so on. Especially,
the heavy-fermion CeCoIn5/YbCoIn5 superlattice is fabricated [99] and the artificial control of
the inversion symmetry breaking was realized recently [100]. Therefore, one can seek experi-
mentally the theoretically predicted exotic superconducting phase in a magnetic field [42, 43].
The inhomogeneity due to a magnetic field is not taken into account in the existing theoreti-
cal researches on the superconductivity in LNCS [42, 43]. However, the exotic superconducting
phase stabilizes in a magnetic field. So understanding the vortex states in LNCS is necessary.
The observation of quasiparticle states in the vicinity of a vortex gives us a lot of information
on the exotic superconducting phase. We focus on the exotic superconducting phase called the
pair-density wave (PDW) phase, which is stabilized in a high magnetic field perpendicular to the
layers [42]. In the PDW phase, the phase of the superconducting order parameter changes by π
between the two layers, whereas no phase difference of the order parameter in the BCS phase in
a low magnetic field. In this study, we investigate the vortex core structure of the PDW and the
BCS phases, and try to obtain the characteristics of the PDW phase.

5.2 Formulation

We consider the multilayered system characterized by the layer-dependent spin-orbit coupling
(SOC) strength αm with the layer index m. In this paper, the number of the layer is fixed to N =
2. The layer dependence of the SOC (α1, α2) = (α,−α) reflects the local noncentrosymmetricity
of the system [87]. We assume the simple form of the Rashba type SOC described by g(k) =
(−ky, kx, 0)/kF, which satisfies the normalization condition 〈g(k)〉k = 1 on the two dimensional
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Fermi surface (FS). kF is the Fermi wave number and 〈· · · 〉k is the average over the FS.
We consider spin-singlet s-wave pairing states within the layer. The pairing potential in

spin space is expressed as ∆s1s2(r) = ∆(r)(iσy)s1s2 . We assume that the spatial variation of
the pair potential ∆(r) is the same in each layer. Then, the pair potential is expressed as
∆̂(r) = ∆(r)iσy ⊗D, where D is the N ×N diagonal matrix in the space composed of the layer
(band) degree of freedom. In the case of N = 2, D = diag(1, s) with s = 1 for the BCS state and
s = −1 for the PDW one. ·̂ denotes the 2N×2N matrix in the spin and band space. A vortex line
perpendicular to the two dimensional superconducting layer has the form, ∆(r) = |∆(r)|exp(iφr)
in each layer.

In this study, we consider the superconductor in which the paramagnetic pair breaking effect
is dominant. In addition, we assume the system is in the type-II limit and neglect the vector
potential. Then, we incorporate only the paramagnetic pair breaking effect into the quasiclassical
theory through the Zeeman term. There is three factors which split the 4-fold degenerated
FS. The spin degeneracy is lifted by both the SOC and the Zeeman field µBH , and the band
degeneracy is lifted by the interlayer hopping t⊥. We assume that the strength of these three
factors is sufficiently weak and incorporate them into the quasiclassical theory as perturbations.
In this situation, the split of the FS is small and the difference of the Fermi velocity between
the weakly split FS is negligibly small. So we can put vF = vFk̃. Then, we can expand the
quasiclassical approximation described in Ref. [29] into the multilayered system.

The quasiclassical Green’s function depends on the direction k̃ = (cosφk, sinφk) with the
azimuthal angle φk and is written as a 4N × 4N matrix in the particle-hole space:

ǧ(r, k̃, iωn) = −iπ
(

ĝ if̂

−i ˆ̄f −ˆ̄g

)

, (5.1)

where ωn is the Matsubara frequency. The quasiclassical Green’s function obeys the following
Eilenberger equation with the spin quantization axis parallel to the z axis [49, 88, 89, 90, 91].

ivF(k̃) ·∇ǧ(r, k̃, iωn) +
[

iωnτ̌3 − ∆̌(r)− Ǩ(k̃), ǧ(r, k̃, iωn)
]

= 0̌, (5.2)

Ǩ(k̃) ≡
(

t⊥Ĥinter + µBHĤZ 0̂

0̂ t⊥Ĥinter + µBHĤZ

)

+ α

(

ĤSO(k̃) 0̂

0̂ Ĥ∗
SO(−k̃)

)

, (5.3)

with

τ̌3 =

(

σ0 ⊗ IN×N 0̂

0̂ −σ0 ⊗ IN×N

)

, ∆̌(r) =

(

0̂ ∆̂(r)

−∆̂†(r) 0̂

)

, (5.4)

ĤZ = −σz ⊗ IN×N , Ĥinter = σ0 ⊗ T⊥, ĤSO(k̃) = g(k̃) · σ ⊗ Sd. (5.5)

Here, IN×N is the unit matrix, T⊥ = offdiag(1, 1) and Sd = diag(1,−1). offdiag(·, ·) indicates
the 2× 2 matrix which has the offdiagonal component only. Ĥ∗

SO(−k̃) = −g(k̃) ·σtr ⊗Sd, which

is obtained from the relation, g(−k̃) = −g(k̃). µB is the Bohr magneton. We use the unit in
which ~ = kB = 1.

In the presence of the Zeeman term, the Eilenberger equation cannot be decomposed into the
two equations defined on the each split Fermi surface due to the SOC even if we use the band
basis. So we take the orbital basis, in which the spin quantization axis is parallel to the z-axis.
In the orbital basis, one can transform Eq. (5.2) into the two matrix Riccati equations in the
same manner described in Ref. [101] by regarding Ǩ(k̃) as the self energy:

vF(k̃) ·∇â+ 2ωnâ+ â∆̂†â− ∆̂+ i
(

K̂11â− âK̂22

)

= 0̂, (5.6)

vF(k̃) ·∇b̂− 2ωnb̂− b̂∆̂b̂+ ∆̂† − i
(

b̂K̂11 − K̂22b̂
)

= 0̂. (5.7)

Here we have defined Ǩ = diag(K̂11, K̂22) with K̂11 ≡ −µBHσz⊗IN×N+αg(k̃)·σ⊗Sd+t⊥σ0⊗T⊥
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and K̂22 ≡ −µBHσz ⊗ IN×N − αg(k̃) ·σ∗ ⊗ Sd + t⊥σ0 ⊗ T⊥. Introducing the following quantity

â = â0(iσy ⊗ IN×N ), b̂ = (iσy ⊗ IN×N )b̂0, (5.8)

K̂11 = K̂0
11, K̂22 = (−σy ⊗ IN×N )K̂0

22(σy ⊗ IN×N ), (5.9)

∆̂ = ∆̂0(iσy ⊗ IN×N ), ∆̂† = (iσy ⊗ IN×N )∆̂†
0, (5.10)

we obtain

vF(k̃) ·∇â0 + 2ωnâ0 + â0∆̂
†
0â0 − ∆̂0 + i

(

K̂0
11â0 + â0K̂

0
22

)

= 0̂, (5.11)

vF(k̃) ·∇b̂0 − 2ωnb̂0 − b̂0∆̂0b̂0 + ∆̂†
0 − i

(

b̂0K̂
0
11 + K̂0

22b̂0

)

= 0̂. (5.12)

Starting from the pairing interaction in Ref. [28], the gap equation for the spin-singlet pair
potential ∆(r) is given by [1] (see Appendix F)

∆(r) = λπT
1

2

∑

−nc(T )−1<n<nc(T )

∑

s′
1
s′
2

(iσy)
†
s′
2
s′
1

〈

f0
s′
1
s′
2
(r, k̃′, iωn)(iσy)s′

1
s′
2

〉

k̃′

. (5.13)

〈· · · 〉k̃ denotes the average on the circular arc with its radius 1. The coupling constant is deter-
mined from

1

λ
= ln

(

T

Tc0

)

+
∑

0≤n<nc(T )

2

2n+ 1
, (5.14)

where Tc0 is the superconducting transition temperature for α = t⊥ = µBH = 0 and nc(T ) =
(ωc/πT − 1)/2. We fix the cut off frequency to ωc = 7πTc0.

The local density of states per spin and layer is given by

N(E, r) = −NF

2N

1

π

〈

Im
[

Trĝ(r, k̃, iωn → E + iη)
]〉

k̃
, (5.15)

where NF is the density of states per spin and layer at the Fermi level in the normal state.

5.3 Results and discussions

In this section, we display the self-consistently calculated numerical results of the pair potential
profiles and the local density of states (LDOS). We fix the temperature and the interlayer hopping
to T/Tc0 = 0.1 and t⊥/Tc0 = 1, respectively.

5.3.1 Pair potential

In Fig. 5.1, we show the spatial variations of the pair potential amplitude around a vortex
in (a) the BCS and (b) the PDW states for α/Tc0 = 2. The horizontal axis is normalized
by the coherence length ξ0 = vF/Tc0. Each plot corresponds to the different magnetic field.
The amplitude of the pair potential gets smaller with increasing the Zeeman field due to the
paramagnetic pair breaking effect in both pairing states. One can notice that the pair potential
amplitude of the PDW state is smaller than that of the BCS state. It is because the PDW state
stabilizes in a high magnetic field under the influence of the paramagnetic depairing. Though
the amplitude of the pair potential in the PDW state is smaller than that in the BCS state,
the core size in the PDW state does not spread (compare the profiles for µBH/Tc0 = 1.5). The
core size in the PDW state for µBH/Tc0 = 1.5 and 2 is smaller than that in the BCS state
for µBH/Tc0 = 1.5. Thus, the sudden decrease in the core radius with increasing the magnetic
field is a signature of the BCS-PDW phase transition. The BCS state is completely destroyed
for µBH/Tc0 & 2, whereas in the PDW state, the nonzero self-consistent solutions of the pair
potential exist even for the high magnetic field µBH/Tc0 & 2. The profiles of the pair potential
is not altered for α/Tc0 = 50 for µBH = 0.
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Figure 5.1: Spatial profiles of the pair potential amplitude |∆(r)| for (a) the BCS state and (b)
the PDW one. The horizontal axis represents the radial distance from a vortex center r = 0. We
set T/Tc0 = 0.1, α/Tc0 = 2 and t⊥/Tc0 = 1. The data is plotted for each Zeeman field µBH/Tc0.
Reprinted figure with permission from [Yoichi Higashi, Yuki Nagai, Tomohiro Yoshida, and
Youichi Yanase, Journal of Physics: Conference Series 568, 022018 (2014)] Copyright (2014) by
IOP Publishing.

Figure 5.2 shows the spatial profiles of the pair potential amplitude |∆(r)| around a vortex for
(a) the BCS state and (b) the PDW one, respectively. The BCS state [Fig. 5.2(a)] is destroyed
due to the paramagnetic depairing for α/Tc0 . 1. On the other hand, the PDW state survives
even if the SOC is small α/Tc0 . 1 [Fig. 5.2(b)]. In the PDW state, the pair potential amplitude
gets larger monotonically with increasing the SOC strength α. In Fig. 5.2 (b), each curve shows
the pair potential profile for α/Tc0 = 0.2-2 from bottom to top by 0.2 step. This is because the
Rashba type SOC locks the spin quantization axis within the x-y plane and then the paramagnetic
depairing effect is suppressed. In contrast, in the BCS state, the pair potential amplitude behaves
non-monotonically with respect to the SOC strength. Another feature is seen in the vortex core
radius. As shown is Fig. 5.2 (b), the core radius in the PDW state is smaller than that in the
BCS state. This feature gets prominent with increasing the SOC strength.

In the uniform system without vortices, the stable pairing state prefers the larger bulk ampli-
tude of the pair potential. In this study, though there is a vortex in the system, we consider that
the pair potential with the larger bulk amplitude is the more stable solution of the gap equation
for a given magnetic field. The T -H phase diagram of bilayer system is displayed in Ref. [42],
which is not altered qualitatively in the vortex state when the system belongs to type-II limit and
has the large Maki parameter [42, 102]. According to the field dependence of the pair potential
amplitude in the bulk obtained by the quasiclassical theory, the non-zero self-consistent solution
of the gap equation exists only in the PDW state for µBH/Tc0 & 1.8. This is consistent with the
results calculated from the Bogoliubov-de Gennes equation [42].

5.3.2 Local density of states

In Fig. 5.3, we display the energy and spatial dependence of the local density of states (LDOS)
around a vortex core. On the basis of the consideration in the subsection 5.3.1, the calculation
of the LDOS is conducted for (a) µBH/Tc0 = 1.5 in the BCS state and (b) µBH/Tc0 = 2 in the
PDW one. As shown in Fig. 5.3(a), the zero energy peak (ZEP) splits off due to the Zeeman
field. The Zeeman split of the ZEP gets suppressed with increasing the SOC strength α for a
fixed magnetic field, since the spin quantization axis is locked within the x-y plane by the Rashba
SOC.

Contrastingly, though the PDW state emerges in a high magnetic field, the zero energy
peak exists, which is quite different from the LDOS structure in the BCS state. If the zero
energy quasiparticle states within a core are experimentally observed by scanning tunneling
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Figure 5.2: Spatial profiles of the pair potential amplitude |∆(r)| for (a) the BCS state and (b)
the PDW one. The horizontal axis represents the radial distance from a vortex center r = 0.
We set T/Tc0 = 0.1, µBH/Tc0 = 1.5 and t⊥/Tc0 = 1. Each curve indicates different spin-orbit
coupling strength.

microscopy/spectroscopy (STM/STS), the STM/STS image of a vortex in the PDW state can
be drastically different from that in the BCS state. To obtain the clue to the LDOS structure
in the PDW state, we start from the case with α/Tc0 = 0 for simplicity. In this case, the four
folding ZEP splits into the four peaks. First, for µBH/Tc0 = 0, the band degeneracy is lifted by
the interlayer hopping and the ZEP splits into the two peaks. This split of the ZEP is regarded
as the level repulsion of the zero energy bound states. In the BCS state, the band degeneracy
is not lifted only by the interlayer hopping. Then, the π phase difference between the layers is
essential for the repulsion of the zero energy bound states. Second, each peak is split off due to
the Zeeman field. Hence the four peaks appear due to the interlayer hopping and the Zeeman
field. Further increasing the magnetic field, the two peaks in the low energy side shift to the
lower energy side and those in the high energy side shift to the higher energy one. Eventually
the two peaks in the low energy side get combined and a single zero energy peak appears. This
scenario gives the interpretation for the appearance of the zero energy peak in the PDW state,
but that is not sufficient when changing the SOC strength.

Let us consider the LDOS structure including the vortex bound states in the high energy
side. Figure 5.4 shows the energy and the spatial dependence of the LDOS around the vortex
core for α/Tc0 = 2 and µBH/Tc0 = 1.5. The LDOS is plotted up to the high energy E = 4Tc0.
The calculation is conducted for the BCS state [Fig. 5.4(a)] and the PDW state [Fig. 5.4(b)]
with use of the self-consistent solutions for the gap equation displeyed in Fig. 5.2. In the BCS
states, as shown in Fig. 5.4(a), the zero energy vortex bound states split into the four peaks due
to the interlayer hopping and the Zeeman field. On the other hand, in the PDW state, the large
quasiparticle states appear at the zero energy [see Fig. 5.4(b)]. This is quite contrasting with
the LDOS structure in the BCS state, whereas the vortex bound states peaks in the high energy
side exist as well as in the BCS state.

In the PDW state without the SOC (The PDW state is indeed unstable in the absence of
the SOC.), the four LDOS peaks appear as well as that in the BCS state due to the interlayer
hopping and the Zeeman field. The two peaks at the low energy side shift to the lower energy
side with increasing the Zeeman field. Further increasing the Zeeman field, the two peaks get
combined and cross the zero energy each other. In the absence of the SOC, it appears that the
quasiparticle structure in the PDW state is similar to the low field quasiparticle structure in the
BCS state. One might consider that the crossed two peaks get combined with increasing the
SOC strength. However, we should note that there is another origin of the appearance of the zero
energy vortex bound states in the PDW state, which is described in the following subsections.
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Figure 5.3: The local density of states N(E, r) for (a) the BCS state and (b) the PDW one. The
Zeeman field is set to (a) µBH/Tc0 = 1.5 and (b) µBH/Tc0 = 2. Other conditions are T/Tc0 = 0.1,
α/Tc0 = 2, t⊥/Tc0 = 1 and η = 0.05Tc0. Reprinted figure with permission from [Yoichi Higashi,
Yuki Nagai, Tomohiro Yoshida, and Youichi Yanase, Journal of Physics: Conference Series 568,
022018 (2014)] Copyright (2014) by IOP Publishing.

5.3.3 Dependence of zero energy peak on spin-orbit coupling

In this subsection, we investigate the SOC strength dependence of the vortex bound states.
As discussed in the previous subsection, in the absence of the SOC, the quasiparticle structure
around the vortex is similar between the PDW and BCS states. However, in the presence of
the SOC, the internal structure of the Cooper pair changes. Thereby the quasiparticle structure
also changes. As shown in Fig. 5.3 and Fig. 5.4, the zero energy quasiparticle structure around a
vortex core in the PDW state is quite contrasting with that in the BCS state in the presence of
the SOC. To see clearly the difference of the quasiparticle structure, we show in Fig. 5.5 the SOC
strength and the energy dependences of the LDOS at the vortex center for µBH/Tc0 = 1.5. In
the BCS state, superconductivity is destroyed due to the paramagnetic depairing for α/Tc0 . 1.
As shown in Fig. 5.5(a), the zero energy LDOS splits almost independent of the SOC strength.
The peaks in the low energy shift a bit to lower energy with increasing the SOC strength, whereas
those in the high energy move to higher energy.

On the other hand, in the PDW state, the zero energy LDOS gradually appears with increas-
ing the SOC strength [see Fig. 5.5(b)]. At α = 2Tc0, the LDOS structure at the vortex center
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Figure 5.4: The local density of states N(E, r) for (a) the BCS state and (b) the PDW one. The
Zeeman field is set to µBH/Tc0 = 1.5 and the spin-orbit coupling is α/Tc0 = 2 for both pairing
states. Other parameters are T/Tc0 = 0.1, t⊥/Tc0 = 1 and η = 0.05Tc0.
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Figure 5.5: (Color online) The energy and the spin-orbit coupling strength dependences on the
local density of states at the vortex center N(r = 0, E, α) for the BCS state (a) and the PDW
state (b) for µBH/Tc0 = 1.5. Other parameters are T/Tc0 = 0.1, t⊥/Tc0 = 1 and η = 0.05Tc0.

coincide with that in Fig. 5.4(b). Thus, the SOC plays the crucial role in understanding the
contrasting low energy LDOS structure between the BCS and the PDW state.

In the real materials, for example, the CeCoIn5/YbCoIn5 superlattice, the superconducting
layer is CeCoIn5, which is experimentally identified as a d-wave superconductor [52, 53, 103].
The LDOS structure obtained in this study changes considerably, since the quasiparticle states
around a vortex are sensitive to the pairing symmetry. The more realistic calculation assuming
the d-wave pairing symmetry is the future work.

In the next section, we show the energy spectra in the bulk to investigate the effect of the
SOC on the energy dispersion structure.

5.3.4 Energy spectra

In this section, we show the energy spectra in the bulk to investigate the effect of the SOC on
the energy dispersion structure, and discuss the relation between the bulk gap and the vortex
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Figure 5.7: Energy spectra in the BCS state (a) and the PDW state (b) for α/∆0 = 2. The
horizontal axis denotes the wave number normalized by the Fermi wave number kF0 for α =
t⊥ = µBH = 0. The superconducting gap energy is set to |∆|/∆0 = 1 (a) and |∆|/∆0 = 0.5 (b).
Other parameters are set to µBH/∆0 = 1.5, t⊥/∆0 = 1, EF/∆0 = 10.

bound states. We diagonalize the following 8×8 BdG Hamiltonian to obtain the energy spectra.

ȞBdG =

(

Ĥ0(k) ∆̂

∆̂† −Ĥ ∗
0 (−k)

)

, (5.16)

Ĥ0(k) =

(

ξ(k)σ0 + αg(k) · σ − µBH · σ t⊥σ0
t⊥σ0 ξ(k)σ0 − αg(k) · σ − µBH · σ

)

, (5.17)

−Ĥ
∗
0 (−k) =

(

−ξ(k)σ0 + αg(k) · σ∗ + µBH · σ −t⊥σ0
−t⊥σ0 −ξ(k)σ0 − αg(k) · σ∗ + µBH · σ

)

,

(5.18)

∆̂ =

(

∆iσy 02×2

02×2 s∆iσy

)

. (5.19)

Here we have used ξ(−k) = ξ(k) and g(−k) = −g(k) with the orbital vector g(k) = (−ky, kx, 0)/kF0 =
(k/kF0)(− sinφk, cosφk, 0) in two dimensional layers. kF0 is the Fermi wave number in the ab-
sence of the SOC, the Zeeman field and the interlayer hopping. We do not consider the parity
mixing of the order parameter. s = 1 (−1) corresponds to the BCS (PDW) state.

In general, the SOC strength α is much larger than the superconducting gap energy ∆0 and
much smaller than the Fermi energy EF. Thus, in the quasiclassical regime, namely, kFξ0 ∼
EF/∆0 ≫ 1, the energy scale of the SOC can satisfy the condition ∆0 ≪ α ≪ EF. In this

42



0.0 0.5 1.0

0

5

10

-5

-10

-1.0 -0.5

k / kF0

E k / kF0) / Δ0(a)

0.0 0.5 1.0

0

5

10

-5

-10

-1.0 -0.5

k / kF0

E k / kF0) / Δ0(b)

Figure 5.8: Energy spectra of the mirror sector in the BCS state (a) and the PDW state (b) for
α/∆0 = 2. The horizontal axis denotes the wave number normalized by the Fermi wave number
kF0 for α = t⊥ = µBH = 0. The superconducting gap energy is set to |∆|/∆0 = 1 (a) and
|∆|/∆0 = 0.5 (b). Other parameters are set to µBH/∆0 = 1.5, t⊥/∆0 = 1, EF/∆0 = 10.

situation, the split of the Fermi surface due to the SOC, the Zeeman field and the inter-layer
hopping is sufficiently small, and then we can approximate the energy dispersion by that of free
electrons. Thus, we used the free electron dispersion ξ(k)/∆0 = (kF0ξ0)[(k/kF0)

2− 1]/2 with the
coherence length ξ0 = vF0/∆0.

On the other hand, in the quantum limit (low particle density limit), namely kF0ξ0 ∼
EF/∆0 ∼ 1, the SOC energy is of the order of the Fermi energy (α ∼ EF ∼ ∆0). So we
cannot neglect the split of the Fermi surface due to the SOC, the Zeeman field and the inter
layer hopping. We displayed above the quasiparticle local density of states calculated by the
quasiclassical theory, but here we show the bulk energy spectra deviated away from the quasi-
classical regime [EF/∆0 = 10 (kF0ξ0 = 20)] for viewability of figures. We confirmed that the
structure of the bulk energy spectra in the quantum regime is not altered qualitatively compared
with that in the quasiclassical regime.

We show below the energy spectra for the BCS and the PDW state in the bulk obtained by
diagonalizing the 8×8 BdG Hamiltonian matrix in the absence and the presence of the SOC. To
see clearly the energy spectra in the presence of the SOC, we also display the energy spectra of
the mirror sector of the block-diagonalized BdG Hamiltonian with use of the mirror symmetry
[104].

As investigated in Ref. [87] and pointed out in Ref. [42], in the absence of the SOC, intraband
quasiparticle states form the Cooper pairs in the BCS state, but interband pairing states is
realized in the PDW state. The superconducting energy gap can be viewed as the hybridization
gap between electron and hole bands in a certain basis, and in this study, we assume the spin
singlet pairing state. Thus, the superconducting gap opens at the point where electron and
hole branches intersect with opposite spin in the real spin basis within the band for α = 0.
The inter layer hopping t⊥ acts as an effective Zeeman magnetic field (µBH ± t⊥)σz , which
can be understood by block-diagonalyzing the BdG Hamiltonian using the mirror symmmetry
in the bilayer system [105]. Then, electron and hole bands split due to an effective Zeeman
field (µBH ± t⊥)σz lifting the four fold degeneracy. As a result, four energy bands appear in
the electron and hole branches, respectively. In Figs. 5.6(a) and 5.6(b), the branches convex
downward are the electron bands, E2↑(k), E1↑(k), E2↓(k) and E1↓(k) from bottom to top at
k = 0 and those convex upward are the hole bands, −E2↑(k), −E1↑(k), −E2↓(k) and −E1↓(k)
from top to bottom at k = 0.

Thus, in the BCS state for α = 0, there are four intra band spin-singlet pairing states, namely
four intersections: [E1↑(k),−E1↓(k)], [E1↓(k),−E1↑(k)], [E2↑(k),−E2↓(k)] and [E2↓(k),−E2↑(k)],
where [Ems(k),−Ems′(k)] indicates the crossing point of electron band Ems(k) and hole band
−Ems′(k). m and s indicate the indices of layer and spin, respectively. On the other hand, in
the PDW state for α = 0, there are four inter band spin-singlet pairing state: [E1↑(k),−E2↓(k)],
[E1↓(k),−E2↑(k)], [E2↑(k),−E1↓(k)] and [E2↓(k),−E1↑(k)].
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Figs. 5.6(a) and 5.6(b) show the energy spectra in the absence of the SOC for the BCS state
and the PDW state, respectively. We choose the parameter µBH/Tc0 = 1.5 and t⊥/Tc0 = 1. The
superconducting gap size is set to |∆|/∆0 = 0.4 for viewability. The superconducting gaps open
symmetrically with respect to the Fermi energy, which comes from the particle-hole symmetry
and do not open at the Fermi energy. The difference of the energy spectral structure between
the BCS and the PDW state comes from the internal structure of the Cooper pairing discussed
above. Indeed, however, the BCS state for α = 0 is completely destroyed due to the paramagnetic
depairing for µBH/Tc0 = 1.5, and the PDW state for α = 0 is unstable, since inter band pairing
brings a loss of energy.

On the other hand, in the presence of the SOC, intraband quasiparticle states form the
Cooper pairs both in the BCS and PDW state. We notice that the superconducting gaps open
at the four intersection of the energy bands in the vicinity of the Fermi energy in Figs. 5.7(a) and
5.7(b), respectively. The energy spectral structure changes from that for α = 0, which comes
from the change of the Cooper pairing structure due to the SOC.

First, in the BCS state [Fig. 5.7(a)], the center of the superconducting gap energy is dislocated
from EF [E(k) = 0]. To see clearly this point, in Fig. 5.8(a), we show the energy spectra for
the mirror sector of the block-diagonalized BdG Hamiltonian in the BCS state. There is an
asymmetry between electron bands and hole bands, leading to the shift of the superconducting
gaps center from EF. This is because there is no particle-hole symmetry in the mirror sector for
even parity superconductivity [104]. The BCS state is indeed an even parity superconducting
state [42]. The other mirror sector also gives the energy spectra without particle-hole symmetry.
When the superconducting gap opens in the bulk, large quasiparticle bound states (Andreev
bound states) are formed at the center of a singly quantized vortex at the Fermi level. Thus,
in the BCS state, the peaks of Andreev bound states at the vortex core moves from EF to the
finite energy, which corresponds to the split of the zero energy peak into the two peaks at low
energy side in Figs. 5.3(a) and 5.4(a). The superconducting gaps at the high energy side in
Fig. 5.7(a) corresponds to the peaks at high energy in Fig. 5.4(a). As shown in Fig. 5.8(a),
inside the superconducting gap, another energy band is located, and so there is non-zero local
density of states inside the gap in the bulk in Fig. 5.4(a), reflecting finite density of states on
another Fermi surface. The small superconducting gap at EF in Fig. 5.7(a) is produced by the
overlap of the superconducting gap dislocated from EF, which appears as the BCS like gap in
the quasiparticle spectrum at the zero energy in Figs. 5.3(a) and 5.4(a).

Next, in the PDW state [Fig. 5.7(b)], the superconducting gaps open at EF. The PDW state
is an odd parity superconducting state. For odd parity superconductivity, there is particle-hole
symmetry in the mirror sector [104]. As shown in Fig. 5.8(b), particle-hole symmetry is observed
in the energy spectra for the mirror sector of the block-diagonalized BdG Hamiltonian in the
PDW state. If the superconducting gap opens at EF, the center of the gap necessarily locates
at EF due to particle-hole symmetry. Regarding the Zeeman field as a perturbation [106, 107]
and using the band basis, the order parameter in the band basis is obtained in the same form
as Ref. [87] (In the present study, we neglect the spin-triplet component). In Fig. 5.7(b), the
superconducting gaps at EF comes from the intra band equal pseudo-spin Cooper pairing [87].
This superconducting states certainly appears in the presence of the SOC [87]. The supercon-
ducting gaps at high energy in Fig. 5.7(b) are due to the inter band pairing, which is neglected
in Ref. [87]. As a result of above discussion, the zero energy peak of the vortex bound states
appears in the PDW state in Figs. 5.3(b) and 5.4(b).

5.4 Summary

We have numerically investigated the electronic structure of a vortex core in bilayer Rashba
superconductors by means of the self-consistent quasiclassical calculation. We found that the
local density of states (LDOS) structure in the pair-density wave (PDW) state is quite different
from that in the BCS state. The zero energy vortex bound state exists in the PDW state, whereas
it is absent in the BCS state due to the Zeeman effect. This prominent difference stems from
(i) whether or not there is particle-hole symmetry in the mirror sector of the block-diagonalized
BdG Hamiltonian and (ii) the change of the internal structure of the Cooper pair due to the SOC.
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Another feature of the PDW state is that the core size is small compared with that in the BCS
state in the vicinity of the BCS-PDW phase transition. The characteristic vortex core structure
in the PDW state can be observed by scanning tunneling spectroscopy at low temperature. These
features in a magnetic field can be a key to identify the exotic superconducting phase.
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Chapter 6

Excitation spectra and wave

functions of quasiparticle bound

states in bilayer Rashba

superconductors

We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex
and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus
on the quasiparticle states at the zero energy in the pair-density wave state in a topologically
non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero
energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical
value.

6.1 Introduction

Superconductivity in locally noncentrosymmetric systems has recently attracted considerable in-
terest [39, 40]. In such systems, a variety of anti-symmetric spin-orbit coupling arises depending
on the local inversion symmetry breaking. A lot of materials have the local noncentrosymmetric-
ity in their crystal structures, one of which is the artificially fabricated heavy Fermion superlattice
CeCoIn5/YbCoIn5 [99]. Some experiments have been conducted under a magnetic field, focusing
on the role of the noncentrosymmetric superconductivity in the superlattice CeCoIn5/YbCoIn5
[108, 100]. From the experiment on the angular dependence of the Hc2, Goh et al. obtained
the evidence that the FFLO like inhomogeneous superconductivity realizes under the parallel
field in the CeCoIn5/YbCoIn5 superlattice [108]. The superconductivity in multilayered systems
as a simple model of the superlattice of CeCoIn5 is investigated also theoretically [87] and the
spatially inhomogeneous exotic superconducting phase is proposed under a high magnetic field
[42].

In our previous study, we analyzed the electronic structure of a single vortex in the pair-
density wave (PDW) state, in which the order parameter phase changes its sign in bilayer systems.
Then we found the salient feature of the PDW state, that is, the zero energy quasiparticle states
at the vortex core exist even in a high magnetic field, using the quasiclassical theory [101].
However, we could not obtain the more microscopic information on the vortex core structure
such as the excitation spectra and the wave functions, in principle, in the framework of the
quasiclassical theory.

In this study, we do not touch the BCS phase, in which the order parameter phase does not
change its sign, and focus on the PDW state. We obtain the microscopic information on the
quasiparticle states in the PDW state with use of the Bogoliubov-de Gennes theory. We present
the excitation spectra and the Bogoliubov quasiparticle wave functions of bound states at the
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vortex core and the edge.

6.2 Formulation

First of all, we characterize multilayer Rashba systems under a magnetic field. We incorporate
the effect of the magnetic field into the theory through the Zeeman term reflecting the dominant
paramagnetic effect and the spatial inhomogeneity of the order parameter due to a vortex line.
Reflecting the lacking of mirror symmetry about each layer, the antisymmetric spin-orbit coupling
(ASOC) strength has the layer dependence αm with the layer index m. The layer dependence of
the ASOC is (α1, α2) = (α,−α) in the bilayer system. The net ASOC is zero due to the mirror
symmetry of the entire system.

We start with the following Bogoliubov-de Gennes equation for bilayer Rashba superconduc-
tors.

(

Ĥ (−i∇) ∆̂(r)

∆̂†(r) −Ĥ∗ (i∇))

)(

ujn(r)
vjn(r)

)

= Ejn

(

ujn(r)
vjn(r)

)

,

with the normal state Hamiltonian in the real space representation

Ĥ (−i∇) =

(

h1(−i∇) t⊥σ0
t⊥σ0 h2(−i∇)

)

, (6.1)

h1(−i∇) = ξ (−i∇)σ0 − µBH · σ + α1g (−i∇) · σ, (6.2)

h2(−i∇) = ξ (−i∇)σ0 − µBH · σ + α2g (−i∇) · σ, (6.3)

where ujn(r) and vjn(r) are the wave functions of Bogoliubov quasiparticles with n and j the
angular momentum (azimuthal) and the radial quantum number, respectively, and ξ(−i∇) =
(−i∇)2/(2m)− µ with the mass of electron m and the chemical potential µ. h1 and h2 are the
normal state Hamiltonian for the layer 1 and 2, respectively. µB is the Bohr magneton, H is
the magnetic field vector, σ = (σx, σy, σz)

T is the vector of the Pauli spin matrices, σ0 is the
unit matrix in the spin space and t⊥ is the interlayer hopping strength. We take the Rasba
type ASOC characterized by the orbital vector g(−i∇) = (i∂y,−i∂x, 0)/kF with the Fermi wave
number kF. We use the unit in which ~ = 1.

We consider a single vortex in a spin-singlet s-wave disk-shaped superconductor with its
radius rc. The magnetic field is applied perpendicular to the layer H = (0, 0, H) and the
vortex line is parallel to the z axis. The pair potential in the bilayer system is expressed as
∆̂(r) = ∆0f(r)e

iφrdiag(iσy, siσy) where s = 1 (s = −1) denotes the BCS (PDW) state. The
vortex center is situated at the origin r = 0. We assume the spatial profile of the pair potential as
the same in each layer and put f(r) = tanh(r/a)around a vortex. Here, a is the lattice constant,
which is introduced as follows. Expanding the tight-binding model for the two dimensional square
lattice, ε(k) = −2t[cos(kxa) + cos(kya)] with respect to kx and ky up to the power of two and
comparing with the free electron dispersion ε(k) = k2/2m, we have the relation, t = 1/(2ma2).
We have introduced the lattice constant a as a unit of length and the nearest neighbor hopping
integral t as a unit of energy. The characteristic length scale of superconductivity is the coherence
length, but in the present study, a Fermi surface is split due to the SOC, the Zeeman field and
the inter layer hopping, and then the coherence length depends on them. To avoid this difficulty,
we use a and t as the unit of length and energy, respectively. They are independent of the SOC,
the Zeeman field and the inter layer hopping.

The system has the rotational symmetry about a vortex line. So we can introduce the
cylindrical coordinates. In this situation, we can separate the quasiparticle wave functions into
the angular and the radial parts: ui

jni
(r) = exp(iniφr)u

i
j(r), v

i
jli
(r) = exp(iliφr)v

i
j(r) (1 ≤ i ≤ 4,

i = {σ,m}) with the spin index σ. Substituting these wave functions into the BdG equation (6.1)
in the cylindrical coordinates, one can find the relation with respect to the quantum number of
the orbital angular momentum such that n1 = n3 = l1 = l3 ≡ n, n2 = n4 = n+1, l2 = l4 = n−1.
Then, we obtain the following dimensionless BdG equation.

(

Ĥn(r, ∂r) ∆̂(r)

−∆̂(r) −Ĥ−n(r, ∂r)

)(

uj(r)
vj(r)

)

= Ejn

(

uj(r)
vj(r)

)

,
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with

Ĥn(r, ∂r) = ξni
(r, ∂r)σ0 ⊗ IN×N + Ân(r, ∂r), (6.4)

−Ĥ−n(r, ∂r) = −ξli(r, ∂r)σ0 ⊗ IN×N − Â−n(r, ∂r), (6.5)

ξni
(r, ∂r) = −

(

∂2r +
1

r
∂r −

n2
i

r2

)

− µ, (6.6)

∆̂(r) =

(

f(r)iσy 0
0 sf(r)iσy

)

, (6.7)

and

Ân(r, ∂r) =









−h − α
kFa

(

∂r +
n+1
r

)

t⊥ 0
α

kFa

(

∂r − n
r

)

h 0 t⊥
t⊥ 0 −h α

kFa

(

∂r +
n+1
r

)

0 t⊥ − α
kFa

(

∂r − n
r

)

h









, (6.8)

where we have put µ/t→ µ, µBH/t→ h, α/t→ α, r/a→ r, t⊥/t→ t⊥, E/t→ E and kFa = 1.
We take the cut-off radius as rc = 250a and discretize the BdG equation in the real space

by the mesh size 0.625a (mesh number N = 400). Then, we diagonalize the 23N × 23N BdG
Hamiltonian with respect to each quantum number of the angular momentum n. For each n, we
arrange the eigen energy Ejn (0 < |j| < 23N) in ascending order for later discussions.

6.3 Results and discussions
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Figure 6.1: Energy spectra of Bogoliubov quasiparticles in the PDW state for (a) µBH/t = 0.2,
(b) 0.6 and (c) 1. The horizontal axis n is the quantum number of the angular momentum. We
set α/t = 1, t⊥/t = 0.1, ∆0/t = 0.35 and µ/t = 0.5. The dotted lines indicate the zero energy.
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Figure 6.2: Magnetic field dependence of the energy spectra of Bogoliubov quasiparticles with
n = 0 in the PDW state. We set α/t = 1, t⊥/t = 0.1, ∆0/t = 0.35 and µ/t = 0.5.

Using the mirror symmetry of the system, the BdG Hamiltonian is block-diagonalized [104]
and each subsector becomes the Hamiltonian of the noncentrosymmetric superconductor with
the Rashba ASOC under effective magnetic fields µBH ± t⊥ [105]. This system undergoes a
topologically non-trivial phase under the sufficiently large effective magnetic field |µBH ± t⊥| >
√

µ2 +∆2
0 [105, 109, 110]. There are two critical magnetic field values, h+c ≈ 0.5 and h−c ≈ 0.7

for µ/t = 0.5, ∆0/t = 0.35 and t⊥/t = 0.1.
First, we show in Fig. 6.1 the energy spectra of Bogoliubov quasiparticles in the PDW state

for α/t = 1, t⊥/t = 0.1, µ/t = 0.5 and ∆0/t = 0.35. In the intermediate magnetic field
[h+c < h (= 0.6) < h−c ], as shown in Fig. 6.1(b), a single branch of the edge mode appears inside
the gap. This is because one mirror sector with the effective magnetic field µBH + t⊥ enters the
topologically non-trivial phase. For the low field [e.g., h (= 0.2) < h+c ], no edge mode appears
[See Fig. 6.1(a)]. On the other hand, in the high magnetic field [h−c < h (= 1)], two branches of
the edge mode appear inside the gap as displayed in Fig. 6.1(c). This indicates that both mirror
sectors satisfy the condition of the topologically non-trivial phase. We can also see the vortex
bound states [Caroli-de Gennes-Matricon (CdGM) modes] within the superconducting gap in
Figs. 6.1(a) and 6.1(c). In Fig. 6.1(b), the CdGM modes are hidden in the continuum spectra
except for E1,0, since the superconducting gap becomes small in the vicinity of the two critical
magnetic fields. The negative slopes of CdGM modes reflect the direction of a magnetic field
[∆(r) = ∆0(r) exp(iφr)].

Fig. 6.2 shows the magnetic field dependence of the energy spectra for n = 0. At the critical
field values [h+c ≈ 0.5 and h−c ≈ 0.7], the superconducting gap closes. In the low field h < h+c ,
there are two finite eigen energies inside the gap in the positive energy side. The lowest one comes
from the mirror sector under the effective magnetic field µBH+ t⊥ and the other one comes from
that with µBH − t⊥. Then, at h+c ≈ 0.5, the mirror sector under the effective magnetic field
µBH + t⊥ enters the topological phase. Subsequently, at h−c ≈ 0.7, the mirror sector under the
effective magnetic field µBH − t⊥ undergoes the phase transition into the topological phase. In
h+c < h < h−c , the mirror sector with µBH + t⊥ has the strictly zero eigen energy and in h > h−c ,
the both mirror sectors have the strictly zero eigen energy.

Next, we investigate the wave functions belonging to the two lowest eigen energy with n = 0.
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Figure 6.3: Wave functions of Bogoliubov quasiparticles in the PDW state belonging to the lowest
eigen energy E1,0 and E2,0 for µBH/t = 0.2 [(a), (b)], µBH/t = 0.4 [(c), (d)] and µBH/t = 1
[(e), (f)]. We set α/t = 1, t⊥/t = 0.1, ∆0/t = 0.35 and µ/t = 0.5.

Figs. 6.3(a) and 6.3(b) show the wave functions with their eigen energy E1,0 ≈ 1.7 × 10−2t and
E2,0 ≈ 4.2× 10−2t, respectively for µBH/t = 0.2. We show the wave functions of quasiparticles
in the layer 1 only. The quasiparticle wave functions are localized around the vortex and have no
amplitude at the edge. This is consistent with Fig. 6.1(a), in which only the vortex bound states
appear inside the gap. Then, we consider the intermediate magnetic field regime [h+c < h (=
0.6) < h−c ]. In Fig. 6.3(d), the wave functions with the energy E2,0 ≈ 1.9 × 10−3t are localized
at the vortex core and have no amplitude at the edge for µBH/t = 0.6. We can consider that
these wave functions are the eigen states of one mirror sector with the effective magnetic field
µBH − t⊥, that is, the eigen states of the mirror sector in the topologically trivial phase. On the
other hand, as show in Fig. 6.3(c), the wave functions with the energy E1,0 ≈ −4.6×10−16t (i.e.,
zero energy) are localized both at the vortex core and at the edge. These eigen wave functions
correspond to those of one mirror sector with the effective field µBH + t⊥ ≈ 0.7t, which is in
the topologically non-trivial phase. The edge bound states appear also in the energy spectra in
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Fig. 6.1(b). Next, we consider the high magnetic field regime [h−c < h (= 1.0)]. In this situation,
both the mirror sectors are in the topologically non-trivial phase, and so the wave functions with
the lowest eigen energies E1,0 ≈ −5.6× 10−16t and E2,0 ≈ 9.1× 10−15t (i.e., zero energies) have
the amplitude both at the vortex core and at the edge [see Figs. 6.3(e) and (f)].

6.4 Summary

We have formulated the bilayer Rashba superconductors in the presence of a vortex by means of
Bogoliubov-de Gennes theory. We have investigated the energy spectra and the wave functions
of bound Bogoliubov quasiparticles at a vortex and an edge in the pair-density wave state. Our
calculations of the energy spectra confirm that the branches of the edge mode appear inside
the gap if satisfying the condition of the topologically non-trivial phase. We can confirm the
appearance of the zero energy vortex and edge quasiparticle states also from the spatial profiles
of the zero energy eigen wave functions under the magnetic field above the critical values.
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Chapter 7

Conclusions

We have experienced that a variety of superconducting properties appears through vortex core
bound states reflecting the internal degree of freedom of the Cooer pair. The experimental
approaches to identify the internal degree of freedom of the Cooer pair are proposed in the
present dissertation. One is the field-angle dependent flux-flow resistivity measurement by mi-
crowaves to probe the phase structure of the Cooper pair and the other is scanning tunneling
spectroscopy/microscopy experiment on the vortex core in noncentrosymmetric and locally non-
centrosymmetric systems to identify the exotic pairing state due to the spin-orbit coupling. These
proposals are based on the microscopically calculated results of the experimentally observable
physical quantities. Superconducting materials with their pairing states yet to be identified will
be found in the future. It is indispensable to compare the experimental results with the theo-
retically calculated ones for various physical quantities under various situations to identify the
unconventional or exotic superconducting phase. The present dissertation provides the theoret-
ical foundations to identify unconventional superconductivity through vortex core bound states.
Unknown exotic superconducting phases and their vortex states will keep exciting our interest.
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Appendix A

Spin-triplet Pairing: Vector

Order Parameter

In this appendix, we see how the order parameter is changed by the rotation in spin space. We
know that the angular momentum is the generator of a rotation. Consider the following unitary
matrix for a rotation about the axis characterized by a unit vector ñ by an infinitesimal angle
δφ:

D(ñ, δφ) = 1− i
J · ñ
~

δφ. (A.1)

J is the angular momentum operator. For spin 1/2 particles, we have the rotation operator of
the order parameter in spin space

D̂(ñ, δφ) = σ̂0 −
i

2
δφñ · σ̂, (A.2)

where ·̂ indicates the 2×2 matrix in spin space. For the order parameter in spin space

∆̂ =

(

∆↑↑ ∆↑↓

∆↓↑ ∆↓↓

)

, (A.3)

we conduct the rotational transformation.

D̂(ñ, δφ)∆̂D̂
T(ñ, δφ) =

[

σ̂0 −
i

2
δφñ · σ̂

]

∆̂

[

σ̂0 −
i

2
δφñ · σ̂

]T

= ∆̂− ∆̂

(

i

2
δφñ · σ̂T

)

− i

2
δφñ · σ̂∆̂+ o

(

δφ2
)

= ∆̂− i

2
δφñ ·

(

σ̂∆̂− ∆̂σ̂yσ̂σ̂y

)

+ o
(

δφ2
)

. (A.4)

Here we used the relation σ̂T = −σ̂yσ̂σ̂y . Hence, it turned out that under rotation in spin space
the order parameter is transformed into as follows:

∆̂′ = D̂(ñ, δφ)∆̂D̂
T(ñ, δφ)

= ∆̂− i

2
δφñ ·

(

σ̂∆̂σ̂y − ∆̂σ̂yσ̂
)

σ̂y + o
(

δφ2
)

. (A.5)

For spin-singlet pair, ∆↑↑ = ∆↓↓ = 0 and ∆↑↓(≡ ∆) = −∆↓↑. Then the pairing state is

written as ∆̂ = ∆iσ̂y. The state vector of a spin-singlet pairing is expressed as |Ψ〉 = ∆(| ↑↓
〉 − | ↓↑〉). |ss′〉 represents the spin state of a Cooper pair (| ↑↑〉 : Sz = 1, | ↑↓〉, | ↓↑〉 : Sz = 0, | ↓↓
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〉 : Sz = −1). Performing the rotation in spin space for the spin-singlet order parameter, we have

∆̂′ = D̂(ñ, δφ)∆̂D̂
T(ñ, δφ)

= (∆iσ̂y)−
i

2
δφñ · [σ̂ (∆iσ̂y) σ̂y − (∆iσ̂y) σ̂yσ̂] σ̂y

= ∆iσ̂y +
1

2
δφ∆ñ · (σ̂ − σ̂) σ̂y

= ∆iσ̂y

= ∆̂. (A.6)

Therefore, the spin-singlet order parameter is not changed under rotation in spin space.
For spin-triplet pair, ∆↑↓ = ∆↓↑ ≡ ∆0, ∆↑↑ = ∆↓↓ 6= 0. The state vector of a spin-triplet

pairing is |Ψ〉 = ∆↑↑| ↑↑〉+∆0(| ↑↓〉+ | ↓↑〉) +∆↓↓| ↓↓〉. We here consider the transformation of
the spin quantization axis. It is convenient to express the state vector of the pairing state as the
three dimensional vector under rotation in spin space. We consider the following bases:

|Sz = 0〉 = 1√
2
(| ↑↓〉+ | ↓↑〉), (A.7)

|Sx = 0〉 = 1√
2
(−| ↑↑〉+ | ↓↓〉), (A.8)

|Sy = 0〉 =
i√
2
(| ↑↑〉+ | ↓↓〉). (A.9)

Using these bases, the state vector of a spin-triplet pairing is written as

|Ψ〉 =
√
2

[

−
∆↑↑ −∆↓↓

2
|Sx = 0〉+

∆↑↑ +∆↓↓

2i
|Sy = 0〉+∆0|Sz = 0〉

]

, (A.10)

≡
√
2 [dx|Sx = 0〉+ dy |Sy = 0〉+ dz |Sz = 0〉] , (A.11)

=
√
2d (A.12)

Here we define ∆↑↑ = −dx+idy, ∆↓↓ = dx+idy, ∆0 = dz. The vector d, which is called d vector,
is often used as the vector order parameter instead of ∆. Using the d vector, the spin-triplet
order parameter is expressed as ∆̂ = (d · σ̂)iσ̂y. Under the rotation in spin space, the vector
order parameter ∆ = (∆x, ∆y, ∆z) for a spin-triplet pair is transformed as

∆̂′ = D̂(ñ, δφ)∆̂D̂
T(ñ, δφ)

= (∆ · σ̂iσ̂y)−
i

2
δφñ · [σ̂ (∆ · σ̂iσ̂y) σ̂y − (∆ · σ̂iσ̂y) σ̂yσ̂] σ̂y + o

(

δφ2
)

= ∆ · σ̂iσ̂y −
i

2
δφñ · [σ̂ (∆ · σ̂)− (∆ · σ̂) σ̂] iσ̂y + o

(

δφ2
)

= ∆ · σ̂iσ̂y −
i

2
δφñ · 2i∆× σ̂iσ̂y + o

(

δφ2
)

= ∆ · σ̂iσ̂y + δφñ ·∆× σ̂iσ̂y + o
(

δφ2
)

= ∆ · σ̂iσ̂y + δφ (ñ×∆) · σ̂iσ̂y + o
(

δφ2
)

= [∆+ δφ (ñ×∆)] · σ̂iσ̂y + o
(

δφ2
)

. (A.13)

Thus, the vector order parameter ∆ certainly behaves as the three dimensional vector under the
transformation of the spin quantization axis.
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Appendix B

Moyal Product

We would like to obtain the Wigner representation of the following quantity:

Č(r, r′, iωn) =

∫

dr′′Ǎ(r, r′′, iωn)B̌(r′′, r′, iωn). (B.1)

Here, X̌ indicates the Green’s function in Numbu space. To obtain the Wigner representation
Č(R, k̄, iωn), we first write Ǎ(r, r′′, iωn) and B̌(r′′, r′, iωn) in the Wigner representation.

Č(r, r′, iωn) =

∫

dr′′Ǎ

(

R′ =
r + r′′

2
, r̄′ = r − r′′, iωn

)

B̌

(

R′′ =
r′′ + r′

2
, r̄′′ = r′′ − r′, iωn

)

=

∫

dr′′

∫

dk̄′

(2π)3

∫

dk̄′′

(2π)3
eik̄

′·(r−r′′)eik̄
′′·(r′′−r′)Ǎ

(

R′, k̄′, iωn

)

B̌
(

R′′, k̄′′, iωn

)

=

∫

dr′′

∫

dk̄′

(2π)3

∫

dk̄′′

(2π)3
eik̄

′·(r−r′′)eik̄
′′·(r′′−r′)

× Ǎ

(

R+
r′′ − r′

2
, k̄′, iωn

)

B̌

(

R− r − r′′

2
, k̄′′, iωn

)

(B.2)

HereR = (r + r′) /2 and we decomposed the arguments of Ǎ and B̌ as Ǎ(R′) = Ǎ (R+ (R′ −R))
and B̌(R′′) = B̌ (R+ (R′′ −R)), respectively. Then, we expand Ǎ and B̌ in the vicinity of R.

Č(r, r′, iωn) =

∫

dr′′

∫

dk̄′

(2π)3

∫

dk̄′′

(2π)3
eik̄

′·(r−r′′)eik̄
′′·(r′′−r′)

×
∞
∑

n=0

1

n!

∂nǍ(R′, k̄′, iωn)

∂R′n

∣

∣

∣

∣

∣

R′=R

(R′ −R)
n

×
∞
∑

m=0

1

m!

∂mB̌(R′′, k̄′′, iωn)

∂R′′m

∣

∣

∣

∣

∣

R′′=R

(R′′ −R)
m

(B.3)

Using the following relations

eik̄
′′·(r′′−r′) (R′ −R)

n
=

(

1

2i

)n
∂n

∂k̄′′n
eik̄

′′·(r′′−r′), (B.4)

eik̄
′·(r−r

′′) (R′′ −R)
m

=

(

− 1

2i

)m
∂m

∂k̄′m
eik̄

′·(r−r
′′), (B.5)
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we obtain

Č(r, r′, iωn) =

∫

dr′′

∫

dk̄′

(2π)3

∫

dk̄′′

(2π)3

×
∞
∑

n=0

1

n!

∂nǍ(R′, k̄′, iωn)

∂R′n

∣

∣

∣

∣

∣

R′=R

(

1

2i

)n
∂n

∂k̄′′n
eik̄

′′·(r′′−r′)

×
∞
∑

m=0

1

m!

∂mB̌(R′′, k̄′′, iωn)

∂R′′m

∣

∣

∣

∣

∣

R′′=R

(

− 1

2i

)m
∂m

∂k̄′m
eik̄

′·(r−r′′)

=

∫

dr′′
∞
∑

n=0

∞
∑

m=0

1

n!

1

m!

(

1

2i

)n(

− 1

2i

)m

×
∫

dk′

(2π)3
∂n

∂R′n
Ǎ(R′, k̄′, iωn)

∣

∣

∣

∣

∣

R′=R

∂m

∂k̄′m
eik̄

′·(r−r′′) (B.6)

×
∫

dk′′

(2π)3
∂m

∂R′′m
B̌(R′′, k̄′′, iωn)

∣

∣

∣

∣

∣

R′′=R

∂n

∂k̄′′n
eik̄

′′·(r′′−r′). (B.7)

Using the integration by parts, we observe

Eq. (B.6) =
∂n

∂R′n
(−1)m

∫

dk̄′

(2π)3
eik̄

′·(r−r′′) ∂m

∂k̄′m
Ǎ(R′, k̄′, iωn)

∣

∣

∣

∣

∣

R′=R

(B.8)

Eq. (B.7) =
∂m

∂R′′m
(−1)n

∫

dk̄′′

(2π)3
eik̄

′′·(r′′−r′) ∂n

∂k̄′′n
B̌(R′′, k̄′′, iωn)

∣

∣

∣

∣

∣

R′′=R

. (B.9)

Note that the terms proportional to (R′−R)n and (R′′−R)m vanish in the integration by parts
at R′ = R and R′′ = R, respectively. Hence, we obtain

Č(r, r′, iωn) =

∫

dr′′

∫

dk̄′

(2π)3

∫

dk̄′′

(2π)3
eik̄

′·(r−r′′)eik̄
′′·(r′′−r′)

×
∞
∑

n=0

∞
∑

m=0

1

n!

1

m!

(

− 1

2i

)n(

1

2i

)m
∂n∂mǍ(R′, k̄′, iωn)

∂R′n∂k̄′m

∣

∣

∣

∣

∣

R′=R

· ∂
m∂nB̌(R′′, k̄′′, iωn)

∂R′′m∂k̄′′n

∣

∣

∣

∣

∣

R′′=R

=

∫

dk̄′

(2π)3

∫

dk̄′′

(2π)3
(2π)3δ(k̄′′ − k̄′)eik̄

′·reik̄
′′·r′

×
∞
∑

n=0

∞
∑

m=0

1

n!

1

m!

(

− 1

2i

)n(

1

2i

)m
∂n∂mǍ(R′, k̄′, iωn)

∂R′n∂k̄′m

∣

∣

∣

∣

∣

R′=R

·
∂m∂nB̌(R′′, k̄′′, iωn)

∂R′′m∂k̄′′n

∣

∣

∣

∣

∣

R′′=R

=

∫

dk̄′

(2π)3
eik̄

′·(r−r
′)

× exp

[

i

2

(

∂

∂R′

∂

∂k̄′′
− ∂

∂k̄′

∂

∂R′′

)]

Ǎ(R′, k̄′, iωn)B̌(R′′, k̄′′, iωn)

∣

∣

∣

∣

∣

R′=R′′=R,k̄′′=k̄′

.

(B.10)
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Therefore, the Wigner representation for Č(r, r′, iωn) = Č(R = (r + r′)/2, r̄ = r − r′, iωn) is
obtained as

Č(R, k̄, iωn) =

∫

dr̄e−ik̄·r̄Č(R, r̄, iωn)

=

∫

dr̄e−ik̄·r̄

∫

dk̄′

(2π)3
eik̄

′·(r−r′)

× exp

[

i

2

(

∂

∂R′

∂

∂k̄′′
− ∂

∂k̄′

∂

∂R′′

)]

Ǎ(R′, k̄′, iωn)B̌(R′′, k̄′′, iωn)

∣

∣

∣

∣

∣

R′=R′′=R,k̄′′=k̄′

=

∫

dk̄′

(2π)3
(2π)3δ(k̄′ − k̄)

× exp

[

i

2

(

∂

∂R′

∂

∂k̄′′
−

∂

∂k̄′

∂

∂R′′

)]

Ǎ(R′, k̄′, iωn)B̌(R′′, k̄′′, iωn)

∣

∣

∣

∣

∣

R′=R′′=R,k̄′′=k̄′

= exp

[

i

2

(

∂

∂R′

∂

∂k̄′′
− ∂

∂k̄′

∂

∂R′′

)]

Ǎ(R′, k̄′, iωn)B̌(R′′, k̄′′, iωn)

∣

∣

∣

∣

∣

R′=R′′=R,k̄′=k̄′′=k̄

≡ Ǎ(R, k̄, iωn) ◦ B̌(R, k̄, iωn). (B.11)

This product is called the circle product or Moyal product.
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Appendix C

Matrix Riccati Equation for a

Noncentrosymmetric

Superconductor with Impurities

In this appendix, we describe briefly the derivation of the matrix Riccati equation including the
Rashba-type spin-orbit coupling term and the impurity self-energy by means of the projection
method [112, 10, 113]. We introduce the projecters:

P̌± =
1

2

(

τ̌0 ±
1

−iπǧ
)

. (C.1)

These projectors satisfy the relations:

P̌± · P̌± = P̌±, (C.2)

P̌+ + P̌− = τ̌0, (C.3)

P̌+ · P̌− = P̌− · P̌+= 0̌. (C.4)

We can confirm the following relation: P̌+ − P̌− = ǧ/(−iπ). Then, the quasiclassical Green’s
function is obtained as ǧ = −iπ

(

P̌+ − P̌−

)

. Substituting this Green’s function into Eq. (4.2),

we have the equation for the projectors P̌±:

−ivF ·∇P̌± =
[

iωnτ̌3 − ∆̌− Σ̌ − αǧk · Š, P̌±

]

. (C.5)

We define the projectors as

P̌+ =

(

σ̂0
−ib̂

)

(

σ̂0 + âb̂
)−1

(

σ̂0 iâ
)

, (C.6)

P̌− =

(

−iâ
σ̂0

)

(

σ̂0 + b̂â
)−1

(

ib̂ σ̂0
)

, (C.7)

which satisfy Eq. (C.2) and (C.4). To satisfy Eq. (C.3), we need the following relations between

â and b̂: (σ̂0 + âb̂)−1â = â(σ̂0 + b̂â)−1, b̂(σ̂0 + âb̂)−1 = (σ̂0 + b̂â)−1b̂. Using these relations, the
quasiclassical Green’s function is obtained as

ǧ = −iπ







(

σ̂0 + âb̂
)−1 (

σ̂0 − âb̂
)

2i
(

σ̂0 + âb̂
)−1

â

−2ib̂
(

σ̂0 + âb̂
)−1

−
(

σ̂0 + b̂â
)−1 (

σ̂0 − b̂â
)






. (C.8)
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Substituting Eq. (C.6) and (C.7) into Eq. (C.5) and calculating with respect to each component,
we obtaine the matrix Riccati equations:

vF ·∇â0 + 2ωnâ0 + â0

(

∆̂†
0 − Σ̂0

21

)

â0 −
(

∆̂0 + Σ̂0
12

)

+ iαgk · (σ̂â0 − â0σ̂) + i
(

Σ̂0
11â0 + â0Σ̂

0
22

)

= 0̂, (C.9)

vF ·∇b̂0 − 2ωnb̂0 − b̂0

(

∆̂0 + Σ̂0
12

)

b̂0 +
(

∆̂†
0 − Σ̂0

21

)

+ iαgk ·
(

b̂0σ̂ − σ̂b̂0

)

− i
(

b̂0Σ̂
0
11 + Σ̂0

22b̂0

)

= 0̂. (C.10)

Here, we define â = â0iσ̂y, b̂ = −iσ̂y b̂0, Σ̂11 = Σ̂0
11, Σ̂12 = Σ̂0

12iσ̂y, Σ̂21 = −iσ̂yΣ̂0
21, Σ̂22 =

−σ̂yΣ̂0
22σ̂y , ∆̂ = ∆̂0iσ̂y, ∆̂

† = −iσ̂y∆̂†
0. The impurity self-energies in which iσ̂y is factored out

are defined by

Σ̂0
11 = −iΓn〈ĝ0〉k̃ = −iΓn

〈

(

σ̂0 + â0b̂0

)−1 (

σ̂0 − â0b̂0

)

〉

k̃

, (C.11)

Σ̂0
12 = Γn〈f̂0〉k̃ = Γn

〈

2
(

σ̂0 + â0b̂0

)−1

â0

〉

k̃

, (C.12)

Σ̂0
21 = −Γn〈 ˆ̄f0〉k̃ = −Γn

〈

2b̂0

(

σ̂0 + â0b̂0

)−1
〉

k̃

, (C.13)

Σ̂0
22 = iΓn〈ˆ̄g0〉k̃ = iΓn

〈

−
(

σ̂0 + b̂0â0

)−1 (

σ̂0 − b̂0â0

)

〉

k̃

. (C.14)

Here we used the definition ĝ = ĝ0, f̂ = f̂0iσ̂y,
ˆ̄f = −iσ̂y ˆ̄f0, ˆ̄g = −σ̂y ˆ̄g0σ̂y.
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Appendix D

Bulk Impurity Effect in

Noncentrosymmetric

Superconductors

D.1 Eilenberger equation

The quasiclassical Green’s function is defined as

ǧ(r, k̃, iωn) = −iπ
(

ĝ if̂

−i ˆ̄f −ˆ̄g

)

. (D.1)

The Eilenberger equation with the impurity self-energy is

ivF(k̃) ·∇ǧ(r, k̃, iωn) +
[

iωnτ̌3 − ∆̌− Σ̌ − αǧk · Š, ǧ(r, k̃, iωn)
]

= 0̌. (D.2)

Σ̂ is the impurity self-energy,

Σ̌(iωn, r, k̃) =

(

Σ11 Σ12

Σ21 Σ22

)

. (D.3)

Calculating the Eilenberger equation with respect to each component in Nambu space, we obtain

∂ĝ0 + iαgk · (σ̂ĝ0 − ĝ0σ̂) + iΣ̂0
11ĝ0 − iĝ0Σ̂

0
11 + (∆̂0 + Σ̂0

12)
ˆ̄f0 − f̂0(∆̂

†
0 − Σ̂0

21) = 0̂,
(D.4)

∂f̂0 + 2ωnf̂0 + iαgk · (σ̂f̂0 − f̂0σ̂) + iΣ̂0
11f̂0 + if̂0Σ̂

0
22 + (∆̂0 + Σ̂0

12)ˆ̄g0 − ĝ0(∆̂0 + Σ̂0
12) = 0̂,

(D.5)

∂ ˆ̄f0 − 2ωn
ˆ̄f0 + iαgk · (σ̂ ˆ̄f0 − ˆ̄f0σ̂)− iΣ̂0

22
ˆ̄f0 − i ˆ̄f0Σ̂

0
11 + (∆̂†

0 − Σ̂0
21)ĝ0 − ˆ̄g0(∆̂

†
0 − Σ̂0

21) = 0̂,
(D.6)

∂ ˆ̄g0 + iαgk · (σ̂ˆ̄g0 − ˆ̄g0σ̂)− iΣ̂0
22
ˆ̄g0 + iˆ̄g0Σ̂

0
22 + (∆̂†

0 − Σ̂0
21)f̂0 − ˆ̄f0(∆̂0 + Σ̂0

12) = 0̂,
(D.7)

where we have defined ∂ = vF ·∇ and

ĝ = ĝ0, f̂ = f̂0iσ̂y,
ˆ̄f = −iσ̂y ˆ̄f0, ˆ̄g = −σ̂y ˆ̄g0σ̂y , (D.8)

Σ̂11 = Σ̂0
11, Σ̂12 = Σ̂0

12iσ̂y, Σ̂21 = −iσ̂yΣ̂0
21, Σ̂22 = −σ̂yΣ̂0

22σ̂y, (D.9)

∆̂ = ∆̂0iσ̂y, ∆̂
† = −iσ̂y∆̂†

0. (D.10)
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D.2 Impurity self-energy in the Born limit

In this appendix, we describe the non-magnetic impurity scattering in the bulk. We assume the
s-wave scattering in the Born limit. The impurity self-energy is given by

Σ̌(r, iωn) =
Γn

π

〈

ǧ(r, k̃, iωn)
〉

k̃
(D.11)

= Γn

(

−i〈ĝ(r, k̃, iωn)〉k̃ 〈f̂(r, k̃, iωn)〉k̃
−〈 ˆ̄f(r, k̃, iωn)〉k̃ i〈ˆ̄g(r, k̃, iωn)〉k̃

)

(D.12)

where the brackets 〈· · · 〉
k̃
indicate average over the Fermi surface and Γn = πnimpNFv

2 is the
impurity scattering rate in the normal state. nimp is the density of impurities, NF[= (NI+NII)/2]
is the density of states at the Fermi level in the normal state, v is the impurity potential for
s-wave scattering.

At least in spatially uniform systems or in spatially inhomogeneous systems in the clean limit
(e.g., clean vortex states), we can separate the Green’s functions with respect to each band split
due to the spin-orbit coupling using the band basis (see the appendix of Ref. [29] and see also
Refs. [30, 28]). Then transforming to the orbital basis the Green’s functions are expressed as
[29, 28]

ĝ = gIσ̂I + gIIσ̂II, f̂ = (fIσ̂I + fIIσ̂II) iσ̂y, (D.13)

ˆ̄f = −iσ̂y
(

f̄Iσ̂I + f̄IIσ̂II
)

, ˆ̄g = −σ̂y (ḡIσ̂I + ḡIIσ̂II) iσ̂y, (D.14)

with σ̂I,II = (σ̂0 ± ḡk · σ̂) /2 and ḡk = gk/|gk|. Provided the Green’s functions are invariant
under k → −k [37], then

〈ĝ〉
k̃
=

1

2
〈gI + gII〉k̃σ̂0, 〈f̂〉

k̃
=

1

2
〈fI + fII〉k̃σ̂0iσ̂y, (D.15)

〈 ˆ̄f〉
k̃
= −iσ̂y

1

2
〈f̄I + f̄II〉k̃σ̂0, 〈ˆ̄g〉

k̃
= −σ̂y

1

2
〈ḡI + ḡII〉k̃σ̂0σ̂y, (D.16)

because ḡ−k = −ḡk. Thus,

〈ĝ0〉k̃ =
1

2
〈gI + gII〉k̃σ̂0, 〈f̂0〉k̃ =

1

2
〈fI + fII〉k̃σ̂0, (D.17)

〈 ˆ̄f0〉k̃ =
1

2
〈f̄I + f̄II〉k̃σ̂0, 〈ˆ̄g0〉k̃ =

1

2
〈ḡI + ḡII〉k̃σ̂0. (D.18)

Therefore,

Σ̂0
11 = −iΓn〈ĝ0〉k̃ = −iΓn

1

2
〈gI + gII〉k̃σ̂0, Σ̂0

12 = Γn〈f̂0〉k̃ = Γn

1

2
〈fI + fII〉k̃σ̂0, (D.19)

Σ̂0
21 = −Γn〈 ˆ̄f0〉k̃ = −Γn

1

2
〈f̄I + f̄II〉k̃σ̂0, Σ̂0

22 = iΓn〈ˆ̄g0〉k̃ = iΓn

1

2
〈ḡI + ḡII〉k̃σ̂0. (D.20)

We notice that the impurity self-energies are proportional to the unit matrix σ̂0 in the bulk.
In the bulk uniform system, the spatial derivative term in the Eilenberger equation (D.7) is
neglected. Using the obtained impurity self-energy (D.20), we have

iΣ̂0
11ĝ0 − iĝ0Σ̂

0
11 = 0̂, (D.21)

2ωnf̂0 + iΣ̂0
11f̂0 + if̂0Σ̂

0
22 =

(

2(ωn + σg) 0
0 2(ωn + σg)

)

f̂0, (D.22)

−2ωn
ˆ̄f0 − iΣ̂0

22
ˆ̄f0 − i ˆ̄f0Σ̂

0
11 = −

(

2(ωn + σg) 0
0 2(ωn + σg)

)

ˆ̄f0, (D.23)

− iΣ̂0
22
ˆ̄g0 + iˆ̄g0Σ̂

0
22 = 0̂, (D.24)
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where

σg ≡
Γn

2
(1 + δ)

1

2
〈(gI − ḡI)〉k̃ +

Γn

2
(1− δ)

1

2
〈(gII − ḡII)〉k̃. (D.25)

A parameter δ = (NI −NII)/2NF (−1 < δ < 1) characterizes the the difference in the density of
states. The rotation in spin space, which is represented by the unitary matrix Ûk, yields

Û †
k iαgk · (σ̂Â0 − Â0σ̂)Ûk = iα′

(

0 −2 sin θkAb

2 sin θkAc 0

)

, (D.26)

Û †
k(∆̂0 + Σ̂0

12)Ûk =

(

∆II + σf 0
0 ∆I + σf

)

, (D.27)

Û †
k(∆̂0

† − Σ̂0
21)Ûk =

(

∆∗
II + σ̄f 0
0 ∆∗

I + σ̄f

)

, (D.28)

where

Û †
kÂ0Ûk ≡

(

Aa Ab

Ac Ad

)

, α′ ≡
√

3/2α, ∆I,II ≡ ∆s ± dt|gk|, (D.29)

σf ≡ Γn(1 + δ)
1

2
〈fI〉k̃ + Γn(1− δ)

1

2
〈fII〉, σ̄f ≡ Γn(1 + δ)

1

2
〈f̄I〉k̃ + Γn(1− δ)

1

2
〈f̄II〉. (D.30)

Hence, the impurity effect in the bulk appears only in the replacement of the Matsubara frequency
and the order parameter.

ωn → ωn + σg, ∆I,II → ∆I,II + σf , ∆∗
I,II → ∆I,II + σ̄f . (D.31)

D.3 Gap equation

In the same way as Ref. [29], the Eilenberger equations in the band basis in the presence of
impurities are obtained for the suffix a,

(∆II + σf )f̄a − (∆∗
II + σ̄f )fa = 0, (D.32)

2(ωn + σg)fa + (∆II + σf )ḡa − (∆II + σf )ga = 0, (D.33)

−2(ωn + σg)f̄a + (∆∗
II + σ̄f )ga − (∆∗

II + σ̄f )ḡa = 0, (D.34)

(∆∗
II + σ̄f )fa − (∆II + σf )f̄a = 0. (D.35)

For b,

−2iα′ sin θkgb + (∆II + σf )f̄b − (∆∗
I + σ̄f )fb = 0, (D.36)

2(ωn + σg)fb − 2iα′ sin θkfb + (∆II + σf )ḡb − (∆I + σf )gb = 0, (D.37)

−2(ωn + σg)f̄b − 2iα′ sin θkf̄b + (∆∗
II + σ̄f )gb − (∆∗

I + σ̄f )ḡb = 0, (D.38)

−2iα′ sin θkḡb + (∆∗
II + σ̄f )fb − (∆I + σf )f̄b = 0. (D.39)

For c,

2iα′ sin θkgc + (∆I + σf )f̄c − (∆∗
II + σ̄f )fc = 0, (D.40)

2(ωn + σg)fc + 2iα′ sin θkfc + (∆I + σf )ḡc − (∆II + σf )gc = 0, (D.41)

−2(ωn + σg)f̄c + 2iα′ sin θkf̄c + (∆∗
I + σ̄f )gc − (∆∗

II + σ̄f )ḡc = 0, (D.42)

2iα′ sin θkḡc + (∆∗
I + σ̄f )fc − (∆II + σf )f̄c = 0. (D.43)

For d,

(∆I + σf )f̄d − (∆∗
I + σ̄f )fd = 0, (D.44)

2(ωn + σg)fd + (∆I + σf )ḡd − (∆I + σf )gd = 0, (D.45)

−2(ωn + σg)f̄d + (∆∗
I + σ̄f )gd − (∆∗

I + σ̄f )ḡd = 0, (D.46)

(∆∗
I + σ̄f )fd − (∆I + σf )f̄d = 0. (D.47)
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With use of the same consideration as the appendix in Ref. [29], we can obtaine the following
Green’s functions in spatially uniform systems,

gI,II(iωn, k̃) =
ωn + σg(iωn)

BI,II(iωn, k̃)
, fI,II(iωn, k̃) =

∆I,II(k̃) + σf (iωn)

BI,II(iωn, k̃)
, (D.48)

f̄I,II(iωn, k̃) =
∆∗

I,II(k̃) + σ̄f (iωn)

BI,II(iωn, k̃)
, ḡI,II(iωn, k̃) =

− ωn − σg(iωn)

BI,II(iωn, k̃)
, (D.49)

with BI,II(iωn, k̃) =
√

(ωn + σg(iωn))2 + |∆I,II(k̃) + σf (iωn)|2. The gap equations are

∆s = πT
∑

|ωn|<ωc

[

λs
{

〈f+〉k̃ + δ 〈f−〉k̃
}

+ λm
{

〈|gk|f−〉k̃ + δ 〈|gk|f+〉k̃
}]

, (D.50)

dt = πT
∑

|ωn|<ωc

[

λt
{

〈|gk|f−〉k̃ + δ 〈|gk|f+〉k̃
}

+ λm
{

〈f+〉k̃ + δ 〈f−〉k̃
}]

, (D.51)

where we have defined λs = −esNFV , λt = −etNFV and λm = emNFV (see Appendix F).
f± ≡ (fI ± fII)/2 and ωc is the cut-off frequency. The parameters in the gap equations are
defined in the clean limit as follows [29].

ν =
ψs

dt

∣

∣

∣

∣

∣

T→Tc0−0+

, (D.52)

w = ln

(

T

Tc0

)

+
∑

0≤n<nc(T )

2

2n+ 1
, (D.53)

nc(T ) =
1

2

(

ωc

πT
− 1

)

, (D.54)

λs =
1

ν + δ〈|gk|〉k̃

[

ν

w
− λm

(

1 + δν〈|gk|〉k̃
)

]

, (D.55)

λt =
1

1 + δν〈|gk|〉k̃

[

1

w
− λm

(

ν + δ〈|gk|〉k̃
)

]

. (D.56)
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Appendix E

Impurity Self Energies around a

Vortex Core in

Noncentrosymmetric

Superconductors: s + p-wave case

In this appendix, we show the normal and the anomalous self-energies in the bare Born approx-
imation for s+ p-wave pair.
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Figure E.1: The normal self energies around a vortex core for s + p-wave case (Ψ/Tc : ∆/Tc =
0.2 : 0.8). The impurity scattering rate is set to Γn/Tc = 0.3. Other parameters are α′/Tc = 1,
η/Tc = 0.05. The index (d) and (od) mean the diagonal and off-diagonal components in spin
space, respectively.
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Figure E.2: The anomalous self energies around a vortex core for s+p-wave case (Ψ/Tc : ∆/Tc =
0.2 : 0.8). The impurity scattering rate is set to Γn/Tc = 0.3. Other parameters are α′/Tc = 1,
η/Tc = 0.05. The index (d), (ud) and (du) mean the diagonal, ↑↓ and ↓↑ components in spin
space, respectively.
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Appendix F

Gap Equation for Inhomogeneous

Situation in Noncentrosymmetric

Superconductors

F.1 The general gap equation with spin degree of freedom

According to Sigrist and Ueda [1], the gap equation is defined by

∆s1s2(k, q) = −
∑

k′,s′
1
,s′

2

Vs1s2s′2s′1(k,k
′)
〈

aq/2+k′,s′
1
aq/2−k′,s′

2

〉

, (F.1)

where the relative momentum k = k2 − k1 and the center of mass momentum q = (k1 + k2)/2.
The anomalous Green’s function is given by

Fs′
1
s′
2
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1
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Fs′
1
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2
(k,k′; iωn)e

−iωnτ

= 〈Tτ [aks(τ)ak′s′(0)]〉 . (F.2)

Here β = T−1. We use a unit system in which ~ = kB = 1. Then,

〈
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1
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2

〉
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. (F.3)

Therefore,
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∑
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(F.4)

Performing the Fourier transformation with respect to the center of mass momentum q,

∆s1s2(k,R) =

∫
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(2π)3
eiq·R∆s1s2(k, q)

= − 1
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Here,

∑

k′

→
∫

dk′

(2π)3

=

∫

k′
2
dk′

2π2

∫

dΩk′

4π
. (F.6)

We assume spherical Fermi surface.
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2
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= Fs1s2(k
′,R; iωn) (F.7)

Then, the gap equation becomes
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∑
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We perform the quasiclassical approximation, namely we put k′ = |k′| → k′F:
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We define the quasiclassical anomalous Green’s function following Schopohl [88],
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Hence,

∆s1s2(k̂,R) = −πTNF
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where a Fermi surface average
∫ dΩ′

k

4π = 〈· · · 〉
k̂′ .

F.2 Pairing interaction

We start with the following pairing interaction [28]:
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where τ̂s1s2 = (iσ̂y)s1s2 and τ̂s1s2 = (σiσ̂y)s1s2 . We set V > 0 and e2s + e2t + e2m = 1. Note that
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Then, the gap equation becomes
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(F.14)

where gk =
√

3/2(−k̃y, k̃x, 0) =
√

3/2ḡk. We assume the following parity mixing form of the
pair potential:

∆s1s2(k̂,R) = τ̂s1s2Ψ(R) + (ḡk · τ̂ )s1s2 ∆(R) (F.15)

Finally, we obtain the two gap equation.
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∆(R) = gtπT
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where we define the coupling constant as follows: gs ≡ −esNFV , gm ≡
√

3/2emNFV , gt ≡
−(3/2)etNFV .
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