
Low-cost Network Control System Based on
Software-defined Networking over World Wide
Web Using Sigle-board Computer

言語: en

出版者: ICIC International

公開日: 2024-01-24

キーワード (Ja): 

キーワード (En): Software-defined networking, IP

networks, Single-board computer, Raspberry Pi,

OpenFlow, Ryu

作成者: Imae, Akihiro, Koyama, Osanori, Tomo, Ippei,

Yamaguchi, Minoru, Ikeda, Kanami, Yamada, Makoto

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10466/0002000245URL



International Journal of Innovative
Computing, Information and Control ICIC International c⃝2022 ISSN 1349-4198
Volume 18, Number 3, June 2022 pp. 755–767

LOW-COST NETWORK CONTROL SYSTEM BASED ON
SOFTWARE-DEFINED NETWORKING OVER WORLD WIDE WEB

USING SINGLE-BOARD COMPUTER

Akihiro Imae, Osanori Koyama∗, Ippei Tomo, Minoru Yamaguchi
Kanami Ikeda and Makoto Yamada

Graduate School of Engineering
Osaka Metropolitan University

Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531, Japan
{ sab01019; dd104005 }@edu.osakafu-u.ac.jp; {nf101345; kanami; myamada }@eis.osakafu-u.ac.jp

∗Corresponding author: koyama@eis.osakafu-u.ac.jp

Received December 2021; revised March 2022

Abstract. Recently, software-defined networking (SDN) is one of the network virtual-
ization technologies that has attracted significant attention. SDN allows network devices
to be controlled centrally and flexibly, allowing for changes to configuration parameters,
packet-exchange settings, and quality of service in routing, among other things. Fur-
thermore, SDN reduces network administrators’ network management workloads. SDN-
enabled network devices, on the other hand, are generally more expensive than legacy
network devices, and the total cost is a significant barrier when SDN is deployed in a
datacenter, enterprise, and small-scale networks. In this paper, from the viewpoint of the
cost and network management workload, we propose a network management and control
system based on SDN for Internet protocol (IP) over the world wide web (WWW) using
low-cost single-board computers. To validate the work of the proposal system, we designed
and constructed a small-scale experimental system that mimicked a part of the proposal
system and conducted experiments by using two functions. The experiment result showed
that the proposed system worked properly. As a result, using the proposed system can sig-
nificantly reduce total construction costs when compared to replacing all legacy network
devices with SDN-enabled ones. To be more specifically, the total cost of SDN-enabled
network devices multiplied by the number of devices can be reduced to the cost of a single
Raspberry Pi multiplied by the number of nodes. Furthermore, our proposal system also
contributes to reducing the management workload for network administrators and guar-
anteeing a certain level of security for network devices.
Keywords: Software-defined networking, IP networks, Single-board computer, Rasp-
berry Pi, OpenFlow, Ryu

1. Introduction. Recently, the amount of data flowing into data centers and corporate
networks has been increasing due to the rise of new services such as social network ser-
vices and cloud computing. Therefore, resource management and optimization for such
networks have been important [1-3]. The number of network devices in the network is
growing in response to the increase in the data flow, and so is the workload on network
administrators. Furthermore, the future will necessitate the design and operation of com-
plex networks to realize previously unimaginable services. In this context, one of the
network virtualization technologies, software-defined networking (SDN), has gained trac-
tion in recent years [4-7]. In SDN, the data plane and control plane, which are integrated
into legacy network devices, are separated, and the control plane is integrated into a
software called the controller. With this separation, network administrators can operate

DOI: 10.24507/ijicic.18.03.755

755



756 A. IMAE, O. KOYAMA, I. TOMO, M. YAMAGUCHI, K. IKEDA AND M. YAMADA

the controller to change the configuration parameters of each SDN-enabled network de-
vice, thus reducing the management workload on network administrators. Furthermore,
by connecting the controller to external applications, various functions such as routing
and quality of service can be intricately controlled. With these external applications, it
is also possible to build complex, flexible, and dynamic networks that were previously
unimaginable [8-10]. As a result, SDN has been actively deployed in data centers and
large enterprise networks to take advantage of its significant benefits. To fully reap the
benefits of SDN, all existing network devices must be replaced with SDN-enabled ones.
SDN-enabled network devices, on the other hand, are generally more expensive than lega-
cy networks devices. Therefore, it is difficult to replace all network devices at once from
the point of view of the cost, which is a major barrier to SDN introduction [11,12].
Several pieces of research have been done to solve the problem of total cost caused by

replacing all devices with SDN-enabled devices at once. One solution is to adopt the idea
of hybrid SDN [13-15], where legacy network devices and SDN-enabled devices coexist
in the network. Hybrid SDN is based on the idea of gradually replacing network devices
with SDN-enabled ones, rather than replacing all network devices at once. The gradual
replacement approach solves the cost problem, but it does not allow you to fully benefit
from SDN’s reduced management workload. As a result, to replace all network devices at
once with SDN-enabled ones while lowering costs, a study using inexpensive single-board
computers as SDN-enabled Ethernet switches was conducted [16-19]. Due to the use of
low-cost single-board computers as switches, switching performance was low and limited to
use in low-speed networks. Therefore, the solution cannot be used in a high-speed network
such as the gigabit-speed network. On the other hand, research has been conducted on
how to update legacy network devices to SDN-enabled network equipment to use high-
performance server equipment [20,21] and to use high-performance virtual switches [22].
The data plane in SDN was newly implemented in a high-performance server or virtual
switch in these studies, and the legacy network device was updated by linking with them.
Aside from the development costs, such as program implementation, it is difficult to apply
them to a gigabit-speed network because the server or virtual switch is responsible for
data transfer. If used, it necessitates the use of a very high-performance server or virtual
switch, which raises the overall system construction cost. From this background, we have
researched how to introduce a cost-effective SDN system that utilized legacy network
devices by newly adding inexpensive single-board computers into the existing network
[23-27]. In our previous research, we have proposed a system that has an inexpensive
single-board computer for a legacy network device in order to make it SDN-enabled. In
addition, we have proposed applications that work together with a controller and a new
function that notifies the controller of network information using packet-in message. In the
research, important points are only adding a single-board computer for a legacy network
device and translating SDN control commands into vendor-specific control commands in
the single-board computers.
In this paper, we propose a system that is more cost effective than our previous pro-

posed system to realize SDN deployment at a low cost. Surprisingly, the translation of
control commands by a single-board computer at each node has the advantage of prevent-
ing unencrypted packets from flowing over the IP network. Furthermore, by introducing
a web server to make the controller interface (IF) web-based, we reduce the management
workload on the network administrator in our proposal system. Furthermore, by incorpo-
rating a database, we have realized a function to visualize network device configuration
and parameters on the controller interface. The proposal system not only significantly
reduces the cost of implementing SDN, but it also allows the use of the network class



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 757

used before the SDN update. The high functionality of the system allows network ad-
ministrators to change the configuration parameters of network devices and refer to the
information of the network device from anywhere in the network via the world wide web
(WWW), independent of where the controller is implemented.

This paper is organized as follows. Section 2 describes the proposed system. In Sec-
tion 3, we describe the results of verifying the operation of the proposed system on an
experimental network. Finally, the conclusions of this paper are given.

2. Cost-Effective Network Control System.

2.1. Proposal method. Figure 1 shows the methods used in the proposal system in this
paper. In Figure 1, the desired control commands are delivered from the SDN controller to
the single-board computer using OpenFlow [28-31] (OF) which is SDN protocol. In other
words, the control commands sent by the OpenFlow controller are received as OpenFlow
messages by the OpenFlow switch in the single-board computer, and after reading the
information in the OpenFlow message, they are translated into vendor-specific control
commands and sent to the single-board computer via vendor-specific protocols such as
Telnet and secure shell (SSH). The legacy network device is configured in response to the
control commands that are sent to it. Furthermore, it is critical to note that a single-
board computer can translate control commands for multiple legacy network devices. In
other words, in Figure 1, there are many OpenFlow connections between the OpenFlow
controller and the OpenFlow switch. The number of connections equals the number of
legacy network devices, and each connection can be used to identify the desired legacy
network device. As a result, we can control many network devices with a single-board
computer, which is less expensive than the proposed system in our previous study [23-27].

Figure 1. Method of translating control commands

The translation mechanism in which SDN control commands are translated into vendor-
specific control commands is very simple. Setting values in legacy network device such as
port number, static routing table, and virtual local area network (VLAN) number are set
to parameters in OpenFlow-Mod message. The parameters are included in the fields of
header, match, and action of the OpenFlow-Mod message. The OpenFlow message is re-
ceived by OpenFlow switch in the single-board computer. The single-board computer
has a dictionary that includes one-to-one correspondences between the parameter in
OpenFlow-Mod message and vendor-specific control command. We have developed the
dictionary in previous researches [23-27]. If the type of the received message is OpenFlow-
Mod, the parameters in OpenFlow-Mod message are changed to vendor-specific control
commands corresponding one-to-one with them using the dictionary. Finally, the vendor-
specific control commands are sent by vendor-specific communication protocol.



758 A. IMAE, O. KOYAMA, I. TOMO, M. YAMAGUCHI, K. IKEDA AND M. YAMADA

2.2. Overview of the proposal system. Figure 2 shows an overview of the proposal
system. The proposal system can be divided into three layers for each main function.
In Figure 2, we adopt the method described in Figure 1. Furthermore, the controller
establishes SDN connections with SDN-enabled network devices as well as single-board
computers. Furthermore, various applications can be linked to the controller, allowing for
flexible network construction and operation. In the proposal system, for example, web
servers and databases are used as applications. As a result, the network administrator’s
user interface (UI) is the web pages provided by the web server rather than the controller.
In addition to storing the settings information of network devices in the database and
visualizing them, the UI is improved by implementing a language switching function
(Japanese or English) on the web page to reduce the management workload of network
administrators.

Figure 2. Overview of the proposal system

2.3. Configuration of the proposal system. Figure 3 shows a configuration of the
proposed system in this paper. In the proposal system, there are Node-1 to Node-N, and
each node is connected by Internet protocol (IP). In Node-1, there is a control server
and a Raspberry Pi [32], one of the single-board computers, and the number of SDN
connections established is equal to the number of legacy network devises in the node. In
addition, the method in Figure 1 is used to update the legacy network devices in Node-1
to support SDN. Only the Raspberry Pi is present from Node-2 to Node-N, and it has
established connections with the controller in Node-1. Similarly, the Raspberry Pi in each
node updates the legacy network devices to support SDN. In Figure 3, the manager PC is
also in Node-1, but it could be in any other node. In other words, the controller of Node-1
can be used from any other node via the web, which greatly contributes to reducing the
management workload on network administrators.

2.4. Functional components and processing flow. Figure 4 shows the configuration
of functional components and the operation flow at Node-1 in the proposal system shown
in Figure 3. The network administrator uses the manager PC running a web browser to
change the settings of the legacy network devices from Layer-1 to Layer-3 in the open sys-
tems interconnection reference model and to refer to the current configuration information
of the network devices. First, the network administrator selects the desired device from
the legacy network devices to be managed, then selects the desired configuration items,
which are the functions on the device from Layer-1 to Layer-3, enters the parameters, and



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 759

Figure 3. Proposal system

Figure 4. Functional components and processing flow

sends them. Alternatively, once a device has been selected by the network administrator,
a control command referring to the device’s configuration information can be sent. Next,
the sent control command is received by the web server in the control server through
the transmission control protocol/Internet protocol (TCP/IP)-IF, and if it is a control
command to change the device settings, it is passed to the OpenFlow controller after
updating the database, and if it is the control command to refer the device configuration
information, the information is retrieved from the database and is sent back. Following
that, the OpenFlow controller uses the received control commands to identify the Open-
Flow connection to be used and sends the control commands as an OpenFlow message.
The OpenFlow message sent is received by the OpenFlow switch in the Raspberry Pi
that has established the OpenFlow connection, and the control commands are translated
through the adapter and sent to the device using the vendor-specific protocol. In this pa-
per, we adopt Telnet which has long been used as the vendor-specific protocol. Telnet is



760 A. IMAE, O. KOYAMA, I. TOMO, M. YAMAGUCHI, K. IKEDA AND M. YAMADA

a communication protocol used in IP networks to control remote servers and routers and
switches from a terminal generally. Because all communication in Telnet is unencrypted,
sending packets over the IP network is risky; however, in our proposed system, packets
flowing over the IP network are limited to encrypted packets such as OpenFlow packets.
Because unencrypted packets, such as Telnet packets, can only travel within each node,
the network can be run relatively safely.

3. Experimental Demonstration. To verify the work of the proposal system, we built
a small-scale experimental system that mimics Node-1 in Figure 3. In the experimental
system, the two functions were executed three times each on two legacy layer-3 switches
(L3SW) and the work was verified by observing the receiving throughput of the router
tester. Furthermore, Wireshark [33], one of the packet capture tools, was used in the
experimental system to capture packets before and after the execution of the two functions.
As a result, the proposed system’s correct operation was confirmed further by capturing
major packets such as OpenFlow packets.

3.1. Experimental setup. Figure 5 shows the experimental setup. Two L3SWs, a router
tester, a manager PC, a control server, a Raspberry Pi, and an analyzer for packet capture
were located as shown in Figures 3 and 4. The router tester kept 0.9 Gbps traffic flowing
through the two L3SWs. The traffic was received on three ports, Rx1 through Rx3.
In other words, three IP addresses (192.168.23.2, 192.168.24.2, and 192.168.30.2) were
assigned to the receiving ports of the router tester, and 0.3 Gbps traffic destined for each
IP address was continuously flowing. As a default setting, L3SW1 was not configured
with a static routing table for Rx1, Rx2, and Rx3, but L3SW2 was configured to route
correctly, including the IP interface settings. The IP interface settings referred to the
IP address assigned to the network device’s virtual local area network (VLAN), and the
VLAN was configured with the ports that participate in that VLAN. In other words,
L3SW2 had three VLANs and their respective IP interfaces configured on a single port
that was used as the sending port for routing packets to Rx1, Rx2, and Rx3. As the result
of initial settings, the receiving throughput of the router tester by default was 0 Gbps.

Figure 5. Experimental setup



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 761

3.2. User interface. Figure 6 shows the UI used by the network administrator. Figure
6(a) shows the transition of the UI when accessing the web server from a web browser
and selecting L3SW2 from the list of managed devices. The left side of the final UI by the
transition of the web page shows the setting list referring to the database. On the right
side, there are boxes for entering parameters for executing some functions from Layer-1
to Layer-3, and after entering parameters in each function and clicking the send button,
control commands can be sent to the web server and the database can be updated. In
Figures 6(b) and 6(c), the left side shows the UI of referring to the database of IP Interface
in L3SW2 of the initial configuration and after the experiment, respectively, and the right
side shows the UI of referring to the database of static routing table in L3SW1.

(a) User interface on web browser in manager PC

(b) Database reference in initial settings

(c) Database reference after executing functions

Figure 6. User interface



762 A. IMAE, O. KOYAMA, I. TOMO, M. YAMAGUCHI, K. IKEDA AND M. YAMADA

3.3. Experimental procedure.

3.3.1. System verification with increasing IP-throughputs. As shown in Figure 5, static
entries were added to the routing table in L3SW1. Router tester had three destinations,
and the three destinations were configured one by one so that traffic could flow to each
destination. In other words, after the initial settings, the manager PC sent the control
command to add the static routing table three times. When the control command was
correctly sent to L3SW1 according to the processing flow depicted in Figure 4, the router
tester’s receiving throughput increased by about 0.3 Gbps for each sending control com-
mand. Therefore, it was possible to verify the work of the proposal system by observing
the receiving throughput of the router tester and seeing the change.

3.3.2. System verification with decreasing IP-throughputs. After completing the addition
static entries of the routing table in 3.3.1, the IP interfaces of L3SW2 were removed as
shown in Figure 5. In other words, the three IP interfaces initially set in L3SW2 were
removed in order by operating the manager PC. When the control command is correctly
sent to L3SW2 according to the processing flow shown in Figure 4, the router tester’s
receiving throughput drops by about 0.3 Gbps for each sending control command until it
reaches 0 Gbps. Therefore, it was possible to verify the work of the proposal system from
the change of the throughput as well as 3.3.1.

3.3.3. System verification with packet analysis. As shown in Figure 5, packet capture
was performed using LAN analyzer. We set the port mirroring function for the ports
connected to the management PC, control server, and Raspberry Pi in layer-3 switch
2, and all packets are mirrored from each device to the layer-3 switch on the analyzer.
Wireshark, one of the packet capture tools, was used to capture the major packets in
the experiment. In other words, a total of six OpenFlow packets were observed in the
experiments of 3.3.1 and 3.3.2 and the capture of these packets confirmed the correct work
of the proposed system.

3.4. Results of experimental demonstration. Figure 7(a) shows the observed changes
in the receiving throughput in the router tester, and Figure 7(b) shows the results of packet
capture. In Figure 7(a), the receiving throughput increases three times at approximately
300 Mbps, and then decreases three times at approximately 300 Mbps before reaching 0
bps. This result indicates that the addition of the static routing table and deletion of the
IP interface described in Sections 3.3.1 and 3.3.2 were carried out correctly. Furthermore,
in Figure 7(b), OpenFlow packets are correctly captured six times, described in Section
3.3.3, and changes in receiving throughput begin with the observation of OpenFlow pack-
ets within a few seconds of each other. Therefore, two results confirm that the proposed
system was working properly.
Next, we explain how much the proposed system can reduce the cost compared to

replacing all the legacy network devices with SDN-enabled network devices. Table 1 shows
the price of the SDN-enabled white-box switch in 2020 and the prices of the Raspberry
Pi and control server used in the proposal system and software. As shown in Table 1,
depending on performance, SDN-enabled network device costs about $2,900-$3,900 [21]
and replacing all the legacy network devices with SDN-enabled ones will require a huge
cost. The price of a Raspberry Pi, on the other hand, is around $33.9 [34] and Raspberry Pi
in the proposed method only requires the number of nodes in the network, so the network
construction cost is low. Furthermore, operating system (OS) for the Raspberry Pi and
OpenFlow switch are both free software. The control server is also a general-purpose,
low-cost one, and both the operating system and the Ryu [35] used as the SDN controller



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 763

(a) Receiving throughput change of router tester

(b) Packet analysis

Figure 7. Results of experiments

Table 1. Comparison of cost

Reference [21] Proposal System

Hardware,
Software/OS

SDN-enabled
white-box switch

Raspberry Pi 3
Model B+

Control server
(HP Elite Desk
705 G3 SFF)

• Ryu
(OF Controller)
• Open vSwitch
(OF Switch)

24 ports 40 ports Raspbian 10 CentOS 7.9
10 Gbps 10 Gbps (Free) (Free)

Cost $2,900 $3,900 $33.9 $590 Free

are free software. For these reasons, the proposed system can realize the deployment of
SDN at a low cost.

Finally, we explain how much the proposed system in this research can reduce the cost
compared to our previous system [23-27]. In the previous system, the number of Raspberry
Pi required is the same as the number of legacy network devices. However, in the proposed



764 A. IMAE, O. KOYAMA, I. TOMO, M. YAMAGUCHI, K. IKEDA AND M. YAMADA

system, the number of Raspberry Pi is the same as the number of network nodes. In
general, dozens or hundreds of the legacy network devices are included in a network node.
It is possible to reduce the number of Raspberry Pi as single-board computer. Therefore,
the proposed system can significantly reduce the system construction cost compared to
our previous system.

4. Conclusions. In this paper, we proposed a system that added new single-board com-
puters as a low-cost method to achieve centralized management by SDN. When compared
to replacing all legacy network devices with SDN-enabled ones, the cost could be signifi-
cantly reduced. The central idea is to use single-board computers to translate SDN control
commands into vendor-specific control commands. Furthermore, this translation function
can provide some level of security for network devices that only support non-encrypted
communication protocols like Telnet. In addition, linking the SDN controller with external
applications can achieve high functionality and contribute to reducing the management
workload for network administrators. In this study, we adopted a web server and a data-
base for advanced functionality to remove the management restriction based on the im-
plemented location of the SDN controller, and by storing the configuration information
of network devices in the database, the administrator could refer to it at any time. We
also created an experimental network that mimicked a portion of the proposal system and
tested its functionality. As a result of the receiving throughput change of the router tester
and packet capture, the proposal system was found to be operationally sound. However,
the number of network devices that a single Raspberry Pi can manage has yet to be
validated and the controller and single-board computer are the single point of failure in
each other. In the future, the number of network devices that can be managed by one
single-board computer will be investigated and the single point of failure in the proposed
system will be overcome.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 16K06-
306.

REFERENCES

[1] W. Li, D. Guo, K. Li, H. Qi and J. Zhang, iDaaS: Inter-datacenter network as a service, IEEE
Transactions on Parallel and Distributed Systems, vol.29, no.7, pp.1515-1529, 2018.

[2] N. C. Luong, P. Wang, D. Niyato, Y. Wen and Z. Han, Resource management in cloud networking
using economic analysis and pricing models: A survey, IEEE Communications Surveys & Tutorials,
vol.19, no.2, pp.954-1001, 2017.

[3] M. Noormohammadpour and C. S. Raghavendra, Datacenter traffic control: Understanding tech-
niques and tradeoffs, IEEE Communications Surveys & Tutorials, vol.20, no.2, pp.1492-1525, 2018.

[4] I. Farris, T. Taleb, Y. Khettab and J. Song, A survey on emerging SDN and NFV security mechanisms
for IoT systems, IEEE Communications Surveys & Tutorials, vol.21, no.1, pp.812-837, 2019.

[5] A. H. Mohammed, R. M. Khaleefah, M. K. Hussein and I. A. Abdulateef, A review software de-
fined networking for Internet of Things, Proc. of 2020 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, pp.1-8, 2020.

[6] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig,
Software-defined networking: A comprehensive survey, Proceedings of the IEEE, vol.103, no.1, pp.14-
76, 2015.

[7] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck and R. Boutaba, Network function
virtualization: State-of-the-art and research challenges, IEEE Communications Surveys & Tutorials,
vol.18, no.1, pp.236-262, 2016.

[8] W. Zhou, L. Li, M. Luo and W. Chou, REST API design patterns for SDN northbound API,
Proc. of the 28th International Conference on Advanced Information Networking and Applications
Workshops, Victoria, BC, Canada, pp.358-365, 2014.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 765

[9] C. Banse and S. Rangarajan, A secure northbound interface for SDN applications, Proc. of 2015
IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, pp.834-839, 2015.

[10] D. Adami, G. Antichi, R. G. Garroppo, S. Giordano and A. W. Moore, Towards an SDN network
control application for differentiated traffic routing, Proc. of 2015 IEEE International Conference
on Communications (ICC), London, UK, pp.5827-5832, 2015.

[11] B. Kar, E. H. Wu and Y. Lin, The budgeted maximum coverage problem in partially deployed
software defined networks, IEEE Transactions on Network and Service Management, vol.13, no.3,
pp.394-406, 2016.

[12] D. Levin, M. Canini, S. Schmid, F. Schaffert and A. Feldmann, Panopticon: Reaping the benefits
of incremental SDN deployment in enterprise networks, Proc. of 2014 USENIX Annual Technical
Conference, Philadelphia, PA, pp.333-345, 2014.

[13] A. H. Fakhteh, V. Sattari-Naeini and H. R. Naji, Increasing the network control ability and flex-
ibility in incremental switch deployment for hybrid software-defined networks, Proc. of 2019 9th
International Conference on Computer and Knowledge Engineering (ICCKE2019), Mashhad, Iran,
pp.263-268, 2019.

[14] D. F. T. Pontes, M. F. Caetano, G. P. R. Filho, L. Z. Granville and M. A. Marotta, On the transition
of legacy networks to SDN – An analysis on the impact of deployment time, number, and location of
controllers, Proc. of the IM 2021 – 2021 IFIP/IEEE International Symposium on Integrated Network
Management, Bordeaux, France, pp.367-375, 2021.

[15] R. Amin, M. Reisslein and N. Shah, Hybrid SDN networks: A survey of existing approaches, IEEE
Communications Surveys & Tutorials, vol.20, no.4, pp.3259-3306, 2018.

[16] H. Kim, J. Kim and Y. Ko, Developing a cost-effective OpenFlow testbed for small-scale software
defined networking, Proc. of the 16th International Conference on Advanced Communication Tech-
nology: Content Centric Network Innovation, Pyeongchang, Korea, pp.758-761, 2014.

[17] A. N. Toosi, J. Son and R. Buyya, CLOUDS-Pi: A low-cost Raspberry-Pi based micro data center
for software-defined cloud computing, IEEE Cloud Computing, vol.5, no.5, pp.81-91, 2018.

[18] V. Gupta, K. Kaur and S. Kaur, Developing small size low-cost software-defined networking switch
using Raspberry Pi, Advances in Intelligent Systems and Computing, vol.638, pp.147-152, 2018.

[19] M. Ariman, G. Seçinti, M. Erel and B. Canberk, Software defined wireless network testbed using
Raspberry Pi of switches with routing add-on, Proc. of 2015 IEEE Conference on Network Function
Virtualization and Software Defined Network, San Francisco, CA, USA, pp.20-21, 2015.

[20] L. Csikor, L. Toka, M. Szalay, G. Pongrácz, D. P. Pezaros and G. Rétvári, HARMLESS: Cost-
effective transitioning to SDN for small enterprises, Proc. of 2018 IFIP Networking Conference
(IFIP Networking) and Workshops, Zurich, Switzerland, pp.208-216, 2018.

[21] L. Csikor, M. Szalay, G. Rétvári, G. Pongrácz, D. P. Pezaros and L. Toka, Transition to SDN
is HARMLESS: Hybrid architecture for migrating legacy ethernet switches to SDN, IEEE/ACM
Transactions on Networking, vol.28, no.1, pp.275-288, 2020.

[22] S. S. W. Lee, K. Li and M. Wu, Design and implementation of a GPON-based virtual OpenFlow-
enabled SDN switch, Journal of Lightwave Technology, vol.34, no.10, pp.2552-2561, 2016.

[23] S. Aso, Y. Tomioka, O. Koyama, T. Niihara, Y. Ogura and M. Yamada, Web-based remote man-
agement system for optical switch in AWG-STAR with loopback function, Proc. of the 23rd Opto-
Electronics and Communications Conference, Jeju, Korea, P1-03, 2018.

[24] K. Minou, S. Aso, O. Koyama, M. Yamaguchi, Y. Tomioka, Y. Ogura, K. Ikeda and M. Yamada,
OpenFlow-based remote control of optical switch employing IoT device in AWG-STAR with loop-
back function, Proc. of the 24th OptoElectronics and Communications Conference, Fukuoka, Japan,
WP4-G1, 2019.

[25] A. Imae, K. Mino, O. Koyama, K. Oyama, M. Yamaguchi, K. Ikeda and M. Yamada, Router control
function using IoT device supported OpenFlow switch in IP over AWG-STAR network, Proc. of the
25th OptoElectronics and Communications Conference, Taipei, Taiwan, VP74, 2020.

[26] A. Imae, O. Koyama, K. Mino, I. Tomo, M. Yamaguchi, K. Oyama, K. Ikeda and M. Yamada, Cost-
effective router/switch control system based on software-defined networking over world wide web,
International Journal of Innovative Computing, Information and Control, vol.17, no.5, pp.1617-1627,
2021.

[27] K. Mino, A. Imae, O. Koyama, I. Tomo, M. Yamaguchi, K. Oyama, K. Ikeda and M. Yamada,
Event-driven remote configuration function in cost-effective router/switch control systems based on
software-defined networking using IoT devices, ICIC Express Letters, Part B: Applications, vol.13,
no.2, pp.145-153, 2022.



766 A. IMAE, O. KOYAMA, I. TOMO, M. YAMAGUCHI, K. IKEDA AND M. YAMADA

[28] F. Hu, Q. Hao and K. Bao, A survey on software-defined network and OpenFlow: From concept to
implementation, IEEE Communications Surveys & Tutorials, vol.16, no.4, pp.2181-2206, 2014.

[29] W. Braun and M. Menth, Software-defined networking using OpenFlow: Protocols applications and
architectural design choices, Future Internet, vol.6, no.2, pp.302-336, 2014.

[30] M. Alsaeedi, M. M. Mohamad and A. A. Al-Roubaiey, Toward adaptive and scalable OpenFlow-SDN
flow control: A survey, IEEE Access, vol.7, pp.107346-107379, 2019.

[31] Open Network Foundation, https://www.opennetworking.org/, Accessed in December 2021.
[32] Raspberry Pi, https://www.raspberrypi.org/, Accessed in December 2021.
[33] Wireshark, https://www.wireshark.org/, Accessed in December 2021.
[34] Th Pi Hut, https://thepihut.com/, Accessed in December 2021.
[35] Ryu SDN Framework, https://ryu-sdn.org/, Accessed in December 2021.

Author Biography

Akihiro Imae received B.E. degree from Osaka Prefecture University, Japan, in
2020. Currently he is a master’s student of engineering at Osaka Prefecture Universi-
ty. His main research interests include Web-based network control and management
based on software defined networking using single-board computer.

Osanori Koyama received B.E., M.E. and Ph.D. degrees from Osaka Prefecture
University, Japan, in 1999, 2001 and 2013, respectively. Currently he works at Pho-
tonic Innovative Systems Research Group as associate professor in Osaka Metropol-
itan University. His research interests include design and control issues related to
optical IP networks based on software defined networking, and optical fiber sensing
system over IP network.

Ippei Tomo received B.E. degree from Osaka Prefecture University, Japan, in
2021. Currently he is a research member of Photonic Innovative Systems Research
Group in Osaka Metropolitan University. His interests include software development
for wavelength path management in IP over AWG-STAR network.

Minoru Yamaguchi received B.E. and M.E. degrees from Osaka Prefecture Uni-
versity, Japan, in 2014 and 2016, respectively. He is currently enrolled in Ph.D.
program in engineering at Osaka Prefecture University. His research interests in-
clude computation and control methods for wavelength path management in IP over
AWG-STAR network.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 767

Kanami Ikeda is assistant professor of the Department of Electrical & Electron-
ic Systems, Osaka Metropolitan University, Japan. She received Ph.D. degree in
engineering from the University of Electro-Communications, Japan, in 2018. Her re-
search interests include optical communications and networking, optical information
processing, and optical sensing. She is a member of Optica.

Makoto Yamada is professor of the Department of Electrical & Electronic
Systems, Osaka Metropolitan University, Japan. He received B.E. and M.E. degrees
in electrical engineering from the Technical University of Nagaoka, Niigata, Japan
in 1983 and 1985, respectively. He joined NTT Laboratories in 1985, where he was
engaged in research on planar lightwave circuits. Since 1989, he has been engaged
in research on optical fiber amplifiers. In 1999, he received D.E. degree in the area
of optical amplifiers. He joined Osaka Prefecture University in 2008, and has been
the professor since 2013. His research interests include design & control for optical
amplifiers and other components in optical networks.

Prof. Yamada is a Senior Member of the Institute of Electrical and Electronics
Engineers (IEEE), a Senior Member of the Institute of Electronics, Information
and Communication Engineers of Japan (IEICE), a Member of Japan Society of
Applied Physics, and a Fellow of the Optical Society (OSA).

Prof. Yamada received the Paper Award (1994) from the IEICE, the Electronics
Letters Premium (1997) from the Institution of Electrical Engineers, and the Sakurai
Prize (1998) and Meritorious Award of the 40th foundation anniversary (2021) from
the Optoelectronics Industry and Technology Development Association (OITDA).


