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Chapter

Numerical Modeling
Shigekazu Kusumoto and Yasuto Itoh

Abstract

Numerical simulation to reproduce patterns of topography or subsurface structure 
is a useful technique for validating hypotheses regarding their forming processes and/
or tectonics as their background. Here, the author describes an outline of dislocation 
modeling and several methods for applying it to reproduce topography or subsurface 
structure. Finally, it is reported that the formation processes of the Hohi Volcanic 
Zone proposed from geological viewpoints are validated by dislocation modeling.

Keywords: numerical modeling, dislocation modeling, pull-apart basin, restoration, 
Beppu Bay, Hohi Volcanic Zone

1. Introduction

Numerical modeling or numerical simulation is a useful technique for validating 
hypotheses and quantitatively evaluating phenomena. Analog experiments are 
also helpful for validating hypotheses and have often been used to analyze surface 
deformation or trishear zones caused by fault motions and to model caldera forma-
tion [1–5]. However, it is sometimes difficult to conduct laboratory experiments 
as analog experiments, depending on the scale of the structures or phenomena, 
because the similarity rule for the model, including physical properties, has to be 
considered. Additionally, issues with the quantitative analysis of the experimental 
results sometimes occur.

In contrast, numerical simulations are used for the validation and quantitative 
evaluation of various geological and geophysical phenomena, as they enable model-
ing on a realistic scale. Numerical simulation methods, such as dislocation modeling, 
finite element modeling, boundary element modeling, finite difference modeling, 
and discrete element methods, have frequently been used to solve solid earth science 
problems [6–14].

Pull-apart basins, the main structures in our study area, are known to form at 
the fault terminations of right-lateral, right-stepping or left-lateral, left-stepping 
fault zones [15]. Because the lateral fault motion creates subsidence at the fault 
terminations, pull-apart basins are formed at the terminations of the fault zone or 
fault arrangement area, as mentioned above, where the subsidence is superimposed, 
and they are widely distributed worldwide. Rodgers [6] was probably the first study 
to discuss the formation of pull-apart basins through numerical simulations using 
Chinnery’s dislocation solution [16]. Currently, Okada’s dislocation solutions [17, 18] 
are often employed to understand crustal deformation.
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2. Dislocation modeling

Okada’s dislocation solutions are closed analytical solutions that calculate the 
surface and internal deformation and strain fields due to shear and tensile faulting 
with an arbitrary dip in an elastic isotropic half-space.

In geodesy, these solutions have been employed for estimating fault parameters, 
such as fault displacement on fault surfaces (dislocation planes), fault positions, and 
dip, by inverse analysis of surface displacements obtained by GNSS, leveling, and 
other geodetic observations [19, 20]. However, in tectonics, we focus on the basic 
deformation patterns formed by fault motions and discuss whether a combination 
of fault motions can form the topography or subsurface structures estimated by 
geophysical prospecting [21, 22].

In restoration (reproduction) modeling of topography or subsurface structures, 
the analysis is conducted by forward modeling, in which the fault parameters are esti-
mated through trial and error. The geological background and geophysical validities 
are considered in the modeling. The validity of the model for restoring topography 
or subsurface structures is determined by comparing the pattern of the calculated 
topography or subsurface structures with the pattern of the actual structures.

There is a technique in which large Poisson’s ratios are assumed if the phenomena 
at geological time scales are modeled in elastic media [8, 22]. This method covers the 
influence of the cumulative deformation of the fault motion by the elastic constant, 
such as assuming a soft medium imitating fluid.

To reflect the multiple motions of active faults over geological timescales in 
dislocation modeling, Itoh et al. [21] introduced historical fault activities into the 
modeling by superimposing analytical solutions in which fault parameters for each 
fault motion are specified on the concerned fault. They attempted to reproduce the 
shape pattern of the Takayama Basin in central Japan by applying this technique and 
showed that it is a tectonic basin caused by the accumulated right-lateral motions of 
two active faults. In addition, it was revealed that this technique could explain not 
only the topography but also changes in the declination of thermoremanent magne-
tization. This technique has also been applied to validate the formation processes of 
tectonic basins distributed in central Hokkaido [22–24], and the fault motions and 
their combinations have been discussed.

Because these simulations focus on the shape pattern of the topography or subsur-
face structures, the calculated deformation field is often normalized by the absolute 
value of the maximum deformation.

3. Restoration of basement structure of the Hohi Volcanic Zone

A numerical simulation to reproduce the pattern of the basement structure of 
the Hohi Volcanic Zone (HVZ) [25], including Beppu Bay, was performed using 
dislocation modeling [26]. The basement structure was estimated by gravity analyses, 
considering surface geological information, drilling core data, and seismic prospect-
ing data, and was shown to have three basins distributed along the Oita-Kumamoto 
Tectonic Line and Median Tectonic Line (MTL) [27]. Okada’s dislocation plane [17] 
was employed in the modeling.

Following and simplifying the tectonic history of the HVZ, which Itoh et al. [28] 
proposed from a geological point of view, Kusumoto et al. [26] assumed that the base-
ment structure was formed in three stages:
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1. Formation of a half-graben (Stage I, Pliocene).

2. Formation of initial pull-apart basins due to the activation of right-lateral faults 
(Stage II, early Quaternary).

3. Growth of the pull-apart basins due to change in the active area of the right-
lateral fault (Stage III, middle to late Quaternary).

In stage I, it was assumed that the Oita-Kumamoto Tectonic Line and the Kurume-
Hiji Line [29] moved as normal faults under the strong N-S extension stress field. 
They formed a half-graben, which is the basic structure of the HVZ. In stage II, it was 
assumed that the MTL and the Kurume-Hiji Line moved as right-lateral faults under 
the E-W compression stress field. As a result, they formed an initial pull-apart basin 
(Beppu Bay and Shonai Basin). In stage III, the reduction in the active area of the 
MTL promoted the evolution of Beppu Bay. A series of numerical simulations showed 
that the tectonic models of the HVZ proposed by Itoh et al. [28] are also correct from 
a geophysical viewpoint.

In addition, Kusumoto et al. [30] assumed a two-layer model consisting of a 
basement and sedimentary layer in the HVZ. They attempted to calculate the grav-
ity anomaly pattern caused by the basement structure reproduced by Kusumoto 
et al. [26]. They showed that gravity anomalies due to tectonic structures are mostly 
explained, except for the gravity anomaly caused by volcanic structures such as the 
Shishimuta caldera [31].
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