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We investigate the collective mode of a self-gravitating Bose–Einstein condensate (BEC) 
described by the Gross–Pitaevskii–Poisson (GPP) equations. The self-gravitating BEC has 
garnered considerable attention in cosmology and astr ophysics, being pr oposed as a plau- 
sible candidate for dark matter. Our inquiry delves into the breathing and anisotropic col- 
lecti v e modes by numerically solving the GPP equations and using the variational method. 
The breathing mode demonstrates a reduction in period with increasing total mass due to 

the density dependence of the self-gravitating BEC, attributed to the density-dependent 
na ture of self-gravita ting BECs, aligning quantita ti v el y with our anal ytical findings. Ad- 
ditionally, we investigate an anisotropic collecti v e mode in which the quadrupole mode 
intertwines with the breathing mode. The period of the quadrupole mode exhibits similar 
total mass dependence to that of the breathing mode. The characteristics of these periods 
differ from those of a conventional BEC confined by an external potential. Despite the dif- 
ferences in density dependence, the ratio of their periods equals that of the BEC confined 

by an isotropic har monic potential. Further more, an extension of the variational method 

to a spheroidal configuration enables the isolation of solely the quadrupole mode from the 
anisotropic collecti v e mode. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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1. Introduction 

Dark matter (DM) stands as a pivotal topic in the realms of cosmology, astrophysics, and mod-
ern physics. The nature and identity of DM have captivated our attention for some decades. The
characteristics of DM entail its nonemissi v e, nonreflecti v e, and nonabsorpti v e nature towards
light while exerting gravitational influence on matter. Although we cannot directly observe DM
in any optical way, evidence of its existence can be inferred from the rotational curve of galaxies
[ 1 ] and gravitational lensing [ 2 , 3 ]. 

The � cold dark matter ( �CDM) model, based on the assumption of nonrelativistic DM
particles, r epr esents a canonical cosmological frame wor k. It elucidates the large-scale struc-
tures of the uni v erse and has been used for various cosmological and astrophysical studies [ 4 ].
Howe v er, it is widely acknowledged that the �CDM model has substantial discrepancies at
small scales between observational and theoretical results [ 5 , 6 ]. To address this issue, alternate
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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models have been proposed [ 7 ], assuming that, e.g. ultralight scalar particles behave as DM
[ 8 , 9 ] or nongravitational self-interaction among DM particles exists [ 10 , 11 ]. 

An intriguing proposition currently under discussion is the possibility that a DM halo com-
posed of ultralight scalar particles may gi v e rise to a phenomenon known as Bose–Einstein
condensation [ 12–14 ]. Bose–Einstein condensation is a phenomenon in which a macroscopic
quantity of Bose particles in a system condenses into a common quantum state. As a result, the
physical state of the Bose–Einstein condensate (BEC) is described by the macroscopic wave-
function. This phenomenon occurs when the temperature of the Bose gas falls below the critical
threshold necessary for Bose–Einstein condensa tion, indica ting tha t the de Broglie wavelength
of Bose particles exceeds the average interparticle spacing [ 15 ]. 

The challenges inherent in the �CDM model could be alleviated through the occurrence
of Bose–Einstein condensa tion. W hen the mass of a scalar particle ranges from m ∼ 10 

−23 –
10 

−22 eV, it is capable of r eproducing large-scale structur es similar to the �CDM model [ 16 , 17 ].
Furthermore, the Bose gas shows a high critical temperature for Bose–Einstein condensation, 
typically on the order of 10 

9 K [ 18 ], owing to the galactic-scale de Broglie wavelength of approx-
imately 1 kpc [ 13 , 19 ]. Consequently, the DM halo comprising such ultralight scalar particles
has the potential to become a BEC in the uni v erse. Due to their ultralight mass, scalar particles
manifest their quantum nature on a macroscopic scale within this BEC DM halo, and the un-
certainty principle serves to suppress the overpopula tion of DM a t small scales. A promising
candidate for such ultralight DM is, e.g. an axion-like particle proposed in the string theory
[ 20 ]. 

A BEC of DM is intriguing within the realm of low-temperature physics, as it posits the exis-
tence of a galaxy-scale quantum fluid beyond the limita tions of labora tory settings. Quantum
fluids such as superfluids 4 He , 3 He , and atomic BECs are defined as fluids wherein quantum
effects macroscopically manifest owing to extremely low temperatur es. Resear ch on these flu-
ids, including collecti v e modes [ 21 ], quantized vortices [ 22 ], and quantum turbulence [ 23 , 24 ],
has been variously conducted in the field of low-temperature physics [ 15 , 25 , 26 ]. Particularly,
a BEC near zero temperature is quantitati v ely described by the Gross–Pitaevskii (GP) equa-
tion, which governs the time evolution of a macroscopic wavefunction [ 27 , 28 ]. Considering a
BEC of ultralight DM, it should be bound by the gravitational potential of the BEC itself,
and such a self-gravitating BEC follows the Gross–Pitaevskii–Poisson (GPP) equations [ 17 ,
29 , 30 ]. 

The GPP equations enable DM particles to incorporate a short-range contact interaction. As
mentioned above, such self-interaction of DM particles is proposed to resolve the discrepancies
of the �CDM model. Observational data from colliding clusters of galaxies [ 31 , 32 ] suggest the
possibility that DM exhibits nonnegligible nongravitational self-interaction. 

A self-gravitating BEC inherently differs from an atomic BEC due to its trapping potential.
In the realm of low-temperature physics, a BEC is gener ally constr ained by external poten-
tials, which are predetermined regardless of the configuration or movement of the BEC. Con-
versely, a self-gravitating BEC is confined by its gravitational potential, e v en without any exter-
nal potential. Then, the deformation of the self-gravitating BEC can change the depth, range,
and anisotropy of the gravita tional potential. These dif ferences between a self-gravitating BEC
and an atomic BEC are quite significant when considering the former as a candidate for as-
trophysical objects, as it causes quantum hydrodynamical phenomena under the influence of 
self-gravity. 
2/22 



PTEP , 063J01 K. Asakawa et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/6/063J01/7684296 by O

saka C
ity U

niversity M
edical Library user on 22 N

ovem
ber 2024
One of the phenomena affected by the anisotropy of the trapping potential is the collecti v e
mode. It is defined as a low-frequency oscillation of a trapped BEC in response to small fluctu-
ations. Despite being a many-body system, the collecti v e mode can be described by r epr esenta-
ti v e variab les as a one-body motion. For example, within a spherical harmonic potential, a BEC
can show the collecti v e mode characterized by the radius, known as the monopole (breathing)
mode, and another characterized by two semiaxes or their ratio, termed the quadrupole mode.
An important characteristic is the dependency of collecti v e modes on the shape of the trap-
ping potential; in an axisymmetric harmonic potential, the breathing and quadrupole modes
are coupled. Gi v en the alter ation of the gr avita tional potential with the oscilla tions of the BEC
in self-gravitating systems, the collecti v e mode of such a BEC is likely to exhibit distinct behav-
ior from conventional scenarios. 

Various properties of DM halos have been theoretically studied using the GPP equations in
recent studies in astrophysics. 

The Thomas–Fermi (TF) approximation of the GP equation has proven valuable in describ-
ing the equilibrium state of a BEC and carrying out analytical studies. As for a self-gravitating
BEC, this approximation was applied for the first time to compare its consequences with ob-
serva tional da ta on the rota tional curves of galaxies [ 33 ]. Subsequently, numerous studies em-
ploying this approximation have emerged, including the di v ergence of the central density in the
�CDM model called the core-cusp problem [ 34 ], gravitational lensing effects [ 35 ], rotational
deformation [ 36 ], and the effects of quantized vortices [ 37 , 38 ]. 

A self-gravitating BEC has also been investigated through the variational method. In low-
temperature physics, the calculation of the collecti v e mode of a BEC using this method
is renowned and conventional [ 15 , 25 ]. Using the variational method in the study of self-
gravitating BECs, the relationship between the total mass and radius of such systems [ 29 ],
gravitational collapse [ 39 , 40 ], and the phase transition between dilute and dense phases [ 41 ]
have been investigated. 

Numerical investigations into self-gravitating BECs have recently been reported. The analyt-
ical solution of the GPP equations for general scenarios is intricate. Hence, numerical calcu-
lation of the GPP equations is r equir ed to study self-gravitating BECs. Thus far, the stability
of the equilibrium state [ 42 ], the process of stabilization [ 43 ], the rotational velocity of a test
particle within a self-gravitating BEC [ 44 , 45 ], and the collisions among self-gravitating BECs
[ 46 ] were numerically investigated by le v eraging spatial symmetries to mitigate computational
costs. Howe v er, the latest numerical studies have used a 3D system without spatial symmetry,
focusing on quantized vortices in self-gravitating BECs, i.e. their stability [ 47 , 48 ] and collisions
between two self-gravitating BECs with quantized vortices [ 49 ]. 

In this work, we study the 3D dynamics of the collecti v e modes of a self-gravita ting BEC . We
assume a sufficiently large total mass to employ the TF approximation. We pr epar e the initial
state by m ultipl ying the factor on the initial velocity with the equilibrium solution of the GPP
equations and implement time evolution by numerically solving the GPP equations. Firstly, the
breathing mode of the self-gravitating BEC is induced by radially adding the initial velocity.
Our numerical r esults agr ee with the analytical results obtained using the variational method.
Next, by a ppl ying the initial velocity axisymmetricall y, we numericall y obtain the anisotropic
collecti v e mode, in which the quadrupole mode is coupled with the breathing mode. 

This paper is organized as follows. Our model and numerical setup are described in Sect. 2.
Based on this, the breathing mode of a self-gravitating BEC is studied in Sect. 3. The anisotropic
3/22 
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collecti v e mode under self-gravity of the BEC is investigated in Sect. 4. Finally, we conclude
this paper in Sect. 5. 

2. Model and numerical setup 

2.1. GPP model and the equilibrium state 

We consider a self-gravitating BEC composed of scalar bosons with mass m and an s-wave scat-
tering length a at zero temperature. In the GPP model, the physical state of the BEC is described
by the macroscopic wavefunction ψ (r , t) , and the time evolution is given by the following GPP
equations defined as { 

i� ∂ t ψ = − � 
2 

2 m 

∇ 

2 ψ + [ mV + 

4 π� 2 a 
m 

| ψ | 2 ] ψ , 

∇ 

2 V = 4 πmG| ψ | 2 , (1) 

where V (r , t) denotes the gravitational potential [ 14 , 17 , 29 ]. Using the Madelung representation
written by 

ψ (r , t) = 

√ 

ρ(r , t) 
m 

e iθ (r ,t) , (2) 

the GP equation yields the continuity equation and the Euler-like equation, where ρ = m | ψ | 2 
denotes the density and v = � ∇θ/m denotes the velocity field [ 15 ]. Then, the total mass is 

M = 

∫ 
dr ρ(r ) = m 

∫ 
dr | ψ | 2 . (3) 

The total energy E is the sum of the kinetic energy K , the potential energy W , and the self-
interaction energy I gi v en by [ 37 ]: 

E = K + W + I , (4) 

K = 

� 

2 

2 m 

∫ 
dr |∇ψ | 2 , (5) 

W = 

m 

2 

∫ 
dr | ψ | 2 V, (6) 

I = 

2 π� 

2 a 

m 

∫ 
dr | ψ | 4 . (7) 

We can obtain the equilibrium solution of the GPP Eqs. ( 1 ) using the TF approximation [ 33 ].
When the kinetic energy is negligible, denoted as K � I , the configuration of the equilibrium
state is formed by the competition between gravity and self-interaction [ 15 ]. The kinetic energy
becomes insignificant when the total mass is sufficiently large [ 50 ]. The equilibrium configu-
ration is expected to exhibit spherical symmetry under self-gravity. Assuming that the equilib-
rium sta te sa tisfies the ansa tz ψ (r , t) = φ(r ) e −iμt/ � , where μ denotes the chemical potential, the
steady solution of Eq. ( 1 ) is a pproximatel y gi v en by 

ρ(r ) � ρc j 0 

(
πr 

R TF 

)
= ρc 

sin ( πr/R TF 

) 
( πr/R TF 

) 
(r < R TF 

) , (8) 

where r = | r | r epr esents the r adial coordinate, ρc stands for the centr al density, and j 0 is the 0-th
spherical Bessel function. Subsequently, the TF radius R TF 

is defined as the minimum radius
at which the density becomes zero: 

R TF 

= π

√ 

� 

2 a 

3 
, (9) 
Gm 

4/22 
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indica ting tha t the size of a massi v e self-gravitating BEC remains independent of its total mass.
Ther e ar e no densities in the range of r > R TF 

. Thus, the cumulati v e mass profile is expressed
as 

M ( r ) = 

{ 

M TF 
π

{ 
sin 

(
πr 

R TF 

)
− πr 

R TF 
cos 

(
πr 

R TF 

)} 
(r < R TF 

) , 

M TF 

(r > R TF 

) , 
(10) 

where M TF 

is defined as 

M TF 

= 

4 ρc R 

3 
TF 

π
. (11) 

Gi v en that the TF radius remains unaffected by the total mass, Eq. ( 11 ) re v eals that only the
central density escalates, e v en with an increase in the total mass. By solving the Poisson equa-
tion, the gravitational potential becomes 

V (r ) = G 

∫ r 

∞ 

ds 
M(s ) 

s 2 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−GM TF 

R TF 

{
1 + j 0 

(
πr 

R TF 

)}
(r < R TF 

) , 

−GM TF 

r 
(r > R TF 

) . 
(12) 

Ther efor e, using Eqs. ( 5 ), ( 6 ), ( 7 ), ( 8 ), and ( 12 ), the energy of each equilibrium state can be
expressed as 

K � 

π

8 

� 

2 M TF 

m 

2 R 

2 
TF 

{
Si (π ) − π + 

∫ �π

0 
dx 

x 

sin x 

}
, (13) 

W = −3 

4 

GM 

2 
TF 

R TF 

, (14) 

I = 

π2 

4 

� 

2 aM 

2 
TF 

m 

3 R 

3 
TF 

, (15) 

where Si( x ) is a sine integral and �π ( < π ) serves as the cutoff to avoid the di v ergence of the
integral for � → 1. The di v ergence is deri v ed fr om the breakdown of the TF appr oximation,
and Eq. ( 13 ) shows the kinetic energy within a spherical region whose radius is obtained by
subtracting the depth of the BEC surface from the TF radius. The value of � can be estimated
using the ratio between the coherence length ξ = 

√ 

m/ (8 πaρc ) and the TF radius, such that �
∼ 1 − ξ / R TF 

. 

2.2. Numerical setup 

The GPP Eqs. ( 1 ) are expressed in the following dimensionless formulation: { 

i ̃  ∂ t ˜ ψ = − 1 
2 

˜ ∇ 

2 ˜ ψ + [ ̃  V − i ˜ V s + ˜ a | ˜ ψ | 2 ] ˜ ψ , 

˜ ∇ 

2 ˜ V = | ˜ ψ | 2 , (16) 

where the tilde symbols represent the dimensionless variables, and as explained later, the term
−i ˜ V s in the dimensionless GP equation is artificially added owing to a computational rea-
son. The dimensionless variables are defined as follows: ˜ r = r ( ̃  λmc/ � ) , ̃  t = t( ̃  λ2 mc 2 / � ) , ˜ ψ =
ψ{ √ 

4 πG � / ( 
√ 

m c 2 ˜ λ2 ) } , ˜ V = V / ( ̃  λ2 c 2 ) , ˜ a = a { ̃ λ2 c 2 / (mG) } [ 44 ]. The scaling factor ˜ λ can adjust
the system size using the invariance of the equations f or an y value. 1 Then, the dimensionless
total mass and energy are gi v en by 

˜ M = M{ 4 πGm/ ( ̃  λ� c ) } and 

˜ E = E { 8 πGm/ (� c 3 ˜ λ3 ) } . 

1 We introduce ˜ λ to keep the values of the dimensionless variables within a suitable range for the nu- 

merical calculations. 

5/22 
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The boundary conditions should be taken into account when dealing with Eq. ( 16 ). The GP
equation is typically solved under periodic boundary conditions. Howe v er, the Poisson equa-
tion is inconsistent with the periodic boundary condition owing to the long-range gravitational
interaction. To overcome this inconsistency, we propose a novel method. 

The GP equation in Eq. ( 16 ) is computed using the fourth-order Runge–Kutta and pseudo-
spectrum methods under periodic boundary conditions. To solve the Poisson equation, we use
the finite difference and Jacobi methods at each time step [ 51 ]. Using the Jacobi method, the so-
lution of the Poisson equation in Eq. ( 16 ) manifests as the equilibrium solution of the diffusion
equation for the function 

˜ V 

′ ( ̃  r , ̃  t ; ˜ s ) : 

d 

˜ V 

′ 

d ̃  s 
( ̃  r , ̃  t ; ˜ s ) = 

˜ ∇ 

2 ˜ V 

′ ( ̃  r , ̃  t ; ˜ s ) − | ˜ ψ ( ̃  r , ̃  t ) | 2 , (17) 

where ˜ s denotes a real parameter. The gravitational potential is obtained from 

˜ V ( ̃  r , ̃  t ) =
lim ˜ s →∞ 

˜ V 

′ ( ̃  r , ̃  t ; ˜ s ) . Furthermore, the efficacy of the Jacobi method can be notably enhanced
thr ough Nester ov’s acceler ated gr adient method [ 52–54 ]. This method is common in the field of 
machine learning and enables us to ra pidl y converge the function 

˜ V 

′ ( ̃  r , ̃  t ; ˜ s ) towards the gravita-
tional potential ˜ V ( ̃  r , ̃  t ) . The function 

˜ V 

′ ( ̃  r , ̃  t ; ˜ s ) satisfies the Dirichlet boundary condition gi v en
by 

˜ V 

′ ( ̃  r = 

˜ R b , ̃  t ; ˜ s ) = −
˜ M ( ̃  t ) 

4 π | ˜ R b − ˜ R c | 
, (18) 

where ˜ R b denotes the position on the boundary of the numerical domain and 

˜ R c denotes the
center of the numerical domain. We a ppl y a time-dependent total mass ˜ M ( ̃  t ) because, as men-
tioned later, we consider the probability of emission of particles. The boundary condition ( 18 ) is
a ppropriate w hen the BEC occupies a region smaller than the numerical domain and is located
near its center. 

In our numerical model, the imaginary potential −i ̃  V s , called “sponge” potential, written by 

˜ V s (r ) = 

˜ V o 

2 

{
2 + tanh 

(
˜ r − ˜ r c 

˜ δ

)
− tanh 

(
˜ r c 
˜ δ

)}
, (19) 

is introduced into Eq. ( 16 ) [ 44 ]. Here, ˜ V o denotes the amplitude. This sponge potential can
reduce the number of particles within the range of ˜ r > ˜ r c , where ˜ δ denotes the step width.
Functioning as a sink, the sponge potential aids in removing particles emitted from the BEC.
As the BEC undergoes motion, some particles acquire large kinetic energy, leading to their
escape from the gravitational potential. Howe v er, in our system, they return to the BEC due
to periodic boundary conditions on the GP equation. To avoid the unphysical situation, the
sponge potential becomes imperati v e. 

The initial state is pr epar ed by m ultipl ying the initial phase factor exp [ i ̃  φ( ̃  r )] and the equilib-
rium state ˜ ψ eq ( ̃  r ) : 

˜ ψ ( ̃  r , ̃  t = 0) = 

˜ ψ eq ( ̃  r ) e i ̃  φ( ̃ r ) . (20) 

The BEC is loca ted a t the center of the numerical domain. We obtain the equilibrium state ˜ ψ eq 

using the imaginary time propagation method of the GPP equations. The initial phase is gi v en
by 

˜ φ( ̃  r ⊥ 

, ˜ z ) = 

1 

(
˜ α ˜ r 2 ⊥ 

+ 

˜ β ˜ z 2 
)
, (21) 
2 
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which gi v es rise to the initial v elocity field 

˜ v = 

˜ ∇ 

˜ φ = ( ̃  α ˜ r ⊥ 

) e ⊥ 

+ ( ̃  β ˜ z ) e z . Here, ˜ r ⊥ 

= 

√ 

˜ x 

2 + ˜ y 

2 

and ˜ z denote the 3D cylindrical coordinates, and the unit vectors along each dir ection ar e e ⊥ 

and e z . We determine the initial velocity by ˜ α and 

˜ β (e.g. it becomes isotropic when ˜ α = 

˜ β). 
Finally, the physical and numerical parameters are specified. We consider the case in which

each boson has a mass m = 3 × 10 

−24 eV and an s-wave scattering length a = 5.62 × 10 

−98 λc m,
where λc denotes the Compton wavelength [ 47 ]. For the numerical analyses, we use a 3D cube of 
length 

˜ L x = 

˜ L y = 

˜ L z = 40 . The scaling factor is ˜ λ = 3 × 10 

−3 , ensuring that the numerical do-
main vastly exceeds the size of the BEC. The spatial grid is configured as ˜ N x = 

˜ N y = 

˜ N z = 128 .
The time resolution of the GP equation is �˜ t = 10 

−3 , and the resolution of the parameter s̃
is 0 . 05 × ( ̃  L x / 

˜ N x ) 2 ≈ 4 . 88 × 10 

−3 . The parameters of the sponge potential are designated as
˜ 
 o = 1000 , ̃  r c = 0 . 8 × ( ̃  L x / 2) = 16 , and 

˜ δ = 2 × ( ̃  L x / 

˜ N x ) = 0 . 625 . Then, ˜ r c exceeds the dimen-
sionless TF radius ˜ R TF 

≈ 9 . 09 , which r epr esents the typical size of a BEC. This is reasonable
because the sponge potential works outside the BEC. In all our simulations, the change rate of 
the total mass from its initial value is less than 1%, and particles are hardly emitted from the
BEC. 

3. Breathing mode 

In this section, we investigate the breathing modes of a self-gravitating BEC. For a conventional
BEC confined by an external potential, the initial radial velocity field induces the breathing
mode [ 15 , 25 , 55 ]. Likewise, we anal yticall y and numerically investigate the breathing mode of a
self-gravitating BEC by setting a spherically symmetric initial phase. We validate our numerical
results through comparison with our analytical predictions. 

3.1. Analytical calculation by variational method 

We a ppl y the variational method in the GPP model to re v eal the breathing modes of a self-
gravita ting BEC . We examine a self-gravita ting BEC with a fix ed total mass M . Pr evious stud-
ies have used Gaussian [ 29 ] and quadratic functions [ 39 ] as trial functions of the variational
method. We adopt the 0-th spherical Bessel function as the trial function because we posit that
the self-gravitating BEC possesses a large total mass, allowing us to use the TF approximation.
This approach is the most suitable for such a large total mass. 

We pr epar e a trial function for the varia tional method. W hen the self-gravita ting BEC is so
large that the TF approximation is available, the macroscopic wavefunction of the equilibrium
state is deri v ed as 

ψ eq (r ) = 

√ 

πM 

4 mR 

3 
TF 

j 0 

(
πr 

R TF 

)
(22) 

using Eqs. ( 8 ) and ( 11 ). Assuming that the density profile maintains its form as in Eq. ( 22 )
during the motion of the cloud, the trial function can be obtained as 

ψ (r , t) = 

√ 

πM 

4 mR (t) 3 
j 0 

(
πr 

R (t) 

)
exp 

[
i 
mr 2 

2 � 

H (t) 
]

(23) 

in the range of r < R ( t ) [ 15 , 39 , 40 ], and the radius R ( t ) and H ( t ) ar e tr eated as variab les gov erning
the breathing mode. 
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Fig. 1. The relationship between the total mass M and the radius R deri v ed from Eq. ( 9 ) with the cutoff 
parameter set to � = 0.97. The horizontal axis shows the total mass, and the vertical axis shows the 
radius. The cyan solid line shows the analytical result of Eq. ( 9 ), and the red dotted line shows the TF 

radius R TF 

. 
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We deri v e the Euler–La grange equations for R ( t ) and H ( t ). In the GPP model, the La grangian
can be described by 

L = 

i� 

2 

∫ 
dr ( ψ 

∗∂ t ψ − ψ∂ t ψ 

∗) − E , (24) 

using Eq. ( 4 ) [ 39 ]. Upon substituting the trial function ( 23 ), the Lagrangian transforms into 

L (R, H ) = −1 

2 

(
1 − 6 

π2 

)
MR 

2 ( ˙ H + H 

2 ) − U (R ) . (25) 

Here, the effecti v e potential U ( R ) is defined as 

U ( R ) = 

π

8 

� 

2 M 

m 

2 R 

2 
F( �) − 3 

4 

GM 

2 

R 

+ 

π2 

4 

� 

2 aM 

2 

m 

3 R 

3 
≡ C z 

R 

2 
− C p 

R 

+ 

C i 

R 

3 
. (26) 

Here the coefficients are C z = 

π
8 
� 

2 M 

m 

2 F(�) , C p = 

3 
4 GM 

2 , and C i = 

π2 

4 
� 

2 aM 

2 

m 

3 , and the func-

tion F(�) = Si (π ) − π + 

∫ �π

0 dx 

x 
sin x . Consequently, the Euler–Lagrange equation for H ( t ) is

H (t) = 

˙ R (t ) /R (t ) , and the radius R ( t ) follows the equation 

2 gi v en by (
1 − 6 

π2 

)
M 

d 

2 R (t) 
dt 2 

= −dU (R ) 
dR 

. (27) 

The equilibrium solution R eq is acquired by setting dU ( R )/ dR = 0, yielding 

R eq = 

C z + 

√ 

C 

2 
z + 3 C p C i 

C p 

= 

π2 
� 

2 

6 Gm 

2 

F(�) 
M 

⎧ ⎨ 

⎩ 

1 + 

√ 

1 + 

36 Gam 

π2 � 

2 

M 

2 

F(�) 2 

⎫ ⎬ 

⎭ 

. (28) 

Figure 1 describes the result of Eq. ( 28 ) with � = 0.97 as the cutoff parameter. This figure shows
that as the total mass M increases, R eq monotonically decreases due to gravity and converges to
the TF radius defined in Eq. ( 9 ) as M → ∞ . Thus, our results offer an enhanced understanding
of the relationship, particularly for situations with large total masses, compared to previous
studies [ 29 , 39 ] employing other trial functions. 
2 These Euler–Lagrange equations imply that the motion of the spherical self-gravitating BEC resem- 
bles that of the Friedmann model because Eq. ( 27 ) corresponds to the Friedmann equation. Here, R and 

H are the scale factor and the Hubble parameter, respecti v ely. 
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The breathing mode manifests as a small oscillation of radius around R eq . The radius is ex-
pressed as R ( t ) = R eq + δR ( t ), using its fluctuation δR ( t ) ( | δR ( t ) | � R eq ). Employing Eqs. ( 26 ),
( 27 ), and ( 28 ), we obtain the following equation of motion: 

d 

2 δR (t) 
dt 2 

� − π2 

π2 − 6 

1 

M 

d 

2 U (R eq ) 
dR 

2 
δR (t) = − 2 π2 

π2 − 6 

C z R eq + 3 C i 

MR 

5 
eq 

δR (t) . (29) 

In this context, we assume the total mass of the BEC to be sufficiently large to warrant the TF
approximation. Gi v en the negligib le contribution of C z , Eq. ( 29 ) is simplified to 

d 

2 δR (t) 
dt 2 

= − 3 

2 π (π2 − 6) 

√ 

G 

5 m 

9 

� 

6 a 

3 
MδR (t) , (30) 

which implies a harmonic oscillation with a period 

T B 

= 2 π

√ 

2 π (π2 − 6) 
3 

√ 

� 

6 a 

3 

G 

5 m 

9 

1 √ 

M 

. (31) 

The dependence on M has also been delineated in previous studies [ 29 , 39 ]. The prefactor and
M -dependence can be confirmed by the following numerical calculations. 

3.2. Numerical results 
To confirm Eq. ( 31 ), we conduct numerical simulations for the total mass M /(10 

14 M �) = 1, 2,
3, 4, where M � denotes a solar mass. These values significantly exceed the typical mass of a
galaxy. For example, the Andromeda galaxy possesses M ∼ 10 

12 M � [ 37 ], and the Milky Way
is estimated at M � 0.5–2.0 × 10 

12 M � [ 56 ]. Howe v er, the substantial total mass facilitates the
explora tion of BEC oscilla tions because R eq har dly changes e v en if the total mass is reduced
(see Fig. 1 ). For a BEC with the total mass of a typical galaxy, namely M ∼ 10 

10 –10 

12 M �, the
timescale of the breathing mode would extend to 10–100 times greater than that presented in
this paper, based on Eq. ( 31 ). We set the parameters of the initial phase to ˜ α = 

˜ β = ±0 . 03 , 0 . 1
to gi v e an isotropic v elocity field to a BEC in equilibrium. 

Initially, we describe the time evolution of the density and gravitational potential profiles. De-
spite solving the fully 3D GPP equations in the simulations presented in this section, the con-
figurations of the BECs maintain spherical symmetry throughout the time evolution. Then, we
consider the average of the density and gravitational potential over the solid angle to describe
the time evolution, expressed as 

ρ(r, t) = 

1 

4 πr 2 �r 

∫ r + 

�r 
2 

r − �r 
2 

d r ′ r ′ 2 
∫ 

d �ρ(r ′ , t) (32) 

and 

V(r, t) = 

1 

4 πr 2 �r 

∫ r + 

�r 
2 

r − �r 
2 

d r ′ r ′ 2 
∫ 

d �V(r ′ , t) , (33) 

where � denotes a solid angle and �r ≈ 0.22 kpc is set so that �˜ r matches the spatial resolu-
tion, namely �˜ r = 

˜ L x / 

˜ N x = 0.3125. Figure 2 shows the time evolution of the density and grav-
itational potential profiles. The BEC periodically undergoes isotropic expansion and shrink-
age. Initially, the BEC expands by an outwardly directed initial velocity field, and the cen-
tral density decreases until t = 0.46 Myr. Subsequently, the BEC shrinks, and the central den-
sity increases until t = 1.39 Myr. Finally, the BEC returns to its initial state at t = 1.86 Myr.
The gravitational potential also undergoes simultaneous oscillations with the density profile.
The gravitational potential becomes shallower as the central density decreases, and vice versa.
9/22 
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Fig. 2. The density profile and the gravitational potential of the self-gravitating BEC. The total mass 
is M = 2 × 10 

14 M �, and the initial phase is set by ˜ α = 

˜ β = 0 . 1 . The radial coordinate, r epr esenting 

the distance from the center of our numerical domain, is depicted on the horizontal axis. Each column 

portrays either the density profile or the gravitational potential at each time: t = 0, 0.46, 1.39, 1.86 Myr, 
where Myr means a megayear. The magenta points show the data at each time, whereas the black dashed 

line shows the initial data. The upper row displays the density profile, with the density depicted on the 
vertical axis, whereas the lo wer ro w exhibits the gravitational potential, with its value presented on the 
vertical axis. 
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Note that at the outskirts, namely for r � R TF 

≈ 6.46 kpc, the gravitational potential remains
unchanged throughout the time evolution, maintaining V = −GM / r due to the constancy of 
the total mass. 

To quantitati v ely observ e the spherical oscilla tion, we define the ef fecti v e radius R eff as 

R eff (t) = 

√ 

1 

M 

∫ 
dr r 2 ρ(r , t) . (34) 

Using Eq. ( 23 ), it is proportional to the radius R ( t ). Hence, during the occurrence of the breath-
ing mode in the self-gravitating BEC, the effecti v e radius e xhibits an oscilla tion similar to tha t of 
the radius. Figure 3 (a) shows the deviation of the effecti v e radius from its initial value, �R eff ( t )
= R eff ( t ) − R eff (0), for ˜ α = 0 . 03 . The graph shows sinusoidal curves for each total mass, where
the oscillation period T R eff decreases as the total mass M is increased. Figure 3 (b) suggests that
our results of T R eff agree quantitati v ely with Eq. ( 31 ), e v en for three values of ˜ α. Therefore, we
conclude that the self-gravitating BEC induces the breathing mode. 

4. Appearance of anisotropic mode 

4.1. Numerical results 
We contemplate the axisymmetric collecti v e mode of a self-gravita ting BEC . Its total mass is
M /(10 

14 M �) = 1, 2, 3, 4, the same as that in the breathing mode. These situations can be sim-
ulated by configuring ( ̃  α, ˜ β ) = ( ±0 . 03 , 0) , ( 0 , ±0 . 03) . Such parameters introduce an axisym-
metric initial velocity field to the BEC in equilibrium and can cause anisotropic oscillation. 

To describe the time evolution of the BEC, we obtain the density and gravitational potential
profiles by averaging ρ(r , t) and V(r , t) : 

ρ(r ⊥ 

, z, t) = 

1 

2 πr ⊥ 

�r ⊥ 

∫ r ⊥ + 

�r ⊥ 
2 

r ⊥ − �r ⊥ 
d r ′ ⊥ 

r ′ ⊥ 

∫ 2 π

0 
d θρ(r ′ ⊥ 

, θ, z, t) (35) 

2 
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Fig. 3. Oscillation of the effecti v e radius R eff ( t ) for each total mass of the self-gravita ting BEC . (a) The 
deviation of the effecti v e radius from the initial/equilibrium one �R eff ( t ) = R eff ( t ) − R eff (0) when the 
initial phase is ˜ α = 0 . 03 . The horizontal axis shows the time, and the vertical axis shows �R eff ( t ). Each 

solid curve is the time evolution of �R eff for different total masses (red: 4 × 10 

14 M �, blue: 3 × 10 

14 M �, 
green: 2 × 10 

14 M �, and black: 1 × 10 

14 M �). The black dotted line shows the oscillation criterion, namely 

�R eff = 0. (b) Total mass dependence on the period of the effecti v e radius T R eff for various values of ˜ α. 
The horizontal axis shows the total mass, and the vertical axis shows the negati v e squared period 1 /T 

2 
R eff 

. 
Each point shows a numerical result (black square: ˜ α = 0 . 1 , red solid circle: ˜ α = 0 . 03 , and green triangle: 
˜ α = −0 . 03 ). The blue dashed line shows the analytical result obtained from the variational method, 
namely the negati v e squared period of breathing mode 1 /T 

2 
B 

. 

Fig. 4. The time evolution of the density profile ρ( r ⊥ 

, z ) and the gravitational potential V( r ⊥ 

, z ). We 
consider the BEC has a total mass M = 2 × 10 

14 M � and is endowed with an initial velocity by ˜ α = 

0 . 1 , ˜ β = 0 . The horizontal axis shows r ⊥ 

and z . Magenta points show the profiles at z = 0, ρ( r ⊥ 

, z = 0), 
and V( r ⊥ 

, z = 0), whereas cyan triangles show those at r ⊥ 

= 0, ρ( r ⊥ 

= 0, z ), and V( r ⊥ 

= 0, z ). The black 

dashed lines show the initial profile. Each column shows either the density profile or the gravitational 
potential at each time: t = 0, 0.73, 2.20, 2.94 Myr, where Myr means a megayear. The upper ro w sho ws the 
density profile, and the vertical axis shows the density. The lower row shows the gravitational potential, 
and the vertical axis shows its value. 
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and 

V(r ⊥ 

, z, t) = 

1 

2 πr ⊥ 

�r ⊥ 

∫ r ⊥ + 

�r ⊥ 
2 

r ⊥ − �r ⊥ 
2 

d r ′ ⊥ 

r ′ ⊥ 

∫ 2 π

0 
d θV(r ′ ⊥ 

, θ, z, t) , (36) 

where �r ⊥ 

≈ 0.22 kpc is determined in the same manner as �r , namely �˜ r ⊥ 

= 

˜ L x / 

˜ N x = 0 . 3125 ,
and θ = tan 

−1 ( y / x ). Figure 4 shows the density profile and the gravitational potential. They
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show synchronous oscillations similar to those in the breathing mode. Howe v er, ρ( r ⊥ 

, z = 0, t )
is different from ρ( r ⊥ 

= 0, z , t ). At t = 0.73 Myr, the former shows BEC expansion, whereas
the latter shows shrinkage. Subsequently, the density profile at t = 2.20 Myr exhibits an inverse
behavior: a decrease in ρ( r ⊥ 

, z = 0, t ) and an increase in ρ( r ⊥ 

= 0, z , t ). By t = 2.94 Myr, the
density profile re v erts to a spherical shape similar to the initial profile. Hence, the self-gravitating
BEC induces anisotropic oscillations due to the nonspherical initial velocity field. We observe
this behavior for other combinations of ( ̃  α, ˜ β ) such as ˜ α � = 

˜ β (e.g. ( ̃  α, ˜ β ) = (±0 . 1 , ∓0 . 03) ). Note
that the gravitational potential remains in the shape of 1/ r at the outskirts throughout our
simulations although the density profile anisotropically deforms. 

To extract the effective degrees of freedom from the anisotropic oscillation, we introduce two
quantities R 

⊥ 

eff and Z eff defined as 

R 

⊥ 

eff (t) = 

√ 

1 

M 

∫ 
dr r 2 ⊥ 

ρ(r , t) , (37) 

Z eff (t) = 

√ 

1 

M 

∫ 
dr z 2 ρ(r , t) . (38) 

These are the effecti v e widths of the BEC in each direction; R 

⊥ 

eff characterizes the width in
the direction of the radial coordinate r ⊥ 

and Z eff is the width along the z -axis. Figure 5 shows
the complica ted oscilla tory behavior of these quantities, describing the opposing oscillations
between R 

⊥ 

eff and Z eff . The BEC exhibits shrinkage along the z -axis when a positive velocity is
initially added in the direction of r ⊥ 

, and vice versa. Similarly, the BEC shows shrinkage in the
direction of r ⊥ 

in response to a positi v e initial v elocity in the direction of the z -axis, and vice
versa. 

Although R 

⊥ 

eff and Z eff manifest intricate oscillations, a harmonic oscillation can be obtained
from the ratio Z eff /R 

⊥ 

eff , as shown in Fig. 6 . Among the four cases, the oscillations have a com-
mon amplitude and frequency despite the different behaviors of R 

⊥ 

eff , Z eff . The ratio Z eff /R 

⊥ 

eff 

indicates the extent to which the BEC axisymmetrically deforms from a spherical shape, sim-
ilar to the aspect ratio of the BEC. It can be inferred that one of the coupled modes is the
quadrupole mode because the harmonic mode of the aspect ratio suggests a quadrupole mode
of the BEC [ 57–59 ]. 

The Fourier transformation serves as a valuable tool for decomposing complicated oscilla- 
tions into eigenmodes. Figure 7 shows the Fourier transformation of R 

⊥ 

eff and Z eff /R 

⊥ 

eff , as
shown in Figs. 5 and 6 . Within this r epr esentation, two peaks of R 

⊥ 

eff and a peak of Z eff /R 

⊥ 

eff 

can be discerned. The high-frequency peak of R 

⊥ 

eff corresponds to the period of the breath-
ing mode T B 

with the corresponding total mass. On the other hand, the low-frequency peak
in R 

⊥ 

eff closely matches that of Z eff /R 

⊥ 

eff . This peak suggests the frequency associated with the
quadrupole mode of the BEC. Hence, the self-gravitating BEC causes an anisotropic collecti v e
mode wherein the quadruple mode superposes the breathing mode due to the axisymmetric
initial velocity field. 

We vary the parameters of the initial phase and total mass to investigate the dependence of 
the period of Z eff /R 

⊥ 

eff on these quantities. Although we study the dynamics of various com-
binations of ˜ α and 

˜ β, the period remains constant for all the simulations. Thus, the period
of Z eff /R 

⊥ 

eff is independent of the initial velocity field. However, the total mass can change
the period of Z eff /R 

⊥ , as shown in Fig. 8 . Figure 8 (a) shows that Z eff /R 

⊥ exhibits harmonic
eff eff 
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Fig. 5. Oscillations of the effecti v e width R 

⊥ 

eff , Z eff . The self-gravitating BEC possesses a total mass M = 

4 × 10 

14 M �, and the initial velocity is set by ( ̃  α, ˜ β ) = ( ±0 . 03 , 0) , ( 0 , ±0 . 03) . The horizontal axis shows 
the time. The left column shows the result of ( ̃  α, ˜ β ) = (±0 . 03 , 0) , which means the initial velocity in the 
direction of r ⊥ 

. The green solid line shows the oscillation when the BEC initially expands ( ̃  α > 0 ), and 

the black dashed line shows the oscillation when the BEC initially shrinks ( ̃  α < 0 ). Conversely, the right 
column shows the result of ( ̃  α, ˜ β ) = (0 , ±0 . 03) , indicating the initial velocity along the z -axis. The red 

solid line shows the oscillation when the BEC initially expands ( ̃  β > 0 ), and the blue dashed line shows 
the oscillation when the BEC initially shrinks ( ̃  β < 0 ). Whereas the upper row shows the time evolution 

of R 

⊥ 

eff , the lower row shows the time evolution of Z eff . 

Fig. 6. The oscillation of the ratio Z eff /R 

⊥ 

eff when the total mass of the self-gravitating BEC is M = 4 ×
10 

14 M �. The horizontal axis shows the time, and the vertical axis shows the value of the ratio Z eff /R 

⊥ 

eff . 
The solid lines show cases of initial expansion (green: the direction of r ⊥ 

and red: along the z -axis), 
whereas the dotted lines exhibit cases of initial shrinkage (black: the direction of r ⊥ 

and blue: the direc- 
tion of the z -axis). 
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Fig. 7. The Fourier transformation of R 

⊥ 

eff and Z eff /R 

⊥ 

eff . The self-gravitating BEC has a total mass M = 

4 × 10 

14 M �, with the initial velocity given by ˜ α = 0 . 03 , ˜ β = 0 . The horizontal axis shows the frequency, 
whereas the vertical axis shows the amplitude. The solid lines show the results of each transformation 

(red: R 

⊥ 

eff and blue: Z eff /R 

⊥ 

eff ), and the green dashed line shows the analytical/variational result of the 
breathing mode T B 

. The red points show the peaks of R 

⊥ 

eff , and the blue triangle shows the peak of 
Z eff /R 

⊥ 

eff . 

Fig. 8. The oscillation of Z eff /R 

⊥ 

eff for each total mass. The initial phase is determined by ˜ α = 0 . 03 , ˜ β = 0 . 
(a) The time evolution of Z eff /R 

⊥ 

eff for each total mass. The horizontal axis shows time, whereas the ver- 
tical axis shows the value of Z eff /R 

⊥ 

eff . The black dotted line shows the ratio when the BEC is in equi- 
librium; the ratio becomes Z eff /R 

⊥ 

eff = 1 / 
√ 

2 . Each solid line shows the result (red: 4 × 10 

14 M �, blue: 
3 × 10 

14 M �, green: 2 × 10 

14 M �, black: 1 × 10 

14 M �). (b) The dependence of the period of Z eff /R 

⊥ 

eff 
on the total mass by the lo g-lo g plot. The horizontal axis shows the total mass, whereas the verti- 
cal axis shows the period. The black points show the numerical results for each total mass, whereas 
the blue dashed line shows the variational result of the breathing mode T B 

. The red solid line shows √ 

5 / 2 T B 

. 
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oscillation similar to R eff of the breathing mode induced by the isotropic initial velocity field; the
period becomes short as the total mass increases. The M -dependence of the period of Z eff /R 

⊥ 

eff 

and its comparison with T B 

are shown in Fig. 8 (b). We find that Z eff /R 

⊥ 

eff shows a straight line
parallel to T B 

in the lo g-lo g plot, indica ting tha t the period of the quadrupole mode is also in-
versely proportional to 

√ 

M , similarly to the breathing mode. Howe v er, the period of Z eff /R 

⊥ 

eff 

is a pproximatel y 1.57 times larger than T B 

; in other words, the quadrupole mode exhibits lower
fr equency oscillation compar ed to the br eathing mode. This characteristic can also be observed
14/22 
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Fig. 9. The comparison of the period of Z eff /R 

⊥ 

eff to that from a sum-rule approach. The horizontal axis 
shows the total mass, whereas the vertical axis shows the negati v e squared period. The black points show 

the numerical results for each total mass, whereas the green solid line shows the analytical result written 

by Eq. ( 40 ). 
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in atomic BECs confined by an isotropic harmonic potential. The frequency of the breathing
mode is 

√ 

5 / 2 times that of the quadrupole mode [ 25 ]. Hence, our numerical results are consis-
tent with those of typical atomic BECs trapped by external potentials. The ratio of the period
of Z eff /R 

⊥ 

eff to T B 

closely resembles that of the BEC confined by an isotropic harmonic poten-
tial. Moreover, the periods of Z eff /R 

⊥ 

eff are in good agreement with 

√ 

5 / 2 T B 

(see Fig. 8 ). Thus,
the numerical results indicate that the quadrupole mode has the period 

√ 

5 / 2 T B 

. 
The period of the quadrupole mode in a self-gravitating BEC can also be anal yticall y con-

firmed by a sum-rule approach [ 60 ]. This approach, based on the linear response theory, enables
us to deri v e the frequency of the collecti v e mode without explicitly solving the equation of 
motion [ 25 ]. A ppl ying the a pproach to the self-gravita ting BEC , the angular frequency of the
quadrupole mode �Q 

is generally expressed as 

�2 
Q 

= 

4 K − 4 
5 W 

M〈 r 2 〉 , (39) 

where 〈 r 2 〉 = 

∫ 
dr r 2 ρ(r ) /M. Particularly, within the TF region, the period T Q 

= 2 π / �Q 

can be
approximated as 

T Q 

� 2 π

√ 

5 

4 

M〈 r 2 〉 
−W 

= 2 π

√ 

5 π (π2 − 6) 
3 

√ 

� 

6 a 

3 

G 

5 m 

9 

1 √ 

M 

. (40) 

Here, we use Eqs. ( 8 ) and ( 14 ) to obtain Eq. ( 40 ). In Fig. 9 , the period of Z eff /R 

⊥ 

eff is compared
with Eq. ( 40 ), yielding quantitati v e consistency. This approach also yields the general angular
frequency of the breathing mode �B 

gi v en by 

�2 
B 

= 

4 K + W + 9 I 
M〈 r 2 〉 . (41) 

Using Eqs. ( 39 ), ( 41 ), and the virial theorem, 2 K + W + 3 I = 0, the ratio �B 

/ �Q 

in the TF
regime becomes 

�B 

�Q 

= 

√ 

5 

2 

3 + (K/I ) 
3 + 7(K/I ) 

� 

√ 

5 

2 

, (42) 
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which agrees with our result. Hence, our numerical result regarding the periods of the
quadrupole modes is quantitati v ely consistent with the previous study [ 60 ] using a sum-rule
approach. 

To reproduce our numerical results in more detail, we extend the variational method from
the spherical self-gravitating BEC in Sect. 3.1 to the axisymmetric system in the subsequent
subsection. 

4.2. Analysis of axisymmetric collective mode by variational method 

Rindler-Daller and Shapiro extended the TF solution to an ellipsoidal self-gravitating BEC 

[ 17 , 38 ] based on the ellipsoidal approximation [ 61 ]. Gi v en that the self-gravitating BEC takes
a spheroidal configuration with semiaxes R ⊥ 

and Z , the extended TF solution is expressed as 

ρ(q ) = 

πM 

4 R 

2 
⊥ 

Z 

j 0 

(
πq 

R ⊥ 

)
, (43) 

where M denotes the total mass and q ∈ (0, R ⊥ 

] satisfies ( q / R ⊥ 

) 2 = ( r ⊥ 

/ R ⊥ 

) 2 + ( z / Z ) 2 . Employing
Eq. ( 43 ), the trial function is set as 

ψ (r , t) = 

√ 

πM 

4 mR ⊥ 

(t ) 2 Z(t ) 
j 0 

(
πq 

R ⊥ 

(t) 

)
exp 

[ 
i 

m 

2 � 

(
r 2 ⊥ 

H ⊥ 

(t) + z 2 H z (t) 
)] 

, (44) 

where H ⊥ 

( t ) and H z ( t ) are variables that provide the velocity field such that 

v = ( r ⊥ 

H ⊥ 

(t) ) e ⊥ 

+ ( zH z (t) ) e z . (45) 

The Lagrangian can be deri v ed by substituting Eq. ( 44 ) into its definition ( 24 ). Using Eq. ( 44 ),
the energy components K , W , I defined by Eqs. ( 5 ), ( 6 ), and ( 7 ) are expressed as 

K � 

π

24 

� 

2 M 

m 

2 
F( �) 

(
2 

R ⊥ 

( t) 2 
+ 

1 

Z( t) 2 

)

+ 

M 

6 

π2 − 6 

π2 

{
2 H ⊥ 

(t) 2 R ⊥ 

(t ) 2 + H z (t ) 2 Z(t ) 2 
}
, 

(46) 

W = −3 GM 

2 

4 

1 

{ R ⊥ 

( t) 2 Z( t) } 1 / 3 , (47) 

I = 

π2 

4 

� 

2 aM 

2 

m 

3 

1 

R ⊥ 

( t) 2 Z( t) 
, (48) 

where Eq. ( 47 ) can be deri v ed using the formula for the gravitational energy of the spheroidal
density profile in Ref. [ 4 ]. We assume that the deformation of the BEC is sufficiently small. 3 

Hence, the Lagrangian can be written as 

L (R ⊥ 

, Z, H ⊥ 

, H z ) = −π2 −6 
6 π2 M 

{
2 R 

2 
⊥ 

( ˙ H ⊥ 

+ H 

2 
⊥ 

) + Z 

2 ( ˙ H z + H 

2 
z ) 
}

−U (R ⊥ 

, Z) . (49) 

Here, the effecti v e potential U ( R ⊥ 

, Z ) is defined as 

U (R ⊥ 

, Z ) = 

C z 

3 

(
2 

R 

2 
⊥ 

+ 

1 

Z 

2 

)
− C p 

(R 

2 
⊥ 

Z ) 1 / 3 
+ 

C i 

R 

2 
⊥ 

Z 

, (50) 

where C z , C p , and C i are identical to those in Eq. ( 26 ). The Euler–Lagrange equations for H ⊥ 

( t )
and H z ( t ) are H ⊥ 

(t) = 

˙ R ⊥ 

(t ) /R ⊥ 

(t ) and H z (t) = 

˙ Z (t ) /Z(t ) . Ther efor e, the Euler–Lagrange
3 In gener al, the gr avita tional energy of a spheroid is af fected by its deforma tion (see Ref. [ 4 ]). Howe v er, 
we neglect these effects because, in the present study, we address only small oscillations. 
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equations for R ⊥ 

( t ) and Z ( t ) are ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 

3 

π2 − 6 

π2 
M 

d 

2 R ⊥ 

(t) 
dt 2 

= −∂U (R ⊥ 

, Z) 
∂R ⊥ 

, 

1 

3 

π2 − 6 

π2 
M 

d 

2 Z(t) 
dt 2 

= −∂U (R ⊥ 

, Z) 
∂Z 

. 

(51) 

(52) 

These Euler–Lagrange equations show the spherical equilibrium state with R ⊥ 

= Z = R eq ,
which is consistent with the results in Sect. 3.1. 

Similarly to the spherically symmetric case, we consider a small oscillation of the semiaxes
near R eq . The fluctuations in the semiax es ar e gi v en by R ⊥ 

( t ) = R eq + δR ⊥ 

( t ) and Z ( t ) = R eq +
δZ ( t ) ( | δR ⊥ 

( t ) | , | δZ ( t ) | � R eq ). The equations of motion for the fluctuations δR ⊥ 

( t ) and δZ ( t )
are gi v en by 

3(π2 − 6) 
π2 

MR 

5 
eq 

d 

2 

dt 2 

( 

2 δR ⊥ 

(t) 
δZ(t) 

) 

= −
( 

4 C p R 

2 
eq 2(−C p R 

2 
eq + 9 C i ) 

−C p R 

2 
eq + 9 C i 5 C p R 

2 
eq − 9 C i 

) ( 

2 δR ⊥ 

(t) 
δZ(t) 

) 

. (53) 

When we write the solutions as 2 δR ⊥ 

( t ) = A exp [ i ωt ] and δZ ( t ) = B exp [ i ωt ], the angular fre-
quency ω satisfies 

ω = ±
√ 

2 π2 

π2 − 6 

C z R eq + 3 C i 

MR 

5 
eq 

≡ ±ω B 

(54) 

or 

ω = ±2 

√ 

π2 

π2 − 6 

C z 

MR 

4 
eq 

≡ ±ω Q 

. (55) 

Equation ( 54 ) provides the eigenfrequency of the breathing mode compared to the coefficient
of Eq. ( 29 ). Indeed, when ω = ±ω B 

, the eigenmodes satisfy A = 2 B , i.e. ( 

δR ⊥ 

(t) 
δZ(t) 

) 

= A 

( 

1 

1 

) 

exp [ ±iω B 

t ] . (56) 

This indica tes tha t the BEC undergoes either spherical expansion or shrinkage. Conversely,
when ω = ±ω Q 

, the eigenmodes satisfy A + B = 0, i.e. ( 

δR ⊥ 

(t) 
δZ(t) 

) 

= A 

( 

1 

−2 

) 

exp 

[±iω Q 

t 
]
. (57) 

We can consider Eq. ( 57 ) as the quadrupole mode because it shows that the BEC elongates
along the z -axis or expands perpendicular to the z -axis. 

We compare Eqs. ( 56 ) and ( 57 ) with the numerical results. In our numerical simulations, we
establish two initial conditions: δR ⊥ 

( t = 0) = δZ ( t = 0) = 0 and 

˜ v ( ̃  t = 0 , ̃  r ⊥ 

, ˜ z ) = ˜ α ˜ r ⊥ 

e ⊥ 

+ 

˜ β ˜ z e z .
As a result, the fluctuations δR ⊥ 

( t ) and δZ ( t ) become Consequently, the perturbations δR ⊥ 

( t )
and δZ ( t ) are gi v en by 

δR ⊥ 

(t ) = 

˜ λ2 c 2 mR eff 

3 � 

{ 

2 ̃  α + 

˜ β

ω B 

sin ( ω B 

t ) + 

˜ α − ˜ β

ω Q 

sin 

(
ω Q 

t 
)} 

(58) 

and 

δZ(t ) = 

˜ λ2 c 2 mR eff 

3 � 

{ 

2 ̃  α + 

˜ β

ω B 

sin ( ω B 

t ) − 2 

˜ α − ˜ β

ω Q 

sin 

(
ω Q 

t 
)} 

. (59) 
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Fig. 10. The variation in the effecti v e widths �R 

⊥ 

eff = R 

⊥ 

eff (t) − R 

⊥ 

eff (0) and �Z eff = Z eff ( t ) − Z eff (0) when 

a total mass is M = 4 × 10 

14 M � and the initial phase is set by ˜ α = 0 . 03 and 

˜ β = −0 . 06 . The horizontal 
axis shows time and the vertical axis shows �R 

⊥ 

eff and �Z eff . The blue solid line shows the time evolution 

of �R 

⊥ 

eff , and the dashed red line shows the time evolution of �Z eff . The dotted black line shows that 
�R 

⊥ 

eff = �Z eff = 0 . 
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The effecti v e widths R 

⊥ 

eff and Z eff ar e, r especti v ely, gi v en by R 

⊥ 

eff = 

√ 

2 / 3 

√ 

(π2 − 6) /π2 R ⊥ 

and
Z eff = 

√ 

( π2 − 6) / ( 3 π2 ) Z using Eq. ( 44 ). Thus, we obtain 

Z eff 

R 

⊥ 

eff 

= 

Z √ 

2 R ⊥ 

� 

1 √ 

2 

−
˜ λ2 c 2 m ( ̃  α − ˜ β ) √ 

2 � ω Q 

sin 

(
ω Q 

t 
)
, (60) 

which shows that the quadrupole mode induces a harmonic oscillation of Z eff /R 

⊥ 

eff near 1 / 

√ 

2 .
This confirms that the quadrupole mode appears in the numerical simulations (Fig. 6 or
Fig. 8 (a) in Sect. 4.1). 

Our varia tional calcula tion of the axisymmetric self-gravita ting BEC suggests tha t solely the
quadrupole mode can be extracted through the selection of an appropriate initial phase. As
the first term on the right-hand side of Eqs. ( 58 ) and ( 59 ) vanishes, the e xclusi v e e xtraction of 
the quadrupole mode is feasible by setting the initial phase as 2 ̃  α + 

˜ β = 0 . Consequently, the
quadrupole mode shows 

δR ⊥ 

(t ) = 

˜ α˜ λ2 c 2 mR eq 

� ω Q 

sin 

(
ω Q 

t 
)

(61) 

and 

δZ(t) = −2 

˜ α˜ λ2 c 2 mR eq 

� ω Q 

sin 

(
ω Q 

t 
)
, (62) 

resulting in harmonic oscillations of R 

⊥ 

eff and Z eff in opposite phase. Indeed, we can numerically
extract only the quadrupole mode when the total mass is M = 4 × 10 

14 M � and the initial
phase is set as ˜ α = 0 . 03 and 

˜ β = −0 . 06 , as shown in Fig. 10 . This figure shows that �R 

⊥ 

eff ≡
R 

⊥ 

eff (t) − R 

⊥ 

eff (0) and �Z eff ≡ Z eff ( t ) − Z eff (0) oscillate monotonically in opposite phases, with
periods identical to those shown in Fig. 6 . Additionally, the amplitude of �Z eff is a pproximatel y
1.40 times larger than that of �R 

⊥ 

eff , aligning with our analysis, as Eqs. ( 61 ) and ( 62 ) predict
tha t the ra tio of the amplitudes of �Z eff and �R 

⊥ 

eff is 
√ 

2 . Ther efor e, we successfully extract
only the quadrupole mode of a self-gravitating BEC. 

Although this variational method qualitati v ely agrees with the numerical results, the fre-
quency or period of the quadrupole mode di v erges from them. The ratio of ω Q 

to ω B 

is
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gi v en by 

ω Q 

ω B 

= 2 

√ 

C z R eq 

C p R 

2 
eq + 3 C i 

, (63) 

using Eqs. ( 28 ), ( 54 ), and ( 55 ). Howe v er, this ratio almost vanishes because we use C p R 

2 
eq � 3 C i 

and C z R eq � C i in the TF approximation. This is different from the numerical results indicating
ω Q 

/ω B 

= 

√ 

2 / 5 (see Fig. 8 (b)). This inconsistency arises because the trial function in Eq. ( 44 ) is
based on the TF solution, which neglects kinetic energy and becomes invalid near the surface of 
the BEC. Howe v er, Eqs. ( 13 ) and ( 55 ) show that the kinetic energy of the equilibrium state pre-
dominantly influences the frequency of the quadrupole mode. Notably, the quadrupole mode
does not oscillate the central density, and neither does it involve potential nor self-interaction
energy contributions. Consequently, it only changes the density near the surface where the TF
approximation fails. Hence, a trial function based on the TF approximation pre v ents the quan-
titati v e e valuation of the kinetic energy, which affects the frequency of the quadrupole mode.
To accurately compare ω Q 

with the numerical results, we need to introduce a first-order correc-
tion to the kinetic energy of the equilibrium sta te of the self-gravita ting BEC . This investiga tion
will be conducted in a future study. 

5. Conclusions 
We study the collecti v e modes of self-gravitating BECs. In particular, we focus on the breathing
and anisotropic collecti v e modes. In this study, we show the following three aspects. 

Firstly, a self-gravitating BEC can induce a breathing mode by the introduction of an
isotropic initial velocity field to its equilibrium state. Due to the time-dependent density profile
of the BEC, the gravitational potential near the center of the BEC oscillates in this mode. The
oscillation is characterized by a harmonic oscillation of the radius of the BEC, similarly to that
of a conventional BEC trapped by an external potential. In the self-gravitating BEC, as the to-
tal mass M increases, the amplitude decreases and the period becomes short in proportion to
1 / 

√ 

M . These distincti v e properties distinctly reflect the density dependence of self-gravity. 
Secondly, the axisymmetric initial velocity field yields an anisotropic collecti v e mode. It is

a mixture of the quadrupole mode and the breathing mode. The quadrupole mode can be
extracted by focusing on the oscillation of the aspect ratio of the BEC. The amplitude and
period in the quadrupole mode decrease as the total mass increases, similarly to the radius of 
the BEC in the breathing mode. Particularly, the period of the quadrupole mode has the same
M -dependence, in proportion to 1 / 

√ 

M , as that of the breathing mode. This property of the
self-gravita ting BEC dif fers from tha t of a conventional BEC trapped by an external potential.
Although the M -dependence of the period is different for the self-gravitating BEC and that in
an external isotropic harmonic potential, the ratio of the period of the quadrupole mode to
that of the breathing mode takes the same value of 

√ 

5 / 2 in both cases. These properties of 
the period of the quadrupole mode are also shown anal yticall y in a previous study employing
a sum-rule approach [ 60 ]. 

Thirdly, we can also extract only the quadrupole mode from the anisotropic collecti v e mode
by setting an appropriate initial velocity. We extend the variational method, in which the trial
function is based on the TF solution, to a spheroidal configuration. With this approach, we suc-
ceed in describing the anisotropic collecti v e mode of the self-gravitating BEC and proposing
19/22 
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appropriate initial conditions for the pure quadrupole mode. Howe v er, this e xtended varia-
tional method does not work for the evaluation of the kinetic energy of the equilibrium state.
Consequently, the frequency of the quadrupole mode cannot be accurately estimated because 
it depends critically on the kinetic energy of the equilibrium sta te. To quantita ti v ely reproduce
the frequency, it is necessary to introduce a first-order correction to the kinetic energy. 

In instances where the oscillation exhibits a large amplitude, the density dependency inherent
in the self-gravitating BEC probably changes the M -dependence of the periods and other char-
acteristics of the collecti v e mode. In this study, we consider the amplitude to be small. Howe v er,
the large deformation of a self-gravitating BEC affects the gravitational energy. Accounting 

f or this def ormation, a collecti v e mode with a large amplitude can cause various nontrivial
phenomena triggered by the difference in whether the spheroidal configuration is oblate or
prolate. 

If the self-gravitating BEC explains a DM halo, we expect that the collective oscillations
of the self-gravitating BEC provide evidence that the DM halo is composed of BEC. This
is a similar situation to early studies on atomic BECs, whose collecti v e mode played an im-
portant role in determining whether a system was a BEC. For instance, the collecti v e modes
investigated in the present paper may be caused by the collision and merging of BECs. The
timescales of these oscillations are shorter than the dynamical timescales of the cluster of 
galaxies, the breathing modes excite acoustic waves in baryonic matter, and the anisotropic
modes, including quadrupole moments, excite gravitational waves. The frequencies of these os- 
cillations are determined mainly by the self-interaction of the Bose particles, and these fre-
quencies depend on the total mass of the BEC, the boson mass, and the s-wave scattering
length. Hence, these waves provide important information about the Bose particle and the
BEC in the uni v erse. Observa tional stud y of such waves with long wavelengths is a challenging
work. 

One of our next interests is the collective modes of a rota ting self-gravita ting BEC . In the
uni v erse, objects are naturally rotating rather than in static states. The equilibrium state of 
a self-gravitating BEC is affected by rotation owing to its density dependence. For example,
the presence of a quantized vortex within a BEC locally pushes the density through rotation,
changing the density profile of the equilibrium state. Since the gravitational potential depends
on the density distribution, it differs from that of a BEC without a quantized vortex. Hence, the
self-gravitating BEC with rotation or a quantized vortex likely provides distinct phenomena of 
the collecti v e modes from those in the present work. Clarifying this property is an interesting
next task. 
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