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We report an updated measurement of the νμ-induced, and the first measurement of the ν̄μ-induced
coherent charged pion production cross section on 12C nuclei in the Tokai-to-Kamioka experiment.
This is measured in a restricted region of the final-state phase space for which pμ;π > 0.2 GeV, cosðθμÞ >
0.8 and cosðθπÞ > 0.6, and at a mean (anti)neutrino energy of 0.85 GeVusing the T2K near detector. The
measured νμ charged current coherent pion production flux-averaged cross section on 12C is

ð2.98� 0.37ðstatÞ � 0.31ðsystÞþ0.49
−0.00 ðQ2 modelÞÞ × 10−40 cm2. The new measurement of the ν̄μ-induced

cross section on 12C is ð3.05� 0.71ðstatÞ � 0.39ðsystÞþ0.74
−0.00ðQ2 modelÞÞ × 10−40 cm2. The results are

compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007)
model predictions.
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I. INTRODUCTION

Charged current coherent pion production in (anti)

neutrino-nucleus scattering, ν
ð−Þ

μþA→ μ−ðþÞ þπþð−Þ þA,
is a process in which a neutrino scatters coherently off a
target nucleus. This process leaves the nucleus in its ground
state, with the W-boson fluctuating to a charged meson
(usually a pion) in the final state. No quantum numbers are
exchanged with the nucleus and the magnitude of the
square of the four-momentum transfer to the nucleus,
denoted as jtj, must be small to maintain coherence. The
interaction results in an unchanged nucleus, a lepton and
pion in the final state and no other particles.
The most common theoretical description of this process

is based on Adler’s partially conserved axial vector current
(PCAC) theorem [1], which connects the forward scattering
amplitude (where the square of the 4-momentum trans-
ferred to the hadronic system, −q2 ¼ Q2 is equal to zero)
with the divergence of the axial current. This in turn is
estimated from the elastic pion-nucleus scattering cross
section. The coherent neutrino (and antineutrino) scattering
cross section at Q2 ¼ 0 can then be written as

d3σcoh
dQ2 dy djtj

����
Q2¼0

¼ G2
F

2π2
f2π

1 − y
y

dσðπA → πAÞ
djtj ; ð1Þ

where y ¼ Eπ=Eν with Eπ and Eν being the energy of the
pion and neutrino, respectively and fπ is the pion decay
constant. A Feynman diagram for this process is shown in
Fig. 1. This cross section is then extrapolated to higher Q2.
PCAC models use a variety of methods for the Q2

extrapolation, as well as different approaches to character-
ize pion-nucleus scattering. The most common model
currently used by Monte Carlo (MC) neutrino event
generators [2–5] has been the Rein-Sehgal (RS) model
[6]. This uses pion-proton and pion-deuterium data along
with a simple A-scaling and ad hoc description for nuclear
effects like pion absorption. It was developed for neutrino
energies above approximately 5 GeV where the mass of
the final-state lepton has minimal effect. The newer
Berger-Sehgal (BS) model [7] updates this approach with
the use of pion-carbon scattering data, which features a
significant reduction in the resonance peak. The twomodels
are identical for pion kinetic energies above 1.5 GeV,
and employ a similar A-scaling technique. Different char-
acterizations of the pion scattering data (pion-proton for RS,
and pion-carbon for BS) in various generators can account
for observed differences in their model predictions.
Independent MC simulation sets using the NEUT 5.4.0
[3] Berger-Sehgal (2009) and GENIE 2.8.0 [2] Rein-Sehgal
(2007) model implementations were used for this analysis.
The most recent charged current coherent production

cross section measurements at high neutrino energies
(above 7 GeV) were made in the 1980s and 1990s [8–12]
and were found to agree with the Rein-Sehgal model.

The discovery of neutrino oscillations [13–16] refocused
the neutrino community on lower energies where a scarcity
of data on this interaction mode existed. At neutrino
energies around 0.5–2.0 GeV, upper limits of the cross
section from K2K [17] and SciBooNE [18] and a meas-
urement by Tokai-to-Kamioka (T2K) [19] were signifi-
cantly lower than that of the Rein-Sehgal model, but agreed
with Berger-Sehgal. The MINERvA experiment, which
operated at neutrino energies of 1.5–20 GeV, was the first to
report measurements of differential cross sections in the
variables Q2, Eπ and θπ [20] on a set of different nuclear
targets [21]. The collaboration found that the measured
total cross sections agreed with the predictions from both
models, but that the observed differential cross sections in
the pion angle and energy variables showed an excess in the
forward region with respect to model predictions. The
MINERvA experiment also made the first observation of
coherent kaon production [22] and neutral current coherent
neutral pion production in an antineutrino beam [23].
Neutral current coherent production of neutral pions was
also measured by the MINOS [24] and the NOvA [25]
Collaborations.
This paper presents the first measurement of the anti-

neutrino induced coherent pion-production cross section on
12C at a mean neutrino energy of 0.85 GeV. In addition, the
previous T2K measurement of neutrino-induced coherent
pion production [19] is updated by doubling the size of the
available data set and updating the systematic uncertainty
estimates.

II. THE T2K EXPERIMENT

The T2K experiment is the second generation experi-
ment in the long-baseline neutrino oscillation program
operating in Japan. T2K established the oscillation from
muon neutrinos to electron neutrinos [26] and is inves-
tigating charge-parity violation in the leptonic sector as
well as measuring precisely other oscillation parameters
[27]. Details of the T2K experiment can be found in
Ref. [28]. Although the focus of T2K is on neutrino flavor
oscillation studies, T2K has also studied (anti)neutrino-
nucleus interactions in the few hundreds of MeV to few

FIG. 1. Feynman diagram for coherent charged pion production
from a neutrino off a nucleus. This is specific to the PCAC class
of models. The square of the magnitude of the 4-momentum
transfer to the nucleus is jpAj2 ¼ jq − pπj2 ¼ jtj.
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GeV neutrino energy range extensively (for example, see
Refs. [19,29–35]).

A. The muon (anti)neutrino beam

T2K employs the J-PARC neutrino beamline, as detailed
in Ref. [28], to generate an intense and near-pure beam of
muon (anti)neutrinos. The (anti)neutrino beam is produced
from the decay-in-flight of pions and kaons produced when
a 30 GeV proton beam from the J-PARC main ring
synchrotron is guided onto a cylindrical target consisting
of disks of graphite evenly spaced along a length of 91.4 cm
and a diameter of 2.6 cm. Current transformers, secondary
emission monitors, and optical transition radiation monitors
are used to monitor the intensity and profile of the proton
beam before hitting the target. Further information about
the beam is provided by a muon monitor which measures
the intensity and direction of muons produced from the
meson decays. A set of 14 scintillator-iron sampling
calorimeter modules, each comprising 7.1 tonnes of iron,
and collectively referred to as the INGRID [36] is used to
measure and monitor the stability of neutrino intensity with
better than 1% precision and the neutrino beam direction
with a precision better than 1 mrad.
T2K employs a system of three magnetic horns to focus

secondary charged particles, the parents of neutrinos, and
defocus oppositely charged particles. The horn polarity
determines whether the beam is configured in the muon
(anti)neutrino, or (Reverse) Forward Horn Current mode,
abbreviated as (RHC) FHC, where the focusing horns in the
beamline are operated with a current of (−250 kA) 250 kA.
The total exposure used in this study is 11.54 × 1020

protons-on-target (POT) taken in FHC configuration from
January 2010 to April 2017, and 8.15 × 1020 POT taken in
RHC configuration from June 2014 to May 2018. The
statistics in the FHC configuration have been doubled since
the previous T2K publication [19], while the data in the
RHC configuration is new.
T2K’s approach to understand the neutrino beam is

described in Ref. [37]. T2K employs data-based tuning to
precisely predict the flux. These data include the measured
proton beam parameters from the beam monitors, hadron
production data from the NA61/SHINE fixed target experi-
ment at CERN’s Super Proton Synchrotron, and the
INGRID beam direction measurements. Compared to the
previous publication on the coherent neutrino-nuclei inter-
action [19], this study implements an updated flux pre-
diction [38] to include measurements of π� production
from the NA61/SHINE [39] experiment operating with a
replica of the T2K target [40]. With this significant update,
the flux uncertainty is reduced to approximately 5% near
the peak (around 600 MeV) of the neutrino spectrum,
comparing to 8.5% flux uncertainty in the previous
measurement of coherent pion production. Along with
the main flavor components (νμ in FHC and ν̄μ in
RHC), the beam contains a small fraction of wrong-sign

component (≈5% ν̄μ in FHC and ≈7% νμ in RHC) and
intrinsic electron (anti)neutrino components (νe and ν̄e) at a
level less than 1% [37,38,41].
The nominal Monte Carlo model used for this meas-

urement is the NEUT 5.4.0 [3] neutrino event generator.
Charged current coherent single pion production events are
generated using the Berger-Sehgal [7] model. The back-
grounds to this process are dominated by charged
current resonant pion production (CC-RES) and deep
inelastic scattering (DIS). CC-RES processes are modeled
using the Rein-Sehgal formalism [42] updated to imple-
ment the effect of the final-state charged lepton mass [43],
and using updated nucleon axial form factors [44].
Contributions from 17 baryon resonances are considered,
with the Δð1232Þ being dominant, and interference terms
between the resonances are taken into account. DIS
interactions are modeled using the GRV98 parton distri-
bution functions [45] with low Q2 corrections from Bodek
and Yang [46]. CC-RES events are produced in the
invariant hadronic mass region of W < 2 GeV, with the
DIS event production beginning in the invariant hadronic
mass region of W > 1.3 GeV. In the overlap region,
1.3 GeV < W < 2.0 GeV, a custom hadronization model
[47] is used to interpolate between the two processes.
Above an invariant hadronic mass of 2 GeV, hadronization
is managed by PYTHIA 5.7 and JetSet 7.4 [48]. Final-state
interactions (FSIs) of hadrons as they propagate through the
nuclear medium are modeled using a custom intranuclear
cascade model [47].

B. The T2K off-axis near detector complex

The T2K near detector, referred to as ND280, is placed
280 m from the proton interaction target at the same off-
axis angle as the T2K far detector. The detector is intended
to characterize the neutrino beam prior to oscillation and
precisely measure the interactions of muon (anti)neutrinos
and electron (anti)neutrinos with carbon and water.
ND280, which is described in detail in Ref. [28], consists
of multiple subdetector systems positioned inside a
magnet producing a magnetic field of 0.2 T. These
systems include an upstream π0 detector and a tracking
detector containing three time projection chambers
(TPCs) [49] interleaved with two fine-grained tracking
scintillator detectors [50] (referred to as FGD1 and FGD2)
constructed from plastic scintillator bars. The FGDs
provide the target mass for the neutrino interactions as
well as fine-grained tracking of charged particles from the
interaction vertex. The TPCs identify the type of charged
particle and measure the momenta of particles leaving the
FGDs. Each FGD weighs 1.1 tonnes and measures
1.84 m ðwidthÞ × 1.84 m ðheightÞ × 0.37 m ðdepthÞ. The
upstream fine-grained detector (FGD1) is constructed
with fifteen interleaved plastic scintillator modules, each
of which has two layers, segmented with 192 extruded
plastic scintillator bars with 0.96 cm2 cross sectional area,
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oriented in the X and Y directions transverse to the
neutrino beam direction. The downstream fine grained
detector, FGD2, contains six 2.5 cm thick layers of water
to provide a water-enriched neutrino target, each sur-
rounded by two XY scintillator modules. Only events with
the neutrino vertex reconstructed in FGD1 were used in
this study.

III. ANALYSIS STRATEGY

The signature of the coherent charged pion production
process is one muon and one charged pion, both forward-
going in the detector. The detector’s charged particle
tracking and identification efficiency restricts the measur-
able phase space of the muon and pions to kinematic
ranges:

(i) pμ > 0.2 GeV and cosðθμÞ > 0.8, and
(ii) pπ > 0.2 GeV and cosðθπÞ > 0.6.

The muon and pion momenta and angular distributions are
shown in Figs. 2 and 3, along with an indication of the size
of the restricted phase space. The selection of these
constraints is based on the performance in the NEUT
Monte Carlo and includes (82.9%)83.5% of all coherent
events in the (RHC)FHC beam mode.
These criteria are based on the charged current single-

pion production selection as described in [27]. Beyond that,
the target nucleus is left intact, so no additional hadronic

activity should be detected in the region around the
interaction vertex. Low vertex activity (VA), defined as
the energy deposited in a 5 × 5 × 5 [approximately
ð5 cmÞ3] volume of scintillator around the vertex position,
is required. A further restriction is applied to the jtj
distribution, which can be calculated from the muon and
pion kinematic variables,

jtj ¼
�X

i¼μ;π

�
Ei−

���Pi
!��� cosðθiÞ

��
2

þ
����
X

i¼μ;π

���Pi
!���ðêi − cosðθiÞêνÞ

����
2

; ð2Þ

where Ei is the energy, Pi
!

is the momentum, êi is the
direction unit vector, θi is the scattering angle of the muon
and pion in the event and êν is the neutrino direction unit
vector.
The VA and jtj distributions in data and in nominal

simulation and for both νμ and νμ after selecting events
containing exactly one muon and one charged pion are
shown in Fig. 4. The simulation shows that the coherent
signal events (labeled COH here and below) are all
concentrated in the low VA and low jtj region as expected.
Background events with VA greater than 15 MeV or jtj
greater than 0.15 ðGeVÞ2 are removed from the event

)��Muon Angle cos(

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [
M

eV
/c

]
�

M
u

o
n

 M
o

m
en

tu
m

 p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.5

1

1.5

2

2.5

)��Pion Angle cos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [
M

eV
/c

]
�

P
io

n
 M

o
m

en
tu

m
 p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

)��Muon Angle cos(

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [
M

eV
/c

]
�

M
u

o
n

 M
o

m
en

tu
m

 p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

5

6

7

8

)��Pion Angle cos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [
M

eV
/c

]
�

P
io

n
 M

o
m

en
tu

m
 p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

2

4

6

8

10

12

14

16

18

FIG. 2. The muon (left) and pion (right) kinematic distributions for the νμ coherent signal events (top) and for all signal and
background events (bottom). The straight lines indicate the restricted phase space; note no upper bound is set for the muon and pion
momentum. Based on the NEUT Monte Carlo, 82.9% of the true COH events remain in the restricted phase space.
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FIG. 3. The muon (left) and pion (right) kinematic distributions for the ν̄μ coherent signal events (top) and for all signal and
background events (bottom). The straight lines indicate the restricted phase space; note no upper bound is set for the muon and pion
momentum. Based on the NEUT Monte Carlo, 83.5% of the true COH events remain in the restricted phase space.
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FIG. 4. The νμ (top) and ν̄μ (bottom) COH selection, containing one muon and one charged pion, are shown in the VA (left) and jtj
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background control. The stacked histogram shows the prefit simulation overlaid by data.
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sample. The MC prediction for the signal purity and
selection efficiency in the νμ sample derived from the
nominal MC are 41.6% and 47.3%, respectively. The major
sources of background events are resonant pion production
(28.0%) and deep inelastic scattering (14.2%). The signal
purity in the ν̄μ sample is 42.2% with a 30.8% selection
efficiency. The major sources of background events in the
ν̄μ sample are resonant pion production (33.0%) and
interactions of νμ contamination in the ν̄μ beam (18.2%).
These values are all based on the nominal NEUT MC
predictions.
The cross section was extracted using a binned like-

lihood fitter which is described in detail in Refs. [35,51].
The inputs to the fitter include templates that map the signal
in each bin of true kinematic space to the associated bins in
reconstructed kinematic space. Template weights assigned
to each true bin are varied by the fitter, and the weighted
templates are summed in bins in reconstructed space to
generate the signal prediction at each fit point. In addition
to these signal normalization parameters, there is a set of
nuisance parameters associated with uncertainties in the
cross section, flux and detector models, which change the
shape of the templates as well as the shape and normali-
zation of the backgrounds. The signal normalization
parameters are allowed to float freely in the fit, whilst
the nuisance parameters are constrained by external mea-
surements which are introduced to the procedure via a prefit
covariance matrix. The fitter uses the MINUIT2 [52] min-
imization routine, MIGRAD, to maximize an extended
likelihood. The postfit parameter values are then used to
calculate the number of signal events in the true kinematic
space which best fits the data. The postfit covariance
between the fit parameters is estimated by calculating
the error matrix at the best fit point using the HESSE
algorithm [52].
In this measurement there is one signal template with

(two)three bins in reconstructed parameter space corre-
sponding to the (RHC)FHC mode. In both modes, the
template contains a single CC-COH bin recording the
number of selected signal events in the constrained recon-
structed phase space. The template also contains back-
ground-dominated sideband bins which are used to
constrain the nuisance parameters describing the dominant
RES and DIS backgrounds. In both beam modes, a side-
band contains the sample of events having a reconstructed
jtj outside the CC-COH range. In the case of the FHCmode
measurement, a three-track sample is used to constrain the
DIS events. This was unnecessary in the RHC mode
measurement since the fractional contribution of DIS
events in the MC predicted background was less than 2%.
The neutrino and antineutrino coherent pion production

cross sections are independently extracted by calculating

σFGD1 ¼
NFGD1

ϵ · TFGD1 ·Φ
; ð3Þ

where NFGD1 is the number of COH events obtained by the
likelihood fitter, ϵ is the detector efficiency to select the
COH events, TFGD1 is the number of target nuclei in FGD1,
and Φ is the integrated muon (anti)neutrino flux. Each of
these variables are functions of the fit parameters. These
parameters are randomly sampled from the postfit covari-
ance of all fit parameters, and the cross sections calculated.
The resulting distribution of the cross section yields the
final cross section uncertainty.
The value of σFGD calculated at the best-fit point

represents the average coherent cross section per non-
hydrogen atom in the FGD1 fiducial volume (FV). The
hydrogen atoms are not considered here, because there is
no coherent interaction on single protons. For the purpose
of this analysis, we consider the diffractive pion produc-
tion on hydrogen [53] as a background process. A
simulation [2] showed that contamination of these dif-
fractive events in the selected data is negligible. This
conclusion is supported by the previous T2K coherent
analysis [19] which employed an independent method,
developed by the MINERvA Collaboration [20], to
estimate the size of the diffractive component. This
method showed that the fractional contribution of dif-
fractive events in the coherent event sample was at most
5% or, on average, (4)8 events in the current (RHC)FHC
coherent event sample. The relative elemental composi-
tion in the FV is shown in Table I. The flux-shape
uncertainties are handled in accordance with the pre-
scription for “the second approach” discussed in detail in
[54]. The cross section is reported for the nominal T2K
off-axis flux prediction [38]. All effects of flux-shape
variations are covered by the uncertainties provided in
this result.
The majority of atoms in FGD1 are carbon. For easier

comparison with other experiments the COH cross section
on a carbon nucleus is calculated. This can be achieved by
using a scaling function, FðAÞ, which can account for
elements of atomic mass number A,

σFGD1 ¼ σC
X
i

fi
FðAiÞ
FðACÞ

; i ¼ C;O;Ti; Si;N; ð4Þ

where fi represents the fractional composition of
a given element. In this study the scaling function proposed
in [6], FðAÞ ¼ A1=3, is used. Results using an alternative

TABLE I. Number of target fractional composition of the
FGD1 detector excluding hydrogen.

Element C O Ti Si N

Atomic mass number (A) 12 16 48 28 14
Fractional composition (f) (%) 95.83 3.09 0.46 0.48 0.14
Relative uncertainty of fractional
composition (%)

0.5 1.3 16.6 19.7 39
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scaling function, FðAÞ ¼ A2=3, were also calculated. The
difference in the results is small compared to the meas-
urement uncertainties shown in Table II.
A number of tests with simulated data were carried out to

validate the neutrino cross section extraction methodology

and to identify potential biases caused by neutrino inter-
action mismodeling. These included different increases and
suppression of deep inelastic scattering, coherent, and
resonance interaction modes, shifts in the high-energy part
of the neutrino flux, and the use of a completely different
event generator, GENIE. All simulated data studies showed
that the analysis performed as expected.

IV. RESULTS

To verify whether the MC model is suitable to describe
the kinematics (and thus the selection) of the relevant
events, the data was compared with MC in distributions of
jtj, VA, Q2, pπ , and cosðθπÞ. Note that the latter four
variables are not used by the likelihood fit. While there was
mostly good agreement in the sample (see Figs. 5 and 8), a
disagreement in the shapes of the sideband samples was
observed. To evaluate what, if any, bias might be introduced
due to the difference between the nominal MC and data in
the sideband samples, several empirical tunings of the MC
were made to obtain better agreement with the data. Among
these, the following combination of changes in the nominal
MC produced the best agreement with data:
(1) The VA of all background events was increased

by 1 MeV.
(2) Additional VA, uniformly distributed between 0 and

100 MeV, was randomly added to 25% of the
interactions on neutron target.

TABLE II. Summary of flux-averaged, phase-space con-
strained, charged current, coherent cross section results and
model predictions. Expressed in units of 10−40 cm2/nucleus with
statistical and systematic uncertainties, and the additional un-
certainty added to cover the low Q2 CC-RES suppression bias.
The reported measurement on carbon uses the F1=3ðAÞ scaling.
The model predictions for carbon do not use a scaling function.
No prediction in RHC mode is given using the GENIE RS (2007)
model as Monte Carlo simulation data sets using the GENIE RS
model had not been generated for the RHC beammode at the time
of this analysis. Note that the cross section prediction from the
NEUT BS (2009) model for the FHC mode is different from the
prediction for the RHC mode as the flux of neutrinos and
antineutrinos are different.

T2K (2022)
NEUT BS
(2009)

GENIE RS
(2007)

σνμ;FGD 3.00� 0.37� 0.31� 0.49 2.77 3.28
σνμ;C;1=3 2.98� 0.37� 0.31� 0.49 2.57 3.09
σν̄μ;FGD 3.07� 0.71� 0.39� 0.75 2.87 � � �
σν̄μ;C;1=3 3.05� 0.71� 0.39� 0.74 2.78 � � �
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FIG. 5. νμ data, nominal Monte Carlo simulation (prefit), and postfit Monte Carlo simulation comparisons in VA, jtj, Q2, pπ , and
cosðθπÞ for the signal region. The stacked histograms represent the true reaction types of the events. The smaller postfit χ2stat shows
improved data and MC agreement in all five variables after the fit. The postfit χ2stat for the VA distribution remains statistically
incompatible to the data. The nominal MC was modified to reproduce the shapes seen in the data and used as a simulated data set. No
significant bias in the total cross section extraction was observed (see text). Note that the fit does not consider these distributions, but
only sees a single bin for the signal sample.
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(3) Low-Q2 (< 0.7 GeV2) CC-RES events were sup-
pressed (using a MINERvA-inspired data driven
suppression technique [55]).

(4) The CC-DIS contribution was suppressed by 50%.
(5) The CC-RES contribution was increased by 10%.
(6) The normalization of the signal COH events

was increased by (18)19% for (RHC)FHC mode,
where the numbers were derived from the fit results
discussed below.

The need for a modified VA has also previously been
seen at MINERvA [56] and the 2016 T2K CC-COH
measurement [19]. In addition to this, separate simulated
datasets were created where the impacts of single parameter
variations were studied. None of the studies revealed any
significant potential for bias in the cross section extraction,
and differences between extracted and true cross section
were always within the systematic uncertainties.
An additional simulated data study was motivated by the

report of a suppression of CC-1π resonant events at low Q2

from the MINERvA experiment [55]. This effect has not
been observed or excluded by T2K, which has different
neutrino beam energies and nominal MC models, but the
potential effect of such an observation in T2K on the cross
section result was studied nonetheless. Analysis of a
simulated data set with an artificially suppressed CC-
RES cross section at low Q2 resulted in a noticeable bias
in the extracted cross section, which was not covered by the
model uncertainties considered in this analysis. Since it is
unclear whether this suppression should be expected in the

T2K data, the bias seen in this study is covered with an
additional systematic uncertainty on the extracted (anti)
neutrino CC-COH cross section of 16% (24%). The size of
this uncertainty was chosen so that the one standard
deviation of the total systematic uncertainty, including that
attributed to the low Q2 CC-RES suppression, covers the
bias observed in this simulated data study.
The νμ analysis employs three bins in reconstructed

parameter space (one bin from the signal region and two
bins from the two sidebands). The χ2postfit (9.44) improved
significantly from the χ2prefit (82.53). The χ

2
prefit is not small

due to large difference between data and MC in one of the
sidebands as a result of overprediction of the DIS back-
ground events. The ν̄μ analysis employs two bins in
reconstructed space (one bin each from the signal region
and the sideband). The χ2postfit (4.62) improved from the
χ2prefit (9.79). These values are within the range of results
from simulated data studies that showed acceptable levels
of bias in the cross section results.
As shown in Figs. 5–7, the χ2statðpostfitÞ are reduced from

the χ2statðprefitÞ in most kinematic distributions of the νμ
data. The improvements are the result of the RES and DIS
background events being reweighted. The improvements
are especially obvious for the two sidebands, which are
mostly consist of the RES and DIS background events. The
relatively larger VA and pπ postfit χ2stat indicate lack of
degrees of freedom in these two spaces. Similar conclu-
sions can be drawn from the ν̄μ data shown in Figs. 8 and 9.
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FIG. 6. νμ data, nominal Monte Carlo simulation (prefit), and postfit Monte Carlo simulation comparisons in VA, jtj, Q2, pπ , and
cosðθπÞ for the first sideband. The stacked histograms represent the true reaction types of the events. The postfit χ2stat are improved in
general as a result of the RES and DIS background events being reweighted. The relatively larger VA and pπ postfit χ2stat indicate lack of
degrees of freedom in these two spaces.
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However, the improvements in the postfit χ2stat are less
significant since the bin-to-bin uncertainties are dominated
by low statistics. The χ2stat shown in these figures are only
used to indicate whether there has been an improvement in

the agreement between data and model after the fit has been
performed. Since the fit only uses a single bin for the signal
region in each of the two sidebands, any improvement in
the shapes of these distributions comes mostly from the
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FIG. 7. νμ data, nominal Monte Carlo simulation (prefit), and postfit Monte Carlo simulation comparisons in VA, jtj, Q2, pπ , and
cosðθπÞ for the second sideband. The stacked histograms represent the true reaction types of the events. Since this sideband is dominated
by the DIS background events, the postfit χ2stat is much improved after the fitter as a result of the DIS background events being
reweighted.
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FIG. 8. ν̄μ data, nominal Monte Carlo simulation (prefit), and postfit Monte Carlo simulation comparisons in VA, jtj, Q2, pπ , and
cosðθπÞ for the signal region. The stacked histograms represent the true reaction types of the events. The postfit χ2stat are not changed as
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relative normalization of the background DIS and RES
interaction modes.
The fitted flux-averaged, phase space-constrained,

charged current coherent cross sections per atom of the
FGD FV are shown in Table II. These results are based on
an event sample of (80) 272 events with a predicted
background component of (46) 159 events in the (RHC)
FHC beam mode. The table includes the result on the
carbon cross section derived using the A1=3 scaling and
model predictions for comparison. The measured cross
sections on the FGD target material agree with the NEUT
Berger-Sehgal prediction slightly better than with the
GENIE Rein-Sehgal model, but they are both covered
by the measurement uncertainties.
The sources of uncertainties are summarized in Table III.

The systematic uncertainty is further broken down into
three components; the flux uncertainties, the cross section
and final-state interaction related uncertainties, and the
detector response related uncertainties. The total systematic
uncertainty quoted in the table reflects the correlations
between the three components. An additional uncertainty is
added to cover the low Q2 CC-RES suppression bias as
described previously. The main contributions to the uncer-
tainty for both neutrino and antineutrino results come from
statistical uncertainties and the additional low Q2 CC-RES
suppression uncertainty.
The cross section results are shown in Fig. 10. The

cross section reported here is energy-averaged over the
incoming neutrino flux and restricted to a specific region

of the parameter space of produced muon and pion
kinematics. As such, it cannot be directly compared to
a theoretical model providing the cross section as a
function of neutrino energy. A valid comparison requires
the theoretical cross section to be integrated over the T2K
flux and phase space restrictions applied. Horizontal lines
in Fig. 10 show model predictions after this procedure has
been applied.
To enable a quick comparison between results of differ-

ent experiments with different neutrino energy distribu-
tions, the mean neutrino energy is used as the x-position of
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FIG. 9. ν̄μ data, nominal Monte Carlo simulation (prefit), and postfit Monte Carlo simulation comparisons in VA, jtj, Q2, pπ , and
cosðθπÞ for the first sideband. The stacked histograms represent the true reaction types of the events. The postfit χ2stat are improved in
general as a result of the RES background events being reweighted; however, the shape differences between the data and the MC in the
VA and jtj cannot be simply resolved by simple rescale of events.

TABLE III. Statistical uncertainty and breakdown of the
sources of systematic uncertainties. The largest contribution of
uncertainty comes from the bias in the extracted cross section
when the low Q2 CC-RES events are suppressed. Note the total
systematic uncertainty is not exactly equal to the quadratic sum of
the components due to correlation between the sources.

Sources of uncertainties
νμ CC-COH
(×10−40 cm2)

ν̄μ CC-COH
(×10−40 cm2)

Flux 0.14 0.24
Cross section and FSI 0.22 0.34
Detector responses 0.24 0.42
Total systematic uncertainty 0.31 0.39
Low Q2 CC-RES
suppression related

0.49 0.75

Statistical 0.37 0.71
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the data points and the standard deviation of neutrino
energies as the error bars in the x-direction.

V. CONCLUSION

TheT2KνμCC-COHand ν̄μCC-COHcross sectionson 12C
are ð2.98�0.37ðstatÞ�0.31ðsystÞþ0.49

−0.00ðQ2modelÞÞ×10−40cm2

and ð3.05 � 0.71ðstatÞ � 0.39ðsystÞþ0.74
−0.00ðQ2 modelÞÞ×

10−40 cm2, assuming anA-scaling ofA1=3. The flux-averaged
cross sections are measured in a reduced final-state particle
kinematic phase space for which pμ;π > 0.2 GeV,
cosðθμÞ > 0.8, and cosðθπÞ > 0.6. The uncertainty labeled
as “Q2 model” corresponds to the potential bias caused by
the low Q2 CC-RES suppression study. This study presents
the first measurement of the ν̄μ CC-COH cross section
at a mean neutrino energy less than 1 GeV. In addition,
the νμ CC-COH measurement is consistent with the
previous 2016 T2K result but with the fractional total
uncertainty reduced from 46% to 23%. It is notable
that the measured neutrino and antineutrino coherent
pion production cross sections are themselves consis-
tent, as expected from theory. Both the NEUT Berger-
Sehgal and the GENIE Rein-Sehgal model predictions
are compatible with the data within the measurement
uncertainties.

A data release summarizing these results is available
from the T2K public results site [57].
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