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ABSTRACT

Purpose: To develop a deep learning (DL) model to generate synthetic, 2-dimensional subtraction angiograms free of
artifacts from native abdominal angiograms.

Materials and Methods: In this retrospective study, 2-dimensional digital subtraction angiography (2D-DSA) images and
native angiograms were consecutively collected from July 2019 to March 2020. Images were divided into motion-free
(training, validation, and motion-free test datasets) and motion-artifact (motion-artifact test dataset) sets. A total of 3,185,
393, 383, and 345 images from 87 patients (mean age, 71 years ± 10; 64 men and 23 women) were included in the training,
validation, motion-free, and motion-artifact test datasets, respectively. Native angiograms and 2D-DSA image pairs were
used to train and validate an image-to-image translation model to generate synthetic DL-based subtraction angiography
(DLSA) images. DLSA images were quantitatively evaluated by the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) using the motion-free dataset and were qualitatively evaluated via visual assessments by radiologists with a
numerical rating scale using the motion-artifact dataset.

Results: The DLSA images showed a mean PSNR (± standard deviation) of 43.05 dB ± 3.65 and mean SSIM of 0.98 ± 0.01,
indicating high agreement with the original 2D-DSA images in the motion-free dataset. Qualitative visual evaluation by
radiologists of the motion-artifact dataset showed that DLSA images contained fewer motion artifacts than 2D-DSA images.
Additionally, DLSA images scored similar to or higher than 2D-DSA images for vascular visualization and clinical usefulness.

Conclusions: The developed DL model generated synthetic, motion-free subtraction images from abdominal angiograms
with similar imaging characteristics to 2D-DSA images.
ABBREVIATIONS

DL = deep learning, DLSA = deep learning-based subtraction angiography, PSNR = peak signal-to-noise ratio, SSIM = structural
similarity, 2D-DSA = 2-dimensional digital subtraction angiography
In many clinical scenarios that require angiography, 2-
dimensional digital subtraction angiography (2D-DSA) is
used as the primary imaging procedure because this tech-
nique provides clear imaging of blood vessels and requires
only small amounts of contrast medium (1). A 2D-DSA
image is created by subtracting a mask image from a native
angiogram. A mask image is the background anatomical
image that represents the image before the contrast agent
reaches the vessel. The native angiogram is the real-time
igures E1–E5, Tables E1–E9, and Appendices A–D can be found by
ccessing the online version of this article on www.jvir.org and selecting the
upplemental Material tab.
image and shows the vasculature with the contrast agent
with the background anatomical image.

The primary limitation of 2D-DSA is motion artifacts,
which are caused by a misalignment between the native
angiogram and the mask image. The presence of motion
artifacts makes it difficult to clearly identify vessels. Body
movements, respiration, intestinal movement, and cardiac
pulsatility can all cause motion artifacts. During image
acquisition, patients are asked to remain as still as possible
© SIR, 2022. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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STUDY DETAILS

Study type: Laboratory study

RESEARCH HIGHLIGHTS

• A deep learning-based subtraction angiography (DLSA)
was developed that can create abdominal 2-
dimensional digital subtraction angiography (DSA)–like
images from only native angiograms without mask
images.

• DLSA images showed a mean peak signal-to-noise
ratio (± standard deviation) of 43.05 dB ± 3.65 and mean
structural similarity of 0.98 ± 0.01, indicating high
agreement with the original 2-dimensional DSA images,
and had less motion artifact than the DSA.

• The DLSA model has the potential to achieve better
testing, better treatment, use of less contrast agent, and
less radiation exposure through artifact reduction dur-
ing abdominal angiography.
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and hold their breath to prevent motion artifacts. However,
because of various physiological conditions, some patients
may not be able to remain still during image acquisition.
The presence of motion artifacts often requires reimaging,
which necessitates that patients are exposed to additional
contrast agent and radiation, as well as a longer period of
time to treatment or testing.

Deep learning (DL), as a field of artificial intelligence,
has received substantial attention in recent years (2) and has
been integrated into various radiological applications (3,4).
Image processing techniques such as remasking and pixel
shifting are routinely employed to reduce the effects of
patient motion (5,6). In recent years, maskless methods
designed to overcome limitations from motion artifacts have
also emerged. For example, previous studies (7–10) that
have evaluated the cerebral region have proposed maskless
angiography for both 2D-DSA and 3-dimensional digital
subtraction angiography. Maskless models are ideal candi-
dates for abdominal angiography because motion-caused
artifacts are more common in the abdominal region.

In this study, a DL model was trained using abdominal
angiograms and 2D-DSA images to generate synthetic DL-
based subtraction angiography (DLSA) images. The model
utilized was based on a previously developed DL model (9).

MATERIALS AND METHODS
Study Design
This retrospective study was approved by the Ethical
Committee of Osaka City University Graduate School of
Medicine. Because the images were acquired during daily
clinical practice, the need for informed consent was waived.
This study followed the Checklist for Artificial Intelligence
in Medical Imaging and Standards for Reporting Diagnostic
Accuracy statements (11,12). First, native angiograms and
2D-DSA images were retrospectively collected. The DL
model was trained and tuned with pairs of native angio-
grams and 2D-DSA images without motion artifacts. The
DLSA images generated from the trained model were
quantitatively and qualitatively evaluated. In the quantita-
tive evaluations, the DLSA images were evaluated by the
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) compared with the original 2D-DSA images
(13,14). In the qualitative visual evaluations, the DLSA
images were compared with the original 2D-DSA images
by 8 interventional radiologists across 3 different imaging
characteristics.
Data Collection
All abdominal angiograms were collected consecutively at
1 facility between July 2019 and March 2020, and no
exclusion criteria were adopted. All images were collected
using a C-arm cone-beam 2D-DSA system (Artis Zee BA
Twin; Siemens Healthineers, Erlangen, Germany).
Although the method of contrast agent administration var-
ied depending on the arteries, typical examples are shown in
Appendix A (available online on the article’s Supplemental
Material page at www.jvir.org). Both 2D-DSA images with
automatic pixel shifting and native angiograms were
collected. If more than 1 sequence was performed for a
patient, all the images in every sequence were collected.
Ground Truth Labeling
Each 2D-DSA image was classified by the authors, 2
radiologists (H.Y., D.U.) with 6 and 5 years of experience in
interventional radiology, into groups with and without
motion artifacts on a sequence basis as follows: (a) category
1, no artifacts; (b) category 2, slight artifacts; (c) category 3,
some artifacts and reimaging recommended; and (d) category
4, strong artifacts and reimaging needed. In the event of
disagreement, consensus was achieved by discussion. Cate-
gories 1 and 2 were classified as angiograms without motion
artifacts. Categories 3 and 4 were classified as angiograms
with motion artifacts. Detailed categorization is described
in Figure E1 and Appendix B (available online at
www.jvir.org).
Image Processing
The images were first resized such that the long side of an
image was 256 pixels, maintaining the aspect ratio of the
image. The short side of an image was then padded with
black to 256 pixels.
Data Partitioning
A total of 4 datasets were prepared: (a) training, (b) vali-
dation, (c) motion-free test, and (d) motion-artifact test
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Table 1. Demographics of the Datasets

Parameter Training
dataset

Validation
dataset

Motion-free
test dataset

Motion-
artifact test
dataset

Patients, n 64 8 9 6

Sequences, n 88 11 11 10

Paired images, n 3,185 393 383 345

Images by location, n

Celiac artery 1,790 211 306 204

Common hepatic 788 106 33 35
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datasets. To train and evaluate the model, native angiograms
and 2D-DSA images with the same time point, from the
same patient, were paired on an image-by-image basis.
Paired images with motion artifacts formed the motion-
artifact test dataset. Paired images without motion arti-
facts were first randomly divided into training, validation,
and motion-free test datasets at a ratio of 8:1:1, split
patient-wise. This partition was performed on a per-patient
basis to prevent the overlapping of images between the
datasets.
artery

Superior
mesenteric artery

607 76 44 106

Patients by disease, n

HCC 49 7 7 3

Rupture 0 0 0 1

Liver injury 2 0 0 1

Liver metastasis 3 0 0 0

Gastrointestinal
bleeding

5 0 0 2

Intra-abdominal
bleeding

3 1 0 0

Cholangiocellular
carcinoma

2 0 0 0

Pancreatic cancer 0 0 1 0

Abscess 0 0 1 0

HCC = hepatocellular carcinoma.
Data Characteristics
In total, 4,306 paired images were collected from 120
sequences in 87 patients (mean age, 71 years ± 10; 64 men
and 23 women). The training dataset comprised 3,185
paired images in 88 sequences from 64 patients (mean age,
71 years ± 11; 45 men and 19 women), the validation
dataset contained 393 paired images in 11 sequences from 8
patients (mean age, 72 years ± 8; 8 men), the motion-free
test dataset comprised 383 paired images in 11 sequences
from 9 patients (mean age, 72 years ± 5; 7 men and 2
women), and the motion-artifact test dataset contained 345
paired images in 10 sequences from 6 patients (mean age,
69 years ± 12; 4 men and 2 women). Detailed demographic
information of the datasets is provided in Table 1. The
classification of motion artifacts for the datasets is shown
in Table E1 (available online at www.jvir.org).
Disagreements between the radiologists regarding the
presence of motion artifacts are shown in Table E2
(available online at www.jvir.org).
Model Development
Usually, 2D-DSA images are generated by subtracting a
mask image from a native angiogram. If a DL model could
be trained to extract features related to the background, the
model may be capable of replacing the need for a mask;
this concept was the basis for the development of the
model.

To implement background extraction, it was necessary
to train the DL model on the relationship between the
native angiogram and the 2D-DSA image without motion
artifacts. When 2D-DSA images are acquired on a patient
in motion, motion artifacts occur because there is a
misalignment between the native angiogram and the mask
image. However, with DL-based subtraction, the back-
ground can be removed from the native angiogram
without using the mask image; therefore there is no
misalignment. Thus, this model was trained on the basis
of native angiograms and 2D-DSA images without motion
artifacts.

The difference between the images generated by the
model (DLSA) and the 2D-DSA images was expressed as
a loss value, and the model with the lowest loss value
across all the images in the dataset was considered as the
highest performing model. The DL model was developed
on the basis of pix2pix (15), a generative adversarial
network, which is an image-to-image translation artificial
intelligence model that uses paired images in the training
and validation datasets. In the DL model, the generator
adopted a U-Net–based architecture (16) and the
discriminator adopted a convolutional PatchGAN classi-
fier (17). The details of the developed DL model are
shown in Figure E2 and Appendices C and D (available
online at www.jvir.org), and the source code is available
online (18).

The model was trained with the training dataset and
tuned with the validation dataset. The entire network was
used for pixel-by-pixel regression and end-to-end mapping.
The number of epochs was 100. The highest performing
model was adopted when the sum of generator loss and L1
loss reached a minimum for the validation dataset. These
models were built in PyTorch (19).
Quantitative Evaluation
Quantitative evaluation was performed on the validation
and motion-free test datasets. The highest performing DL
model was applied to these datasets, and the similarity
between the DLSA image and the original 2D-DSA image
was evaluated with the PSNR and SSIM (14). As shown in
Figure E3 (available online at www.jvir.org), PSNR is a
traditional measurement of the average values of the
differences in pixels between images, whereas SSIM is a
measurement that takes into account not only the
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differences in pixel values between images but also the
differences in contrast and structure.
Qualitative Visual Evaluation
For images with motion artifacts, DLSA images cannot be
quantitatively evaluated by comparison with 2D-DSA
images because 2D-DSA images with motion artifacts are
unsuitable as reference standards. Thus, the motion-artifact
test dataset was assessed using qualitative visual evaluation.

The study protocol was as follows. To generate DLSA
images, the highest performing model was applied to the
native angiograms in the motion-artifact test dataset. A
native angiogram, the original 2D-DSA image, and a DLSA
image were arranged side by side; the placement of the 2D-
DSA and DLSA images was randomized and blinded for
the readers. The images were then compared and evaluated
by 8 interventional radiologists (reader 1, 22 years of
experience; reader 2, 16 years of experience; reader 3, 16
years of experience; reader 4, 15 years of experience; reader
5, 7 years of experience; reader 6, 6 years of experience;
reader 7, 6 years of experience; and reader 8, 4 years of
experience). Three types of visual evaluation were per-
formed per sequence. The first test was a vascular visuali-
zation test to visually assess, per sequence, how well the
DLSA images showed the arteries compared with the 2D-
DSA images. The readers assessed all the main arteries and
their branches contrasted in the images. Second, an artifact-
reduction test was performed to visually assess how much
the motion artifacts were reduced across the background
region. Third, a clinical usefulness test was performed to
visually assess how useful the DLSA images would be in
guiding a procedure compared with the 2D-DSA images.

After the tests, the image pairs were divided into 5
classes on the basis of a score from 1 (2D-DSA images
scored much higher than DLSA images) to 5 (DLSA
images scored much higher than 2D-DSA images). A
detailed description of each of the visual evaluation score is
shown in Table E3 (available online at www.jvir.org).
Clinical information of the patients was not available to
readers.

A diagnostic monitor (Eizo monitor, Eizo Flexscan
RX560; Eizo, Ishikawa, Japan) was used to evaluate the
350 ppi images. There was no overlap between the radi-
ologists who annotated the ground truth and those who
performed the visual evaluation test. In addition to these
tests to the motion-artifact test dataset, the motion-free
test dataset was also visually evaluated using the same
process.
Statistical Analysis
In quantitative evaluations, PSNR and SSIM, as 2 common
measures of similarity in engineering image evaluation,
were used to assess image quality. A linear mixed-effects
model was used to compare the PSNR and SSIM between
the imaging locations. A random slope and random
intercept for each patient were taken into account because
the datasets included some repeated measurements of a
single patient. These statistical inferences were performed
with a 2-sided 5% significance level. In visual evaluations,
the grading of the visual ratings in the vascular visualiza-
tion, artifact-reduction, and clinical usefulness tests were
summarized, and the mean and standard deviations were
assessed. All evaluations were analyzed by region. An
author (D.K.) performed all analyses using R (version 4.0.3,
2020; R Foundation for Statistical Computing, Vienna,
Austria) (20).
RESULTS
Model Development
The DL model was developed with the training dataset and
tuned with the validation dataset. For the solver, the Adam
optimizer (21), with a learning rate of 0.0002 and
momentum parameters β1 = 0.5 and β2 = 0.999, was
employed. The model was trained for 100 epochs using the
training dataset while monitoring the loss value using the
validation dataset. During this period, the lowest total loss
value was 1.119 at 90 epochs. Therefore, the parameters at
this epoch were adopted as the highest performing model.
The learning curves for the DL model are shown in
Figure E4 (available online at www.jvir.org).
Quantitative Evaluation
For the quantitative evaluation of the DLSA images, the
mean PSNR and SSIM (± standard deviation) were 44.10
dB ± 2.89 and 0.98 ± 0.01, respectively, in the validation
dataset and 43.05 dB ± 3.65 and 0.98 ± 0.01, respectively
in the motion-free test dataset. These results are presented in
Table 2. The examples of the DLSA images in the motion-
free test dataset are shown in Figure 1 and Figure E5
(available online at www.jvir.org).
Qualitative Visual Evaluation
For the visual evaluation of DLSA images in the motion-
artifact test dataset, the mean score (± standard deviation)
in the artifact-reduction test was 3.6 ± 1.1 (out of 5), with
the DLSA images having fewer artifacts than the 2D-DSA
images in all sequences. Moreover, the mean score in the
vascular visualization test was 3.1 ± 0.9 (out of 5), and the
mean score in the clinical usefulness test was 3.1 ± 1.0 (out
of 5), with equal to superior vascular visualization and
clinical usefulness.

Detailed data for each test on a sequence basis are shown
in Tables E4–E6 (available online at www.jvir.org). The
examples of the DLSA images in the motion-artifact test
dataset are shown in Figures 2 and 3. A sequence of images
generated by the model, which were visually evaluated to
be more clinically useful with reduced artifacts than the
2D-DSA images, is shown in Video 1 (available online at
www.jvir.org). The visual evaluations for the motion-free
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Table 2. Quantitative Evaluation by PSNR and SSIM

95% confidence interval

Parameter Mean Lower Upper Global P
value

PSNR

Validation dataset

Total (dB) 44.10 ± 2.89 NA NA NA

Location estimated mean value

Celiac artery 43.644 42.241 45.047 <.001

Common hepatic artery 45.181 43.677 46.685 <.001

Superior mesenteric artery 46.227 44.402 48.051 <.001

Motion-free test dataset

Total (dB) 43.05 ± 3.65 NA NA NA

Location estimated mean value

Celiac artery 42.826 41.718 43.934 <.001

Common hepatic artery 45.264 43.172 47.356 <.001

Superior mesenteric artery 45.403 43.434 47.373 <.001

SSIM

Validation dataset

Total (dB) 0.98 ± 0.01 NA NA NA

Location estimated mean value

Celiac artery 0.977 0.972 0.982 <.001

Common hepatic artery 0.982 0.977 0.988 <.001

Superior mesenteric artery 0.986 0.979 0.992 <.001

Motion-free test dataset

Total (dB) 0.98 ± 0.01 NA NA NA

Location estimated mean value

Celiac artery 0.997 0.973 0.980 .011

Common hepatic artery 0.983 0.977 0.989 .011

Superior mesenteric artery 0.975 0.969 0.981 .011

Note–Data are reported as mean ± standard deviation.
NA = not applicable; PSNR = peak signal-to-noise ratio; SSIM = structural
similarity.
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test dataset are available in Tables E7–E9 (available online
at www.jvir.org).
DISCUSSION
A DL model was developed to create synthetic subtraction
angiograms (DLSA images) from native angiograms
without subtracting mask images. In the quantitative
analysis of the DLSA images, the mean PSNR and SSIM
(± standard deviation) were 44.10 dB ± 2.89 and 0.98 ±
0.01, respectively, in the validation dataset and 43.05 dB
± 3.65 and 0.98 ± 0.01, respectively, in the motion-free
test dataset, indicating that the DLSA images were
highly similar to the original 2D-DSA images without
motion artifacts. Visual evaluation by radiologists of the
motion-artifact test dataset showed that the DLSA images
contained fewer motion artifacts than the 2D-DSA images
and had equal to superior vascular visualization and
clinical usefulness.

In the field of abdominal angiography, 2D-DSA is
indispensable but prone to motion artifacts. For decades, a
variety of technologies have been used to address this
problem (5). Approaches to capture images such as mask
image modification (remasking), parallel shifting of native
angiograms (pixel shifting processing), and automatic pixel
shifting have been developed to reduce motion artifacts
caused by body movements in 2D-DSA (5,22). Matrix pixel
shifting is sometimes used as well. However, the model
described in this study would enable the development of
synthetic images much faster because it takes only a few
seconds to apply the model to 1 sequence. As long as mask
images are used for subtraction to make 2D-DSA images,
motion artifacts will arise to some degree. However, this
approach—based on previous study (9)—used only native
angiograms to generate DLSA images. In this regard, the
developed DL model could be used to generate images with
fewer motion artifacts.

The developed DL model has the potential to allow
interventional radiologists to provide optimized care to
patients through the provision of angiograms with fewer
artifacts, even if the patient moves during angiography. In
clinical practice, visual evaluation of the DLSA images by
interventional radiologists will be necessary to determine if
these images could be used to overcome motion artifacts
that are commonly encountered on 2D-DSA images.
Interventional radiologists qualitatively scored DLSA
images similar to or higher than 2D-DSA images (scores
of 1–5, with a score of 3 indicating that the DLSA and 2D-
DSA images were similar) for the reduction of motion
artifacts (3.6 ± 1.1), vascular visualization (3.1 ± 0.9), and
clinical usefulness (3.1 ± 1.0). Sequences with artifacts
(images that are not clinically useful and may require
reimaging) accounted for approximately 8% (345 of 4,306)
of the sequences collected; therefore, contrast agent use
and radiation exposure could be reduced by approximately
8% with the use of this model if reimaging were not
required.

When the DLSA images were evaluated in detail, some
artifacts were encountered, and evaluations of these images
scored lower in both qualitative and visually qualitative
analyses. Figures 2 and 3 show angiograms in different
sequences of the same examination in the motion-artifact
test dataset. Figure 2, which shows an image that
received a high evaluation, has a narrow angle of view,
whereas Figure 3, which shows an image that received a
low evaluation, has a wide angle of view. DLSA images
with a wide angle of view tended to leave more artifacts
than images with a narrower angle of view. This result
may be because images with a wide angle of view
include regions such as the iliac and femoral bones, for
which a relatively small training dataset was available.
Therefore, the use of images with a narrower angle of
view for model training may improve the performance of
the DL model.

There are some limitations of this study. All datasets
were collected from a single institution and imaged with a
single device. The PSNR and SSIM were relatively low
in the region of the superior mesenteric artery because of
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Figure 1. Abdominal angiograms from a man with hepatocellular carcinoma (sequence R): native angiogram, original 2-dimensional
digital subtraction angiography (2D-DSA) image, deep learning-based subtraction angiography (DLSA) image, and difference map of
the celiac artery from the motion-free test dataset. The peak signal-to-noise ratio and structural similarity of the DLSA image were
43.60 dB and 0.977, respectively. Both the original 2D-DSA and DLSA images provided clinically useful depictions of the main
arteries and their branches. Images from the original 2D-DSA and DLSA are highly similar. Differences are shown in red.

Figure 2. Abdominal angiograms from a man with small bowel hemorrhage prior to treatment (sequence A): these figures show
the native angiogram, original 2-dimensional digital subtraction angiography (2D-DSA) image, and deep learning-based sub-
traction angiography (DLSA) image of the superior mesenteric artery from the motion-artifact test dataset. The mean visual score
(± standard deviation) in the vascular visualization test was high, 4.1 ± 0.8 (out of 5). The mean scores in the artifact-reduction test
and clinical usefulness test were 4.3 ± 0.9 (out of 5) and 4.3 ± 0.6 (out of 5), respectively. The branches of the jejunal artery
overlapped by artifacts of the small intestine in the 2D-DSA image are well described in the DLSA image (arrows).
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the paucity of images in the training and validation
datasets.

In summary, a DL model was developed to generate
synthetic subtraction angiograms without motion artifacts
(DLSA images). In qualitative and quantitative evaluations,
the DLSA images were similar to or better than 2D-DSA
images. The DL model has the potential to replace 2D-DSA
in abdominal angiography in cases with motion artifacts.
This model does not require any specialized knowledge or
skills, and DLSA images in their original resolution can be
created with almost no time lag by using existing devices.
The trained model is open source (18) and can be used
worldwide as well as for research, under the Berkeley
Software Distribution license. Therefore, this model has the
potential to support interventional radiologists and other
image-guided therapy specialists with their patients.
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APPENDIX A. METHOD OF CONTRAST
MEDIUM ADMINISTRATION
The celiac artery, common hepatic artery, and superior
mesenteric artery were selectively catheterized using a 4-F
catheter via transfemoral artery access. A nonionic
contrast agent (iohexol, Omnipaque-300; GE Healthcare,
Boston, Massachusetts) was administered. Undiluted
contrast medium was injected from the celiac artery and
superior mesenteric artery at 5 mL/s with an injector, and
the total volume of contrast injected was 15 mL. From the
common hepatic artery, it was injected at 2 mL/s, for the
total injection volume of 10 mL.
APPENDIX B. CATEGORY
CLASSIFICATION OF MOTION
ARTIFACTS

1) Category 1: No artifacts

There are no artifacts in the target vascular region or
background region that could affect the treatment.

2) Category 2: Slight artifacts

There are a few artifacts in the target vascular region or
background region that would not affect the treatment;
therefore, reimaging is not needed.

3) Category 3: Some artifacts and reimaging
recommended

There are some artifacts, mainly in the background
region, that could affect the treatment, and reimaging is
recommended.

4) Category 4: Strong artifacts and reimaging needed

There are strong artifacts in both the target vascular
region and background region that could affect the treat-
ment, and reimaging is needed.
APPENDIX C. DETAILED PROCESS FOR
MODEL SEARCHING AND
HYPERPARAMETER TUNING OF THE
DEEP LEARNING MODEL
Various types of deep learning models are available for
image-to-image translation. Among these, the pix2pix
network was adopted for the deep learning-based sub-
traction angiography model (1,2). This network can learn
the transformational features between paired images using
a generative adversarial network. For example, pix2pix is
good at extracting features from paired images, such as
aerial photographs and maps. The similar relationship
between native angiograms and 2D-DSA images without
motion artifacts is suitable for feature extraction by
pix2pix. The generator network is U-Net, a network that
has been successful in semantic segmentation and can use
an encoder-decoder system to generate new images (3).
By incorporating a skip connection into the encoder-
decoder system, the network can learn global features
efficiently. The discriminator network employs the
PatchGAN, which decomposes the image input to the
discriminator into several smaller subregions (4). Each of
these regions is then judged as real or fake, and all
responses are finally averaged to give the final output of
the discriminator. The PatchGAN mechanism allows the
discriminator to focus only on local features, while
leaving a certain amount of global judgments; therefore,
the number of learning parameters can be reduced,
resulting in efficient learning.

In this study, the following steps were used to determine
the best model and hyperparameters for the final model. As
generators, the U-net128-, U-net256-, and ResNet-based
models were evaluated. Moreover, the hyperparameters
were tuned for the optimizer, learning rate, and batch size.
As optimizers, stochastic gradient descent, Adam, and
Nadam were evaluated; for the learning rate, the searching
range was 0.001–0.05; for the batch size, the search range
was 32–256.

Upon completion of the model search and hyper-
parameter tuning, the final model chosen was U-net256, and
the hyperparameters were as follows: (a) optimizer, Adam;
(b) learning ratio, 0.0002; (c) momentum parameters, β1 =
0.5 and β2 = 0.999; and (d) batch size, 16.

APPENDIX D. EXPLANATION OF U-NET
U-Net is an encoder-decoder network that consists of
convolutional layers without a fully connected layer (3).
U-Net introduces an approach called skip connection that
concatenates the feature maps output at each layer of the
encoder to the corresponding feature maps at each layer
of the decoder. With this skip connection, the feature
maps in each layer of the encoder can be directly con-
nected to the feature map of the corresponding layer of
the decoder, and more detailed features can be
represented.
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Figure E1. Examples of each classification of motion artifacts. Arrowheads show motion artifacts. (a) Category 1: no artifacts.
(b) Category 2: slight artifacts. (c) Category 3: some artifacts and reimaging recommended. (d) Category 4: strong artifacts and
reimaging needed.
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Figure E2. Explanation and overview of the deep learning-based model. Step 1 is an image-generation phase. The generator
generates a deep learning-based subtraction angiography (DLSA) image from a native angiogram. The native angiogram is then
concatenated with the DLSA image. Step 2 is the learning phase of the discriminator. The concatenated image of a DLSA image and
a native angiogram in step 1 or a concatenated image of an original 2-dimensional digital subtraction angiography (2D-DSA) image
and a native angiogram from training data are input to the discriminator. The purpose of the discriminator is to correctly classify the
DLSA images and 2D-DSA images. Therefore, the loss value is set to be small if the discriminator is correct, whereas it is set to be
large if the discriminator is wrong. The resulting discriminator loss value is back-propagated to the discriminator and the parameters
are updated. Step 3 is the learning phase of the generator. The purpose of the generator is to generate DLSA images with such a high
similarity to 2D-DSA images that they can be mistakenly recognized by the discriminator. Therefore, the loss value is set to be large if
the discriminator is correct, whereas it is set to be small if the discriminator is wrong. In addition, the L1 loss values from the original
2D-DSA image and the DLSA image are obtained. These 2 loss values are combined to form the loss value of the generator, and the
parameters of the generator are updated. Steps 1 through 3 are repeated as the learning progresses.
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Figure E3. Scatter plots of mean opinion score (MOS) versus model prediction. These figures show the relationships between
MOS, peak signal-to-noise ratio (PSNR), and mean structural similarity (MSSIM) (2,5). MOS is a quantitative human judgment of
the quality of an event or experience, often on a scale of 0 (bad) to 100 (great). PSNR is an index of image degradation. If the
PSNR is above 40, the MOS remains high, indicating a low degree of degradation. SSIM is an index of structural similarity. If the
SSIM is 0.8 or higher, the MOS is high, indicating a high degree of similarity.

Figure E4. Learning curves for the deep learning model. The
vertical axis shows the sum of generator loss and L1 loss,
and the horizontal axis shows the number of epochs; the
lowest sum of generator loss and L1 loss was 1.119 at 90
epochs.
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Figure E5. Examples of 2-dimensional digital subtraction angiography (2D-DSA) and deep learning-based subtraction angi-
ography (DLSA) images of hepatocellular carcinoma and bleeding. (a) These figures show the native angiogram, original 2D-
DSA image, and DLSA image of the celiac artery. These are abdominal angiograms of a man with hepatocellular carcinoma.
The arrows show arteries around a hepatocellular carcinoma. (b) These figures show the native angiogram, original 2D-DSA
image, and DLSA image of the celiac artery. These are abdominal angiograms of a woman with liver injury. The arrowheads
show bleeding.

Table E1. Classification of Motion Artifacts

No. of sequences
in each category

Training
dataset

Validation
dataset

Motion-free
test dataset

Motion-
artifact test
dataset

Category 1 78 9 9 0

Category 2 10 2 2 0

Category 3 0 0 0 6

Category 4 0 0 0 4

Table E2. Agreement between the Radiologists’ Initial Interpre-
tation on the Classification of Motion Artifacts

Reader A

Category 1 Category 2 Category 3 Category 4

Reader B

Category 1 93 0 0 0

Category 2 3 14 0 0

Category 3 0 0 6 1

Category 4 0 0 0 3

Note–Values are the number of cases.
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Table E3. Classification of Visual Evaluation

Vascular visualization test

Score Description

1 2D-DSA images are better for visualizing the arteries than DLSA images.

2 2D-DSA images are a little better for visualizing the arteries than DLSA images.

3 The arteries are equally well visualized in both 2D-DSA and DLSA images.

4 DLSA images are a little better for visualizing the arteries than 2D-DSA images.

5 DLSA images are better for visualizing the arteries than 2D-DSA images.

Artifact-reduction test

Score Description

1 2D-DSA images have very few artifacts compared with DLSA images.

2 2D-DSA images have fewer artifacts compared with DLSA images.

3 The DLSA and 2D-DSA images have the same degree of artifacts.

4 DLSA images have fewer artifacts compared with 2D-DSA images.
5 DLSA images have very few artifacts compared with 2D-DSA images.

Clinical usefulness test

Score Description

1 2D-DSA images are more useful for guiding the procedure than DLSA images.

2 2D-DSA images are slightly more useful for guiding the procedure than DLSA images.

3 2D-DSA and DLSA images are equally useful for guiding the procedure.

4 DLSA images are slightly more useful for guiding the procedure than 2D-DSA images.

5 DLSA images are more useful for guiding the procedure than 2D-DSA images.

2D-DSA = 2-dimensional digital subtraction angiography; DLSA = deep learning-based subtraction angiography.

Table E4. Vascular Visualization Test using the Visual Assessment with the Motion-Artifact Test Dataset

Sequence Location Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8 Mean ± SD

A CA 5/5 3/5 3/5 4/5 5/5 4/5 5/5 4/5 4.1 ± 0.8

B SMA 3/5 3/5 3/5 2/5 3/5 4/5 3/5 4/5 3.1 ± 0.6

C CA 3/5 3/5 3/5 4/5 3/5 3/5 5/5 4/5 3.5 ± 0.7

D SMA 2/5 3/5 3/5 4/5 3/5 2/5 1/5 1/5 2.4 ± 1.1

E CA 3/5 3/5 2/5 2/5 3/5 3/5 3/5 1/5 2.5 ± 0.7

F CA 4/5 3/5 3/5 3/5 3/5 3/5 3/5 2/5 3.0 ± 0.4

G CA 5/5 3/5 3/5 4/5 4/5 4/5 5/5 3/5 3.9 ± 0.7

H CHA 2/5 1/5 2/5 3/5 2/5 3/5 1/5 2/5 2.0 ± 0.8

I CA 3/5 3/5 3/5 3/5 3/5 4/5 3/5 3/5 3.1 ± 0.4

J SMA 2/5 3/5 3/5 4/5 3/5 3/5 3/5 3/5 3.0 ± 0.4

Note–Location refers to the main focus of the angiogram.
CA = celiac artery; CHA = common hepatic artery; SD = standard deviation; SMA = superior mesenteric artery.
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Table E5. Artifact-Reduction Test using the Visual Assessment with the Motion-Artifact Test Dataset

Sequence Location Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8 Mean ± SD

A CA 5/5 5/5 4/5 3/5 5/5 3/5 5/5 5/5 4.3 ± 0.9

B SMA 5/5 5/5 4/5 4/5 4/5 3/5 5/5 4/5 4.2 ± 0.6

C CA 5/5 4/5 4/5 4/5 5/5 3/5 5/5 5/5 4.4 ± 0.7

D SMA 2/5 2/5 2/5 4/5 2/5 3/5 1/5 2/5 2.2 ± 0.9

E CA 2/5 2/5 2/5 4/5 2/5 3/5 1/5 2/5 2.2 ± 0.9

F CA 4/5 3/5 3/5 4/5 3/5 3/5 3/5 2/5 3.1 ± 0.5

G CA 5/5 5/5 4/5 4/5 4/5 4/5 5/5 3/5 4.3 ± 0.6

H CHA 5/5 5/5 4/5 4/5 4/5 2/5 5/5 5/5 4.3 ± 1.0

I CA 4/5 5/5 4/5 4/5 4/5 3/5 5/5 5/5 4.3 ± 0.7

J SMA 4/5 2/5 2/5 4/5 3/5 3/5 3/5 3/5 3.0 ± 0.6

Note–Location refers to the main focus of the angiogram.
CA = celiac artery; CHA = common hepatic artery; SD = standard deviation; SMA = superior mesenteric artery.

Table E6. Clinical Usefulness Test using the Visual Assessment with the Motion-Artifact Test Dataset

Sequence Location Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8 Mean ± SD

A CA 5/5 5/5 4/5 4/5 4/5 3/5 5/5 4/5 4.3 ± 0.6

B SMA 3/5 5/5 3/5 3/5 3/5 3/5 3/5 5/5 3.5 ± 0.9

C CA 4/5 4/5 3/5 2/5 4/5 3/5 5/5 4/5 3.6 ± 0.9

D SMA 2/5 3/5 3/5 3/5 3/5 3/5 1/5 1/5 2.4 ± 0.9

E CA 3/5 3/5 3/5 3/5 3/5 3/5 1/5 2/5 2.6 ± 0.7

F CA 4/5 2/5 2/5 4/5 3/5 3/5 3/5 2/5 2.9 ± 0.7

G CA 5/5 4/5 4/5 5/5 5/5 4/5 5/5 3/5 4.4 ± 0.7

H CHA 3/5 1/5 1/5 3/5 3/5 2/5 1/5 2/5 2.0 ± 0.8

I CA 3/5 3/5 3/5 3/5 3/5 3/5 3/5 3/5 3.0 ± 0.0

J SMA 2/5 2/5 2/5 4/5 3/5 3/5 3/5 3/5 2.8 ± 0.6

Note–Location refers to the main focus of the angiogram.
CA = celiac artery; CHA = common hepatic artery; SD = standard deviation; SMA = superior mesenteric artery.

Table E7. Vascular Visualization Test using the Visual Assessment with the Motion-Free Test Dataset

Sequence Location Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8 Mean ± SD

K CA 5/5 3/5 3/5 4/5 3/5 3/5 3/5 3/5 3.4 ± 0.4

L CA 3/5 3/5 3/5 3/5 2/5 3/5 3/5 4/5 3.0 ± 0.5

M SMA 4/5 5/5 3/5 4/5 3/5 5/5 3/5 5/5 4.0 ± 0.9

N CA 2/5 3/5 3/5 4/5 5/5 4/5 5/5 3/5 3.6 ± 0.8

O CA 3/5 3/5 3/5 3/5 4/5 4/5 3/5 4/5 3.4 ± 0.5

P CA 4/5 3/5 3/5 3/5 4/5 4/5 3/5 4/5 3.5 ± 0.5

Q CHA 3/5 3/5 3/5 3/5 4/5 4/5 3/5 3/5 3.3 ± 0.5

R CA 3/5 3/5 3/5 4/5 5/5 4/5 3/5 4/5 3.6 ± 0.7

S CA 2/5 3/5 3/5 4/5 3/5 5/5 4/5 5/5 3.6 ± 0.8

T CA 4/5 3/5 4/5 3/5 5/5 4/5 4/5 5/5 4.0 ± 0.8

U CA 2/5 3/5 3/5 2/5 2/5 3/5 3/5 3/5 2.6 ± 0.5

Note–Location refers to the main focus of the angiogram.
CA = celiac artery; CHA = common hepatic artery; SD = standard deviation; SMA = superior mesenteric artery.
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Table E8. Artifact-Reduction Test using the Visual Assessment with the Motion-Free Test Dataset

Sequence Location Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8 Mean ± SD

K CA 5/5 3/5 3/5 4/5 5/5 3/5 5/5 5/5 4.1 ± 0.9

L CA 5/5 3/5 4/5 4/5 4/5 3/5 5/5 4/5 4.0 ± 0.6

M SMA 3/5 3/5 3/5 4/5 3/5 5/5 3/5 3/5 3.4 ± 0.7

N CA 5/5 5/5 4/5 4/5 5/5 4/5 5/5 3/5 4.4 ± 0.7

O CA 4/5 5/5 3/5 4/5 5/5 3/5 5/5 5/5 4.3 ± 0.9

P CA 5/5 5/5 3/5 4/5 4/5 4/5 5/5 3/5 4.1 ± 0.8

Q CHA 3/5 3/5 3/5 4/5 4/5 4/5 3/5 4/5 3.5 ± 0.5

R CA 5/5 5/5 3/5 4/5 5/5 3/5 5/5 3/5 4.1 ± 0.9

S CA 5/5 2/5 4/5 4/5 4/5 3/5 5/5 5/5 4.0 ± 1.0

T CA 5/5 5/5 4/5 4/5 5/5 4/5 5/5 5/5 4.6 ± 0.5

U CA 5/5 4/5 4/5 4/5 4/5 3/5 5/5 4/5 4.1 ± 0.5

Note–Location refers to the main focus of the angiogram.
CA = celiac artery; CHA = common hepatic artery; SD = standard deviation; SMA = superior mesenteric artery.

Table E9. Clinical Usefulness Test using the Visual Assessment with the Motion-Free Test Dataset

Sequence Location Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8 Mean ± SD

K CA 4/5 3/5 1/5 4/5 3/5 3/5 3/5 3/5 3.0 ± 0.8

L CA 4/5 3/5 3/5 4/5 3/5 3/5 3/5 4/5 3.4 ± 0.5

M SMA 4/5 5/5 5/5 4/5 3/5 4/5 3/5 4/5 4.0 ± 0.8

N CA 3/5 3/5 2/5 4/5 5/5 4/5 4/5 3/5 3.5 ± 0.9

O CA 3/5 4/5 3/5 4/5 3/5 3/5 4/5 4/5 3.5 ± 0.5

P CA 4/5 3/5 3/5 3/5 4/5 4/5 4/5 4/5 3.6 ± 0.5

Q CHA 3/5 3/5 2/5 3/5 4/5 4/5 3/5 3/5 3.1 ± 0.6

R CA 4/5 3/5 3/5 4/5 4/5 4/5 4/5 4/5 3.8 ± 0.5

S CA 2/5 2/5 2/5 3/5 3/5 4/5 3/5 5/5 3.0 ± 1.0

T CA 4/5 4/5 3/5 4/5 5/5 3/5 4/5 5/5 4.0 ± 0.8

U CA 3/5 3/5 2/5 2/5 3/5 3/5 3/5 4/5 2.9 ± 0.6

Note–Location refers to the main focus of the angiogram.
CA = celiac artery; CHA = common hepatic artery; SD = standard deviation; SMA = superior mesenteric artery.

Volume 33 Number 7 July 2022 851.e8


