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Artificial intelligence-based model to classify cardiac 
functions from chest radiographs: a multi-institutional, 
retrospective model development and validation study
Daiju Ueda, Toshimasa Matsumoto, Shoichi Ehara, Akira Yamamoto, Shannon L Walston, Asahiro Ito, Taro Shimono, Masatsugu Shiba, 
Tohru Takeshita, Daiju Fukuda, Yukio Miki

Summary
Background Chest radiography is a common and widely available examination. Although cardiovascular structures—
such as cardiac shadows and vessels—are visible on chest radiographs, the ability of these radiographs to estimate 
cardiac function and valvular disease is poorly understood. Using datasets from multiple institutions, we aimed to 
develop and validate a deep-learning model to simultaneously detect valvular disease and cardiac functions from 
chest radiographs.

Methods In this model development and validation study, we trained, validated, and externally tested a deep learning-
based model to classify left ventricular ejection fraction, tricuspid regurgitant velocity, mitral regurgitation, aortic 
stenosis, aortic regurgitation, mitral stenosis, tricuspid regurgitation, pulmonary regurgitation, and inferior vena cava 
dilation from chest radiographs. The chest radiographs and associated echocardiograms were collected from four 
institutions between April 1, 2013, and Dec 31, 2021: we used data from three sites (Osaka Metropolitan University 
Hospital, Osaka, Japan; Habikino Medical Center, Habikino, Japan; and Morimoto Hospital, Osaka, Japan) for 
training, validation, and internal testing, and data from one site (Kashiwara Municipal Hospital, Kashiwara, Japan) 
for external testing. We evaluated the area under the receiver operating characteristic curve (AUC), sensitivity, 
specificity, and accuracy.

Findings We included 22 551 radiographs associated with 22 551 echocardiograms obtained from 16 946 patients. The 
external test dataset featured 3311 radiographs from 2617 patients with a mean age of 72 years [SD 15], of whom 
49·8% were male and 50·2% were female. The AUCs, accuracy, sensitivity, and specificity for this dataset were 0·92 
(95% CI 0·90–0·95), 86% (85–87), 82% (75–87), and 86% (85–88) for classifying the left ventricular ejection fraction 
at a 40% cutoff, 0·85 (0·83–0·87), 75% (73–76), 83% (80–87), and 73% (71–75) for classifying the tricuspid regurgitant 
velocity at a 2·8 m/s cutoff, 0·89 (0·86–0·92), 85% (84–86), 82% (76–87), and 85% (84–86) for classifying mitral 
regurgitation at the none-mild versus moderate-severe cutoff, 0·83 (0·78–0·88), 73% (71–74), 79% (69–87), and 72% 
(71–74) for classifying aortic stenosis, 0·83 (0·79–0·87), 68% (67–70), 88% (81–92), and 67% (66–69) for classifying 
aortic regurgitation, 0·86 (0·67–1·00), 90% (89–91), 83% (36–100), and 90% (89–91) for classifying mitral stenosis, 
0·92 (0·89–0·94), 83% (82–85), 87% (83–91), and 83% (82–84) for classifying tricuspid regurgitation, 0·86 (0·82–0·90), 
69% (68–71), 91% (84–95), and 68% (67–70) for classifying pulmonary regurgitation, and 0·85 (0·81–0·89), 86% 
(85–88), 73% (65–81), and 87% (86–88) for classifying inferior vena cava dilation.

Interpretation The deep learning-based model can accurately classify cardiac functions and valvular heart diseases 
using information from digital chest radiographs. This model can classify values typically obtained from 
echocardiography in a fraction of the time, with low system requirements and the potential to be continuously 
available in areas where echocardiography specialists are scarce or absent. 

Funding None.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction
Chest radiography remains the cornerstone of 
radiological imaging more than 100 years after it was first 
reported.1 As the most frequently conducted radiological 
test in the world, this technique is central to the 
screening, diagnosis, and management of various lung 
diseases.2–4 However, the relationship between chest 
radiographs and cardiac function remains poorly 

understood. Even the cardiothoracic ratio, which is a 
common indicator of cardiac enlargement, has a weak 
association with left ventricular ejection fraction.5–8

Transthoracic echocardiography is the most frequently 
used imaging technique for cardiac function and 
diseases, providing data on left ventricular ejection 
fraction and tricuspid regurgitant velocity for the 
diagnosis and monitoring of patients with mitral 
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regurgitation, aortic stenosis, tricuspid regurgitation, 
and pulmonary regurgitation. Guidelines recommend 
that patients with these conditions are monitored 
regularly by echocardiography.9–11 The incidence of these 
cardiac diseases is expected to increase in the future;12–16 
however, echocardiography requires specialised skills, 
and there is a shortage of technicians.17,18

Under these circumstances, chest radiography—which 
is accessible, reproducible, and quick—could comple­
ment echocardiography. Deep learning, a method in 
artificial intelligence,19,20 has been applied to chest 
radiographs to estimate echocardiography results.21,22 
Unlike conventional machine-learning methods, deep 
learning extracts features from training data and does 
not require the manual definition of features in advance.19 
A deep-learning model is therefore advantageous for the 
classification and quantification of objects with complex 
or unknown features. In this study, we used datasets 
from multiple institutions to develop and evaluate a 
deep-learning model that can simultaneously detect 
valvular disease and cardiac functions from chest 
radiographs.

Methods
Study design and participants
In this model development and validation study, we 
trained, validated, and externally tested a deep learning-
based model to estimate echocardiography results from 
digital chest radiographs. Chest radiographs, taken in the 
standing position with a posteroanterior view, were 
retrospectively collected from patients within 14 days of a 
two-dimensional echocardiographic examination at 
four institutions: Osaka Metropolitan University Hospital 
(dataset A) between May 1, 2019, and Dec 31, 2021; 
Habikino Medical Center (dataset B) between 
April 1, 2013, and Dec 31, 2020; Morimoto Hospital 
(dataset C) between Feb 1, 2018, and Dec 31, 2021; and 

Kashiwara Municipal Hospital (dataset D) between 
April 1, 2017, and Dec 31, 2021. An overview of the facility 
type and capacity of these institutions is available in the 
appendix (p 2). If a patient had more than one echocardio­
gram during the data collection period, all were included; 
if two or more radiographs were available, the radiograph 
taken closest to the day of the echocardiography exam­
ination was used. Patients with a postoperative valve and 
those with missing echocardiography results were 
excluded. We did not include sample size calculations 
but prepared a large external test dataset.

This study complies with the Declaration of Helsinki. 
The study protocol was reviewed and approved by the 
Ethical Committee of Osaka Metropolitan University 
Graduate School of Medicine, Osaka, Japan. The need for 
informed consent was waived because the images had 
been acquired during routine clinical practice. This 
manuscript was prepared in accordance with the 
Standards for Reporting Diagnostic Accuracy 
guidelines.23

Ground truth labelling
Chest radiographs were labelled using the echo­
cardiography reports. We selected mitral regurgitation, 
aortic stenosis, aortic regurgitation, mitral stenosis, 
tricuspid regurgitation, and pulmonary regurgitation as 
examples of valvular heart disease. The severity of disease 
was classified as none, mild, moderate, or severe 
according to American Society of Echocardiography 
recommendations.24,25 Two severity cutoffs were set for all 
valvular diseases: none versus mild-severe and none-
mild versus moderate-severe. According to guidelines, 
we set two cutoffs for the left ventricular ejection fraction, 
one at 40% and one at 50%,9 and two cutoffs for the 
tricuspid regurgitant velocity, one at 2·8 m/s and 
one at 3·4 m/s.10 The cutoff for inferior vena cava dilation 
was set to 21 mm.10

Research in context

Evidence before this study
We searched PubMed, MEDLINE, and the Web of Science from 
database inception to Jan 1, 2023, using the keywords “deep 
learning”, “convolutional neural network”, “valvular heart 
disease”, “valvular disease”, “mitral regurgitation”, “aortic 
stenosis”, “left ventricular ejection fraction”, “pulmonary 
hypertension”, “chest x-ray”, “chest radiography”, and “chest 
radiograph”. No multi-institutional research to estimate cardiac 
functions and valvular heart diseases from chest radiography 
was found. Two studies based on deep learning could detect 
only individual valvular diseases and used small, single-centre 
datasets, which are prone to model overfitting. 

Added value of this study
We show that radiological images contain information that is 
clear to an artificial intelligence model but difficult for 

humans to identify. We use this capability of the model to 
classify information from chest radiographs, such as left 
ventricular ejection fraction and the presence of valvular 
heart disease, much faster than it is typically obtained from 
echocardiograms. The model has low system requirements 
and the potential to be continuously available in areas where 
echocardiography specialists are scarce or absent.

Implications of all the available evidence
Information typically obtained from electrocardiography, a 
dynamic examination, can be extrapolated from chest 
radiographs, a static examination. Further performance 
improvements and advancements in ancillary studies could 
enable quicker and more cost-effective diagnosis, monitoring, 
and treatment for cardiac function and valvular disease.

See Online for appendix



Articles

www.thelancet.com/digital-health   Vol 5   August 2023	 e527

Data partition
All labelled chest radiographs from datasets A, B, and C 
were randomly divided, on a patient basis and in a 
9:1 ratio, into training and internal test datasets for each 
institution. The training datasets were used to train and 
validate the deep-learning model using five-fold cross-
validation. The internal test datasets consisted of patients 
who were not part of the training dataset but were from 
the same institutional datasets. The external test dataset, 
dataset D, was collected from a separate institution. 
Detailed descriptions of the training, internal test, and 
external test datasets are shown in the appendix (pp 2, 4).

Model development
We developed a multilabel deep-learning model using 
EfficientNet26 as a feature extractor. Multilabel model 
learning is more accurate than single-label learning 
because the model is more versatile as a result of 
extracting features from various labels.27 17 labels were 
chosen as classifiers: two cutoffs (none-mild vs moderate-
severe and none vs mild-severe) for each of the six valvular 
heart diseases (mitral regurgitation, aortic stenosis, 
aortic regurgitation, mitral stenosis, tricuspid regurgi­
tation, and pulmonary regurgitation), two cutoffs each 
for left ventricular ejection fraction (40% and 50%) and 
tricuspid regurgitant velocity (2·8 m/s and 3·4 m/s), and 
one cutoff for inferior vena cava dilation (21 mm). These 
classifiers comprised a fully connected layer connected to 
a single feature extractor. Each classifier was connected 
to a SoftMax activation function and followed by the 
cross-entropy loss function. All loss values were summed 
and used to measure model performance. The deep-
learning model was trained on the basis of ImageNet 
pretrained parameters and tuned with the training 
dataset using five-fold cross-validation. All training 
radiographs were augmented using TrivialAugment.28 
Every development process was done using the PyTorch 
framework.29 Detailed processes of the development and 
parameter search for the deep-learning model are shown 
in the appendix (p 2), in addition to the machine 
environment (p 2), class imbalance handling methods 
(p 2), and an outline of the model (p 5). The source code 
is available online.30

Model test
Using the best-performing model and the same 
thresholds as those for the validation dataset, we assessed 
the diagnostic performance of the deep-learning model 
on both the internal test and external test datasets. We set 
nine labels as the primary classifiers of the model and 
the remaining eight as the supplemental classifiers. The 
nine primary classifiers were as follows: a cutoff of none-
mild versus moderate-severe for each of the six valvular 
heart diseases, a cutoff of 40% for left ventricular ejection 
fraction, 2·8 m/s for tricuspid regurgitant velocity, and 
21 mm for interior vena cava dilation. The primary 
classifiers for valvular disease were set because disease of 

moderate or greater severity is recommended for follow-
up by a specialist,10,31 and those for left ventricular ejection 
fraction and tricuspid regurgitant velocity were chosen 
because these values are defined as important cutoff 
values for cardiac dysfunction according to the respective 
guidelines.9,10

To show the region of interest for each classifier as it 
discriminated each output in the external test dataset, 
saliency maps for the nine primary classifiers were 
created using the 10% of the true positive radiographs 
with the highest model output. The images were added 
together and divided by the total number of included 
images to create an averaged image per variable; these 
nine averaged images were also then averaged to generate 
an overall average image. To make each saliency map, 
Grad-CAM++32 was applied by extracting the gradient 
information flowing into the last convolutional layer 
of the trained deep-learning model. The gradient 
indicates the importance and relevance of each feature 
map from the last convolutional layer. A detailed 
explanation of the saliency map generation model is 
shown in the appendix (p 6).

Statistical analysis
To evaluate the model, we assessed the sensitivity, 
specificity, accuracy, positive and negative predictive 
values, and area under the receiver operating 
characteristic curve (AUC) for each of the classifiers with 
both the internal and external test datasets. To evaluate 
the overall performance of the model per dataset, we 
evaluated the mean and SD of the AUC results for the 
primary classifiers. Using the external dataset, we 
evaluated AUCs by sex and age and generated confusion 
matrices for each primary classifier. 95% CIs for the 
AUC were calculated with a bootstrapping method. All 
analyses were done using R version 4.0.0, and statistical 
inferences were conducted with a two-sided significance 
level of 5% using the Clopper-Pearson method.

Role of the funding source
There was no funding source for this study.

Results
22 551 radiographs associated with 22 551 echocardiograms 
of 16 946 patients from four institutions were included in 
this study. The eligibility flowchart for each dataset is 
shown in the appendix (p 7). The training datasets, from 
three institutions, included 17 293 radiographs of 
12 897 patients (7140 male and 5757 female) with a mean 
age of 69 years (SD 14, range 10–103) and the internal test 
datasets, from the same three institutions, included 
1947 radiographs of 1432 patients (809 male and 
623 female) with a mean age of 69 years (14, 14–99). The 
external test dataset, from one separate institution, 
included 3311 radiographs from 2617 patients (1304 male 
and 1313 female) with a mean age of 72 years (15, 13–102). 
Detailed demographics for each dataset are shown in 

For the source code see https://
github.com/xp-echo/Nervus
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table 1 and in the appendix (pp 12–13). Detailed vendor 
information for each dataset is shown in the 
appendix (p 14).

The mean AUC for the primary classifiers was 0·87 
(SD 0·03) for external test dataset D, 0·89 (0·04) for 
internal test dataset A, 0·90 (0·04) for internal test 

Training dataset Internal test dataset External test 
dataset

Dataset A Dataset B Dataset C Dataset A Dataset B Dataset C Dataset D

Total number of radiographs 8183 5894 3216 928 668 351 3311

Total number of echocardiography examinations 8183 5894 3216 928 668 351 3311

Total number of patients 6174 4202 2521 686 466 280 2617

Male 3370 2376 1394 391 258 160 1304

Female 2804 1826 1127 295 208 120 1313

Age, years 67 (15) 70 (14) 72 (14) 66 (15) 70 (13) 72 (14) 72 (15)

Period between examinations, days 3 (6) 4 (7) 4 (6) 3 (6) 4 (7) 3 (5) 3 (6)

Left ventricular ejection fraction

≥50% 6891 5061 2409 794 566 275 2989

40–49% 484 418 333 49 36 24 154

<40% 808 415 474 85 66 52 168

Tricuspid regurgitant velocity

<2·8 m/s 7305 4376 2696 853 493 297 2811

2·8–3·3 m/s 698 1051 425 60 111 40 417

≥3·4 m/s 180 467 95 15 64 14 83

Mitral regurgitation

None 4706 3819 2182 543 437 246 2454

Mild 2353 1759 909 263 189 90 660

Moderate 798 269 89 87 34 12 146

Severe 326 47 36 35 8 3 51

Aortic stenosis

None 7450 4029 3002 853 456 327 3144

Mild 147 1760 101 12 197 13 76

Moderate 251 78 87 26 10 10 50

Severe 335 27 26 37 5 1 41

Aortic regurgitation

None 6098 4414 2537 690 508 278 2298

Mild 1663 1343 625 191 145 68 859

Moderate 339 133 49 40 11 5 142

Severe 83 4 5 7 4 0 12

Mitral stenosis

None 8081 5825 3174 917 656 351 3295

Mild 32 52 37 2 11 0 10

Moderate 16 16 4 0 1 0 5

Severe 54 1 1 9 0 0 1

Tricuspid regurgitation

None 6006 2247 2061 687 263 230 2385

Mild 1418 2991 1046 154 328 104 668

Moderate 632 581 80 68 69 15 218

Severe 127 75 29 19 8 2 40

Pulmonary regurgitation

None 7115 3946 2533 813 462 274 2802

Mild 990 1912 678 105 203 73 381

Moderate 73 35 5 10 3 4 128

Severe 5 1 0 0 0 0 0

Data are n or mean (SD).

Table 1: Dataset demographics



Articles

www.thelancet.com/digital-health   Vol 5   August 2023	 e529

dataset B, and 0·92 (0·03) for internal test dataset C. For 
the external test dataset D, the AUC for the classification 
of left ventricular ejection fraction was 0·92 
(95% CI 0·90–0·95) at the 40% cutoff and for the 
classification of tricuspid regurgitation velocity was 0·85 
(0·83–0·87) at the 2·8 m/s cutoff. The AUCs for the 
classifiers of valvular diseases at the none-mild versus 
moderate-severe cutoff were 0·89 (0·86–0·92) for mitral 

regurgitation, 0·83 (0·78–0·88) for aortic stenosis, 0·83 
(0·79–0·87) for aortic regurgitation, 0·86 (0·67–1·00) 
for mitral stenosis, 0·92 (0·89–0·94) for tricuspid 
regurgitation, and 0·86 (0·82–0·90) for pulmonary 
regurgitation. The AUC for interior vena cava dilation 
was 0·85 (0·81–0·89).

The two classifiers with AUCs greater than 0·90 in the 
external dataset were for left ventricular ejection fraction 
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Figure 1: Receiver operating characteristic curves for the internal and external test datasets
Receiver operating characteristic curves are shown for the classification of left ventricular ejection fraction less than 40% (A), tricuspid regurgitant velocity greater 
than 2·8 m/s (B), mitral regurgitation (none-mild vs moderate-severe; C), aortic stenosis (none-mild vs moderate-severe; D), aortic regurgitation (none-mild vs 
moderate-severe; E), mitral stenosis (none-mild vs moderate-severe; F), tricuspid regurgitation (none-mild vs moderate-severe; G), pulmonary regurgitation 
(none-mild vs moderate-severe; H), and inferior vena cava dilation (I). The diagonal line signifies a random guess, equivalent to a model with no discriminative 
ability between positive and negative outcomes. The values on each graph are the areas under the receiver operating characteristic curve (95% CI) for the external 
dataset.
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at a 40% cutoff (AUC 0·92, accuracy 86%, sensitivity 82%, 
and specificity 86%) and tricuspid regurgitation 
(AUC 0·92, accuracy 83%, sensitivity 87%, and 
specificity 83%). Most results, including mean AUC, 
from the external test dataset are slightly lower than 
those from the internal test datasets. Detailed AUCs for 

the internal and external test datasets are shown in 
figure 1 and table 2 and precision-recall AUCs can be 
found in the appendix (p 15). AUCs for the inpatient and 
outpatient subgroups (pp 3, 16) and chest radiography first 
or echocardiography first subgroups (pp 3, 17) are given 
in the appendix, along with receiver operating 
characteristic curves (p 8) and AUCs (p 18) for the 
alternative cutoffs for each disease. Sensitivity, specificity, 
accuracy, positive predictive value, and negative predictive 
value for external test dataset D are shown in table 3; 
corresponding values for internal test datasets A (p 19), 
B (p 20), and C (p 21) can be found in the appendix. AUCs 
by sex (p 22) and age (p 23) for external test dataset D are 
also shown in the appendix, in addition to confusion 
matrices for each primary classifier for the external 
dataset (p 9) and label correlations among the ground 
truth labels (p 10).

We generated saliency maps for radiographs in the 
external test dataset. Representative maps for four 
classifiers (left ventricular ejection fraction less than 
40%, tricuspid regurgitant velocity greater than 2·8 m/s, 
mitral regurgitation none-mild vs moderate-severe 
disease, and aortic stenosis none-mild vs moderate-
severe disease) and an overall averaged saliency map of 
primary classifiers are shown in figure 2; all other 
saliency maps are provided in the appendix (p 11). All 
maps showed saliency focused on the cardiac shadow; 
the tricuspid regurgitant velocity and mitral regurgitation 
classifier maps also showed saliency over the hilar and 
lung regions.

Discussion
We developed and evaluated a deep-learning model 
for estimating the classification of transthoracic 
echocardiograms from chest radiographs. The mean 
AUC for the overall model performance was 0·87 in the 
external test dataset.

To the best of our knowledge, this study is the first to 
create and validate a deep learning-based classification 
model for cardiac functions and valvular heart disease 
using chest radiographs from multiple institutions. 
Deep-learning models that are trained and tested on a 
single dataset can be prone to overfitting, such that the 
final model works well only for images in the trained 
dataset.19,33,34 To prevent overfitting and to confirm 
robustness and generalisability, the test set should ideally 
be collected from different facilities.34,35 In two previous 
studies21,22 of deep-learning models that detect single 
cardiac valvular diseases, only single-centre datasets were 
used. Our model included a larger cohort from several 
institutions, was more robust, and achieved higher AUCs 
than either of these studies. Our model could also classify 
basic echocardiographic results, including left ventricular 
ejection fraction, tricuspid regurgitant velocity, and 
several valvular diseases.

The overall saliency map showed strongest saliency 
over the cardiac shadow and slight saliency over the 

Internal test dataset External test 
dataset

Dataset A Dataset B Dataset C Dataset D

Overall mean AUC (SD) 0·89 (0·04) 0·90 (0·04) 0·92 (0·03) 0·87 (0·03)

Left ventricular ejection fraction 0·92 
(0·88–0·96)

0·92 
(0·88–0·97)

0·93 
(0·88–0·98)

0·92 
(0·90–0·95)

Tricuspid regurgitant velocity 0·88 
(0·83–0·93)

0·85 
(0·81–0·89)

0·88 
(0·82–0·94)

0·85 
(0·83–0·87)

Valvular heart disease

Mitral regurgitation 0·92 
(0·88–0·95)

0·95 
(0·90–0·99)

0·89 
(0·79–1·00)

0·89 
(0·86–0·92)

Aortic stenosis 0·86 
(0·80–0·92)

0·91 
(0·82–1·00)

0·91 
(0·80–1·00)

0·83 
(0·78–0·88)

Aortic regurgitation 0·83 
(0·76–0·91)

0·85 
(0·72–0·97)

0·89 
(0·70–1·00)

0·83 
(0·79–0·87)

Mitral stenosis 0·89 
(0·75–1·00)

0·94 
(0·61–1·00)

·· 0·86 
(0·67–1·00)

Tricuspid regurgitation 0·93 
(0·89–0·97)

0·92 
(0·88–0·96)

0·93 
(0·85–1·00)

0·92 
(0·89–0·94)

Pulmonary regurgitation 0·85 
(0·70–1·00)

0·91 
(0·69–1·00)

0·95 
(0·79–1·00)

0·86 
(0·82–0·90)

Inferior vena cava dilation 0·94 
(0·88–1·00)

0·88 
(0·80–0·95)

0·94 
(0·88–0·99)

0·85 
(0·81–0·89)

Data are mean (95% CI) unless otherwise stated. AUC=area under the receiver operating characteristic curve. 

Table 2: AUC for the internal and external test datasets

Accuracy, 
%

Sensitivity, 
%

Specificity, 
%

Positive 
predictive 
value, %

Negative 
predictive 
value, %

Left ventricular ejection fraction 86% 
(85–87)

82%  
(75–87)

86% 
(85–88)

24% 
(21–28)

99% 
(98–99)

Tricuspid regurgitant velocity 75% 
(73–76)

83% 
(80–87)

73% 
(71–75)

36% 
(33–38)

96% 
(95–97)

Valvular heart disease

Mitral regurgitation 85% 
(84–86)

82%  
(76–87)

85% 
(84–86)

26% 
(22–29)

99% 
(98–99)

Aortic stenosis 73% 
(71–74)

79% 
(69–87)

72% 
(71–74)

8%  
(6–9)

99% 
(99–100)

Aortic regurgitation 68% 
(67–70)

88% 
(81–92)

67% 
(66–69)

12% 
(10–14)

99% 
(99–99)

Mitral stenosis 90% 
(89–91)

83% 
(36–100)

90% 
(89–91)

2% 
(0–3)

100% 
(100–100)

Tricuspid regurgitation 83% 
(82–85)

87%  
(83–91)

83% 
(82–84)

30% 
(27–34)

99% 
(98–99)

Pulmonary regurgitation 69% 
(68–71)

91% 
(84–95)

68% 
(67–70)

10%  
(9–12)

99% 
(99–100)

Inferior vena cava dilation 86% 
(85–88)

73%  
(65–81)

87% 
(86–88)

20% 
(16–24)

99% 
(98–99)

Data are % (95% CI).

Table 3: Model performance for the external dataset
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hilum. These results suggest that chest radiographs have 
intrinsic features that can help to classify cardiac 
functions and valvular diseases. The saliency map for the 
left ventricular ejection fraction classifier was elliptical in 
shape and covered the cardiac shadow; the long axis of 
this ellipse corresponded to the short axis of the cardiac 
shadow. This short axis is different from the horizontal 
distances measured by the cardiothoracic ratio,5 
suggesting that it might be a more important measure 
than the cardiothoracic ratio for estimating the left 
ventricular ejection fraction.

This model has some advantages over echo­
cardiography-based evaluation. First, very little time is 
needed to take a radiograph and apply the model to it, 
which is advantageous for patients who are unable to lie 
still for the time required for echocardiography. Our 
model instantly classifies all variables that indicate 
cardiac function.27 In addition, the small size of the 
input image (512 × 512 pixel) means that the system 
requirements to run the model are low; any computer 
used in daily clinical practice should be able to 
implement the model and rapidly output the results. 
Second, the model can be used by physicians at any 
time, making it useful in areas where echocardiography 
specialists are not available36,37 or in emergency 
situations in hospitals during the night when an 
echocardiography technician is not working. In such 
situations, a provisional evaluation of the patient’s 
cardiac function using chest radiography could be 
useful until an echocardiogram can be recorded. 
Two studies reported physicians’ performance in 

classifying left ventricular ejection fraction from 
radiological images that show indications of disease.6,8 
In one study, cardiomegaly was reported as the most 
useful indicator of low left ventricular ejection fraction, 
but the sensitivity was low at 51% (95% CI 43–60) and 
the specificity was 79% (71–85).6 Another study also 
found cardiomegaly to be the most sensitive indicator of 
heart failure, but again, the sensitivity (64%) and 
specificity (71%) were low.8 Our model showed higher 
performance for the estimation of left ventricular 
ejection fraction than these two studies. After its initial 
implementation into medical systems, our model could 
be used without any specialised skills—unlike echo­
cardiography, which requires specialised skills that are 
in short supply.17,18 Finally, there are numerous clinical 
situations in which a chest radiograph has already been 
taken and stored in medical records3 and could provide 
information on cardiac function when necessary, 
without the need for additional testing. Models can 
constitute a valid diagnostic method when used 
appropriately in the clinic; however, because the positive 
and negative predictive values depend on the prevalence 
of disease in the cohort in which the test is used,34,38 it 
would be advisable to select patients with other 
indications of heart disease or to adjust the model 
thresholds according to the prevalence of disease in the 
cohort under study.

This study has several limitations. Because the data 
were collected retrospectively from multiple institutions, 
further validation with prospectively acquired test 
datasets from cohorts with various disease prevalences is 

Left ventricular ejection 
fraction

A Tricuspid regurgitant 
velocity

B Mitral regurgitationC Aortic stenosisD OverallE

Figure 2: Representative saliency maps for the external test dataset
The top images show the averaged chest radiographs from the test dataset, generated by averaging the top 10% of true positive images—ie, those identified by the 
model as most likely to be showing features of disease. The number of images averaged for each classifier varies by the number of true positives identified by the 
model. The bottom images show the average of the saliency maps associated with the chest radiographs overlaid onto the averaged chest radiographs. Images are 
shown for the following classifiers: left ventricular ejection fraction less than 40% (A), tricuspid regurgitant velocity greater than 2·8 m/s (B), mitral regurgitation 
(none-mild vs moderate-severe; C), aortic stenosis (none-mild vs moderate-severe; D), and the average images of all primary classifiers (E). All saliency maps mainly 
highlight the cardiac shadow area. For images relevant to other classifiers, see appendix (p 11).
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desirable. Additionally, we used echocardiography results 
as the ground truth. However, establishing left ventricular 
ejection fraction by indices obtained from cardio­
vascular MRI might be more accurate. Selection bias 
could be present in our model because, among patients 
who had echocardiographic data, we selected only those 
who also had chest radiographs. All chest radiographs 
were taken in the standing posteroanterior view, so 
tuning might be necessary to apply this model to patients 
who cannot stand. Our model is for classification, not for 
estimating the precise value of the echocardiographic 
results.

We developed a deep-learning model to classify echo­
cardiography results using the features inherent in chest 
radiographs. The number of patients with cardiac disease 
will continue to increase worldwide.12-15 Our artificial 
intelligence model, when used in appropriate situations, 
could have a complementary role to transthoracic 
echocardiography for cardiac assessments in the future.
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