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Abstract

The present paper considers amplitude death in a pair of oscillators coupled by
a time-varying delay connection. A linear stability analysis is used to derive the
boundary curves for amplitude death in a connection parameters space. The delay
time can be arbitrarily long for certain amplitude of delay variation and coupling
strength. A simple systematic procedure for designing such variation and strength
is provided. The theoretical results are verified by a numerical simulation.

Key words: amplitude death, delayed feedback control, time-varying delay
PACS: 05.45.Xt, 05.45.Gg, 05.45.-a

1 Introduction

Nonlinear phenomena in coupled oscillators have received considerable atten-
tion not only from academia [1], but also from the engineering community
[2]. Amplitude death, one such nonlinear phenomenon, has been the subject
of numerous research papers [3,4]. Amplitude death can be considered to be
the stabilization of an unstable steady state of oscillators induced by diffusive
connections. Amplitude death was reported never to occur in identical coupled
oscillators [4,5]. However, in 1998, Reddy et al. showed that a transmission
delay in connections can induce amplitude death even when the oscillators are
identical [6]. This phenomenon, referred to as time-delay induced amplitude
death, has attracted growing interest in the field of nonlinear physics [7]. This
phenomenon has been investigated extensively in recent years [8–21].
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Since amplitude death is the stabilization of unstable behavior in coupled
nonlinear systems, this phenomenon has significant potential for practical ap-
plication. In laser systems, the delayed connections can be implemented by
optical mutual coupling [22]. However, for the case in which the laser sys-
tems must be placed at a great distance due to practical consideration, the
delay time in the connections must be long. However, long delay times tend to
destabilize dynamical systems. Thus, for the above case, a short delay time in
connections cannot be implemented experimentally, and so the stabilization
of unstable systems becomes difficult. For researchers who want to induce am-
plitude death, it is important to overcome this difficulty. Atay showed that
distributed delay connections facilitate amplitude death [14]: the long dis-
tributed delay times can induce amplitude death. Konishi et al. reported that
the multiple long delay connections can also induce amplitude death in a pair
of oscillators [23,24]. Although these studies have presented useful solutions,
they also suffer from some disadvantages. For example, the distributed delay
connections would be difficult to implement in industrial systems, such as laser
systems and electronic oscillators; the implementation cost of the multiple de-
lay connections would be higher than that of the single delay connection, since
the multiple delay-devices are required for the implementation.

These studies on amplitude death dealt with coupled oscillators. In recent
years, the significant results on stability of a single system with time-varying
delay have been reported in the field of control theory: Michiels, Assche, and
Niculescu showed that the stability of a time-varying point-wise delay system
is equivalent to that of a time-invariant distributed delay system [25] and
demonstrated through three numerical examples that the time-varying point-
wise delay leads to larger stability regions; Gjurchinovski and Urumov applied
the stability analysis of the time-varying delay systems to delayed feedback
control systems [26].

The present paper considers a pair of oscillators coupled by a time-varying de-
lay connection. The stability analysis based on the analytical results [25] shows
that such connection can induce amplitude death in the coupled oscillators.
We emphasize that the time-varying delay connection overcomes the disad-
vantages reported in previous studies [14,23,24]. Therefore, there is no need
to implement the distributed delay or multiple delay-devices. In the present
study, we analyze the stability of amplitude death and provide a systematic
procedure to design connections such that the nominal delay time is arbitrary
long. A numerical simulation is conducted to verify the theoretical results.
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Fig. 1. Block diagram of a pair of oscillators (1) coupled by connections (2).

2 Coupled limit cycle oscillators

Consider a pair of oscillators (see Fig. 1) 1 ,

Ż1,2(t) =
{
μ + iω − |Z1,2(t)|2

}
Z1,2(t) + u1,2(t), (1)

where Z1,2(t) ∈ C are the state variables, and μ > 0 and ω > 0 represent the
degree of instability of the fixed points Z∗

1,2 = 0 and the oscillator frequency,

respectively. Here, i is defined as i =
√−1. The coupling signals u1,2(t) ∈ C

are given by

u1,2(t) = ε {Z2,1(t − τ(t)) − Z1,2(t)} , (2)

where ε > 0 is the coupling strength. The time delay τ(t) ≥ 0 in coupling
signals varies around a nominal delay τ0 > 0 with amplitude δ ∈ [0, τ0],

τ(t) := τ0 + δf(Ωt). (3)

Ω > 0 is the frequency of variation. In the present study, we consider the
periodic sawtooth type function,

f(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+
2

π

(
x − π

2
− 2nπ

)
if x ∈ [2nπ, (2n + 1)π),

− 2

π

(
x − 3π

2
− 2nπ

)
if x ∈ [(2n + 1)π, 2(n + 1)π),

(4)

for n = 0, 1, . . ., since this type delay can be actualized easily in experimental
situations and be simply analyzed. Oscillators (1) with connections (2) have
the homogeneous steady state: Z∗ := [Z∗

1 Z∗
2 ]T = [0 0]T . Here, Z1,2(t) =

Z∗ + z1,2(t), where z1,2(t) ∈ C are the variations of the oscillator around Z∗
1,2,

are substituted into the coupled oscillator. The linearization of the coupled
oscillator at Z∗ = 0 allows us to obtain

ż1,2(t) = (μ + iω) z1,2(t) + ε {z2,1(t − τ(t)) − z1,2(t)} . (5)

1 Remark that, since each oscillator is the normal form for the Hopf bifurcation
[27], the analytical results in the present paper are valid for the oscillators where
oscillations occur through such a bifurcation.
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Linearized system (5) can be rewritten as

ẋ(t) = Ax(t) + Bx(t − τ(t)), (6)

where

x(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re(z1(t))

Im(z1(t))

Re(z2(t))

Im(z2(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ − ε −ω 0 0

ω μ − ε 0 0

0 0 μ − ε −ω

0 0 ω μ − ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ε 0

0 0 0 ε

ε 0 0 0

0 ε 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to Ref. [25], if a time-invariant comparison system,

ẋ(t) = Ax(t) +
1

2δ
B

∫ t−τ0+δ

t−τ0−δ
x(θ)dθ, (7)

is asymptotically stable, then linear system (6), including delay time (3) with
sawtooth function (4), is stable for large Ω. The stability of system (7) is
governed by the roots of its characteristic equation,

g(λ) := det
[
λI − A − Be−λτ0h(λδ)

]
= 0, (8)

where

h(λδ) :=

⎧⎨
⎩(sinh λδ)/(λδ) if λδ �= 0,

1 if λδ = 0.

Equation (8) is derived by substituting x(t) = beλt into Eq. (7). The char-
acteristic function g(λ) in Eq. (8) can be described by g(λ) := g1(λ)g2(λ),
where

g1(λ) :=
{
λ − μ + ε

(
1 − e−λτ0h(λδ)

)}2
+ ω2,

g2(λ) :=
{
λ − μ + ε

(
1 + e−λτ0h(λδ)

)}2
+ ω2.

(9)

The homogeneous steady state Z∗ is stable if and only if all of the roots λ for
the equations g1(λ) = 0 and g2(λ) = 0 lie in the open left-half complex plane.

3 Stability analysis

In this section, we investigate the characteristic equations g1(λ) = 0 and
g2(λ) = 0. First, we focus on the stability of g1(λ) = 0. Substituting λ = iλI

into g1(λ) = 0, its real and imaginary parts are estimated:

ε − μ − εΦ(λI) cos λIτ0 = 0, λI − ω + εΦ(λI) sin λIτ0 = 0, (10)
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where

Φ(λI) :=

⎧⎨
⎩(sin λIδ)/(λIδ) if λIδ �= 0,

1 if λIδ = 0.

From Eq. (10), we obtain the relation between ε and λI ,

F (ε, λI) :=
{
1 − Φ(λI)

2
}

ε2 − 2με + μ2 + (λI − ω)2 = 0, (11)

which is independent of τ0. The solution ε(λI) of Eq. (11) with λI �= 0 is

ε(λI) =
μ ±

√
D(λI)

1 − Φ(λI)2
, D(λI) := Φ(λI)

2μ2 − (1 − Φ(λI)
2)(ω − λI)

2, (12)

where 0 < Φ(λI)
2 ≤ 1. As D(λI) is a discriminant for ε, there exist two

positive solutions ε(λI) when D(λI) > 0. Since limλI→0 D(λI) = μ2 > 0 and
limλI→+∞ D(λI) = −∞ (limλI→−∞ D(λI) = −∞), there exist 2m + 1 positive
(2m + 1 negative) real roots of D(λI) = 0. Let the real roots λ∗

Ij
have the

following relation:

λ∗
I−(2m+1)

≤ · · · ≤ λ∗
I−2

≤ λ∗
I−1

< 0 < λ∗
I1
≤ λ∗

I2
≤ · · · ≤ λ∗

I2m+1
.

Then, there exist two positive ε(λI) for λI ∈ (Λ− ∪ Λ0 ∪ Λ+), where

Λ− :=
m⋃

l=1

(
λ∗

I−(2l+1)
, λ∗

I−2l

)
, Λ0 :=

(
λ∗

I−1
, λ∗

I1

)
, Λ+ :=

m⋃
l=1

(
λ∗

I2l
, λ∗

I2l+1

)
.

The boundary curves are obtained by the following procedure. First, λI is
varied in the range λI ∈ (Λ− ∪ Λ0 ∪ Λ+). Then, ε(λI) in Eq. (12) and τ0(n, λI)
of Eq. (10),

τ0(n, λI) :=

⎧⎪⎨
⎪⎩
{τ̄0(λI) + 2nπ} /λI if (ε(λI) − μ)/Φ(λI) > 0,

{τ̄0(λI) + (2n + 1)π} /λI if (ε(λI) − μ)/Φ(λI) < 0,
(13)

τ̄0(λI) := Tan−1

(
ω − λI

ε(λI) − μ

)
, (14)

for n = 0, 1, . . ., are plotted in the parameter space ε and τ0. The terminology
Tan−1 denotes the principal value of the arc tangent. Furthermore, in order to
investigate the direction in which the roots cross the imaginary axis, we must
check the sign of the real part of dλ/dε in Eq. (10) by

Re

[
dλ

dε

]
λ=iλI
ε=ε(λI)

= Re

⎡
⎣ eiλIr(−) − e−iλIr(+) − i2λIδ

i2λIδ − ε
{
(r(−) + i/λI)eiλIr(−) + (r(+) − i/λI)e−iλIr(+)

}
⎤
⎦ ,
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Fig. 2. Boundary curves, discriminant, solutions of F (ε, λI) = 0 and G(ε, λI) = 0 for
δ = 0.30. (a) Boundary curves in parameter space ε − τ0. (b) Discriminant D(λI).
(c) Solutions of F (ε, λI) = 0 and G(ε, λI) = 0.

(15)

where r(±) := δ ± τ0(n, λI). Then, τ0(n, λI) and λI are the values estimated in
the above procedure. With increasing ε, a positive (negative) value of Eq. (15)
corresponds to a root crossing the axis from left to right (right to left). The
above procedure for obtaining the boundary curves is also valid for g2(λ) = 0.

Let us next consider numerical examples for the delay amplitude δ = 0.30
and 0.38. The parameters of oscillators are fixed at ω = π and μ = 0.5. It
should be noted that although these values are fixed throughout this paper,
the analytical results in the present paper are valid for other values. The
boundary curves obtained by the above procedure for δ = 0.30 are shown
in Fig. 2(a). The black and red curves are the solution of g1(iλI) = 0 and
g2(iλI) = 0, respectively. A root of g1,2(iλI) = 0 crosses the imaginary axis
from left to right (right to left), where the parameters ε and τ0 are on a thin
(bold) curve. The region S bounded by the curves represents the stability
region, where there exists no positive root of g1,2(λ) = 0. The discriminant
D(λI) in Eq. (12) is plotted as shown in Fig. 2(b). The equation D(λI) = 0
has only the two roots λ∗

I−1
and λ∗

I1
, and does not have the ranges Λ− and Λ+.

The boundary curves with ε(λI) and τ0(n, λI) are plotted for λI ∈ Λ0. The
solution of F (ε, λI) = 0 is plotted using black curves in Fig. 2(c). There exists
the bottom of ε(λI), which is described by ε∗1 = minλI∈Λ0 ε(λI). Thus, there
is no ε(λI) for ε < ε∗1. As indicated in Fig. 2(a), region S has an upper limit
of τ0 	 2, which implies that, for δ = 0.30, the coupling signals with the long
nominal delay τ0 � 2 cannot induce the stabilization.

The boundary curves for δ = 0.38 are shown in Fig. 3(a). The equation
D(λI) = 0 has the four roots λ∗

Ij
(j = −1, 1, 2, 3), as shown in Fig. 3(b).

Then, we have Λ− = ∅, Λ0 =
(
λ∗

I−1
, λ∗

I1

)
, and Λ+ =

(
λ∗

I2
, λ∗

I3

)
. There ex-
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Fig. 3. Boundary curves, discriminant, solutions of F (ε, λI) = 0 and G(ε, λI) = 0 for
δ = 0.38. (a) Boundary curves in parameter space ε − τ0. (b) Discriminant D(λI).
(c) Solutions of F (ε, λI) = 0 and G(ε, λI) = 0.
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Fig. 4. Relationship between the extreme values ε∗j and the time-varying delay
amplitude δ.

ist the boundary curves for λI ∈ (Λ0 ∪ Λ+). The solutions of F (ε, λI) = 0
are shown in Fig. 3(c), where the three extreme values ε∗1 = minλI∈Λ+ ε(λI),
ε∗2 = maxλI∈Λ+ ε(λI), and ε∗3 = minλI∈Λ0 ε(λI) are the bottom or top of the
black curves.

The extreme values ε∗j (j = 1, . . . , q), which satisfy {dε(λI)/dλI}ε=ε∗j
= 0,

where q is the number of extreme values, is examined. These values are ar-
ranged in ascending order, 0 < ε∗1 ≤ · · · ≤ ε∗q. The equation F (ε, λI) = 0
is differentiated with λI . Substituting dε(λI)/dλI = 0 into the differentiated
equation, we obtain

G(ε, λI) := ε2Φ(λI) {cos λIδ − Φ(λI)} − λI(λI − ω) = 0. (16)

As shown in Figs. 2(c) and 3(c), the black curves F (ε, λI) = 0 intersect with
the red curve G(ε, λI) = 0 at ε∗j (j = 1, . . . , q). These values ε∗j can be esti-
mated by solving the equations F (ε, λI) = 0 and G(ε, λI) = 0 numerically. A
plot of the values ε∗j with respect to δ is shown in Fig. 4. For δ < 0.341, there
exists the only one extreme value ε∗1. The boundary curves at point A (i.e.,
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δ = 0.30) in Fig. 4 are shown in Fig. 2(a). The two extreme values, ε∗2 and
ε∗3, appear at δ = 0.341. For δ > 0.341, there exist the three extreme values
ε∗1 ≤ ε∗2 < ε∗3. The boundary curves at point B (i.e., δ = 0.380) in Fig. 4 are
shown in Fig. 3(a).

Note that there exists no curve in the range ε ∈ (ε∗2, ε
∗
3) on the parameter

space ε and τ0 for δ = 0.38. In other words, the region S seems to have no
upper limit of τ0. Therefore, if ε is set to ε ∈ (ε∗2, ε

∗
3), then the steady state

Z∗ is stabilized by the arbitrarily-long nominal delay τ0.

4 Design of connection parameters

From the numerical analysis mentioned in the preceding section, we can de-
termine the connection parameters ε and δ such that Z∗ is stabilized for any
long nominal delay τ0. However, this analysis is time-consuming, particularly
for researchers who merely want to know the parameters.

We focus on the situation in which ε∗1 and ε∗2 are the same at δ = π/ω (see
point C, δ = π/ω = 1, in Fig. 4). The two curves within the range (ε∗1, ε

∗
2) in

Fig. 3(a) turn into a vertical line. Since the boundary curves at point C are
quite simple, a systematic procedure for designing δ and ε is expected to be
simple. The procedure we propose is summarized by the following theorem.

Theorem 1 Assume that the frequency of delay variation, Ω, is sufficiently
large (i.e., ω � Ω) and oscillators (1) satisfy

μ < ω(2 + π)/(4π). (17)

If the amplitude of delay variation is set to δ = π/ω and the coupling strength
is chosen from the range

ε ∈ (ε̂ − Δε, ε̂ + Δε), (18)

then the steady state Z∗ of oscillators (1) coupled by connections (2) is stable
for any long nominal delay time τ0 > 0, where

ε̂ :=
(

2 + π

2π

)
ω, Δε :=

1

2π

√
ω(2 + π) {ω(2 + π) − 4πμ}.

PROOF. The proof is given in two parts.

(I) For ε = ε̂ and τ0 → +∞, all of the roots λ of the equations g1,2(λ) = 0 lie
in the open left-half complex plane.

8



(II) For all ε ∈ (ε̂ − Δε, ε̂ + Δε), none of the roots λ for the equations
g1,2(λ) = 0 crosses the imaginary axis for any τ0 > 0.

The above two statements guarantee that g1,2(λ) = 0 have no root in the open
right-half complex plane for any ε ∈ (ε̂ − Δε, ε̂ + Δε) and for any τ0 > 0.
These statements are proven separately in the following.
(I) For τ0 → +∞, we have

lim
τ0→+∞ g1,2(λ) = (λ − μ + ε + iω)(λ − μ + ε − iω).

Substituting ε = ε̂ into the above equation, the real part of the roots is given
by Re(λ) = μ−ω(2+π)/(2π). From assumption (17), the inequality Re(λ) < 0
holds.
(II) Statement (II) is equivalent to stating that there is no real root λI for
F (ε, λI) = 0 with ∀ε ∈ (ε̂ − Δε, ε̂ + Δε). Therefore, the condition

F (ε, λI) > 0, ∀ε ∈ (ε̂ − Δε, ε̂ + Δε), ∀λI ∈ R, (19)

is a sufficient condition for statement (II). Let us introduce a new function:

F (ε, λI) := (ε − μ)2 + (λI − ω)2 − ε2Γ
(

π

ω
λI

)
,

where Γ is denoted by

Γ(x) :=

⎧⎪⎨
⎪⎩
−2(x − π)/(2 + π) x ≤ π,

+2(x − π)/(2 + π) x ≥ π.

Appendix A guarantees that F (ε, λI) ≥ F (ε, λI) holds for all λI ∈ R. Instead
of condition (19), we shall prove

F (ε, λI) > 0, ∀ε ∈ (ε̂ − Δε, ε̂ + Δε), ∀λI ∈ R. (20)

Note that F (ε, λI) > 0 holds if the following two conditions are satisfied: i)
F (ε, λI) = 0 with ∀ε ∈ (ε̂−Δε, ε̂+Δε) has no real roots λI ; ii) there exists λI

such that F (ε, λI) > 0 with ∀ε ∈ (ε̂−Δε, ε̂+Δε). We first consider condition
i). Since F (ε, λI) is symmetric to λI = ω, it is sufficient to consider only
λI ≤ ω. The equation F (ε, λI) = 0 for λI ≤ ω is given by

λ2
I + 2λI

{
πε2

(2 + π)ω
− ω

}
+ ω2 + (ε − μ)2 − 2πε2

2 + π
= 0.

If the following inequality is satisfied:

πε2 − (2 + π)ωε + μ(2 + π)ω < 0, (21)

9
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Fig. 5. Time series data of oscillators (1) coupled by connections (2). The parameters
are set to ω = π, μ = 0.5, δ = 1, ε = 3.0, τ0 = 20, and Ω = 10π. The oscillators are
coupled at t = 40. (a) Real part of Z1(t). (b) Real part of u1(t).

then F (ε, λI) = 0 has no real roots. Inequality (21) holds for all ε ∈ (ε̂ −
Δε, ε̂ + Δε). For condition ii), we easily obtain

F (ε, ω) = (ε − μ)2 > 0, ∀ε ∈ (ε̂ − Δε, ε̂ + Δε).

Statement (II) has thus been proven by conditions i) and ii). �

5 Discussions and summary

We design the coupling parameters δ and ε for given μ = 0.5 and ω = π in
accordance with Theorem 1. The frequency Ω is set to a large value Ω = 10π.
Assumption (17), i.e., 0.5 < 1.285, is confirmed to hold. The amplitude is
fixed at δ = π/ω = 1. Range (18) is estimated as ε ∈ (0.562, 4.580). Then, the
coupling strength is set to ε = 3.0. The behavior of the oscillators coupled by a
long-delay connection τ0 = 20 is shown in Fig. 5. The state variable Re(Z1(t))
and the coupling signal Re(u1(t)) converge to zero after coupling. This is the
amplitude death induced by the time-varying long-delay connection.

It is well known that the delayed feedback control [28,29] never stabilizes the
unstable fixed points which satisfy the odd number property [30,31]. Konishi
reported that this property remains in oscillators coupled by time delay con-
nections [5]. According the stability analysis on the previous work [5], it is
easy to confirm that the property still remains in oscillators coupled by time-
varying delay connections.

Although, to the authors’ knowledge, there have been few efforts to investigate
a pair of oscillators coupled by time-varying delay connections, some previous
studies are related to our results, and these studies are reviewed below.
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Gjurchinovski and Urumov investigated the stabilization of unstable fixed
points in single oscillators by a time-varying delay feedback control [26]. They
applied an important result reported in Ref. [25] to chaotic oscillators. The
results of the present study can be considered as an extension of their study
[26] to amplitude death in a pair of coupled oscillators.

Atay reported that distributed delay connections facilitate amplitude death
[14]. The dynamics of oscillators coupled by the distributed delay connections
is quite similar to that coupled by time-varying delay connections when Ω
is sufficiently large. Compared with the Atay study, the present paper has
the following two additional features. First, although realizing the distributed
delay connection for practical systems would not be easy, the time-varying
delay connection can be easily realized in experimental systems, such as laser
systems. Second, we explicitly introduce a systematic procedure by which to
design ε and δ for an arbitrary-long delay induced stabilization. Therefore, the
present paper not only presents an analysis of the coupled oscillators, but also
provides an easily implementable connection for facilitating amplitude death,
which can be designed systematically.

In summary, we found connection parameters at which amplitude death can be
induced by arbitrary-long delay connections. Furthermore, a simple systematic
procedure by which to design such connection parameters was presented, and
this procedure was verified by numerical simulation.

A Proof of F (ε, λI) ≥ F (ε, λI) for all λI ∈ R

It is necessary to prove that sinc2(x) ≤ Γ(x) for all x ∈ R, where the function
sinc(x) is defined by

sinc(x) :=

⎧⎨
⎩(sin x)/x if x �= 0,

1 if x = 0.

According to Reference [32], we have sinc(x) = cos (x/2)sinc(x/2). Since
sinc2(x/2) ≤ 1 holds, we obtain

sinc2(x) ≤ cos2(x/2) = (cos x + 1)/2. (A.1)

We notice

cos x ≤ Λ(x) ≤ 2Γ(x) − 1, (A.2)
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where Λ(x) is defined by

Λ(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x + π/2 if π/2 − 1 ≤ x ≤ π/2,

−2x/π + 1 if π/2 ≤ x ≤ π,

+2x/π − 3 if π ≤ x ≤ 3π/2,

x − 3π/2 if 3π/2 ≤ x ≤ 3π/2 + 1,

1 if x ≤ π/2 − 1 or 3π/2 + 1 ≤ x.

From inequalities (A.2) and (A.1), the simple relation sinc2(x) ≤ Γ(x) allows
us to prove the following inequality:

F (ε, λI) ≥ (ε − μ)2 + (λI − ω)2 − ε2Γ (λIπ/ω) =: F (ε, λI),

for all λI ∈ R.

References

[1] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization, Cambridge University
Press, 2001.

[2] P. Holmes, R. Full, D. Koditschek, J. Guckenheimer, SIAM Review 48 (2006)
207–304.

[3] Y. Yamaguchi, H. Shimizu, Physica D 11 (1984) 212–226.

[4] D. Aronson, G. Ermentout, N. Kopell, Physica D 41 (1990) 403–449.

[5] K. Konishi, Phys. Lett. A 341 (2005) 401–409.

[6] D. Reddy, A. Sen, G. Johnston, Phys. Rev. Lett. 80 (1998) 5109–5112.

[7] S. Strogatz, Nature 394 (1998) 316–317.

[8] D. Reddy, A. Sen, G. Johnston, Phys. Rev. Lett. 85 (2000) 3381–3384.

[9] R. Herrero, M. Figueras, J. Rius, F. Pi, G. Orriols, Phys. Rev. Lett. 84 (2000)
5312–5315.

[10] D. Reddy, A. Sen, G. Johnston, Physica D 129 (1999) 15–34.

[11] K. Konishi, Phys. Rev. E 67 (2003) 017201.

[12] K. Konishi, Phys. Rev. E 70 (2004) 066201.

[13] M. Mehta, A. Sen, Phys. Lett. A 355 (2006) 202–206.

[14] F.M. Atay, Phys. Rev. Lett. 91 (2003) 094101.

[15] F.M. Atay, Physica D 183 (2003) 1–18.

12



[16] F.M. Atay, Journal of Differential Equations 221 (2006) 190–209.

[17] A. Prasad, Phys. Rev. E 72 (2005) 056204.

[18] R. Karnatak, R. Ramaswamy, A. Prasad, Phys. Rev. E 76 (2007) 035201.

[19] R. Karnatak, R. Ramaswamy, A. Prasad, Chaos 19 (2009) 033143.

[20] K. Konishi, K. Senda, H. Kokame, Phys. Rev. E 78 (2008) 056216.

[21] J. Yang, Phys. Rev. E 76 (2007) 016204.

[22] R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, J.-M. Liu, Phys. Rev. E 73 (2006)
047201.

[23] K. Konishi, H. Kokame, Proc. of International Symposium on Nonlinear Theory
and its Applications (2008) 528–531.

[24] K. Konishi, H. Kokame, N. Hara, Proc. of Second IFAC meeting related to
analysis and control of chaotic systems (2009).

[25] W. Michiels, V. V. Assche, S.-I. Niculescu, IEEE Trans. Automatic Control 50
(2005) 493– 504.

[26] A. Gjurchinovski, V. Urumov, Europhysics Letters 84 (2008) 40013.

[27] Y. Kuramoto, Chemical Oscillations, Waves and Turbulance, Springer-Verlag,
1984.

[28] K. Pyragas, Phys. Lett. A 170 (1992) 421–428.

[29] K. Pyragas, Philosophical Transactions of the Royal Society A 364 (2006) 2309–
2334.

[30] T. Ushio, IEEE Trans. Circuits and Sys. I 43 (1996) 815–816.

[31] H. Kokame, K. Hirata, K. Konishi, T. Mori, IEEE Trans. on Automatic Control
46 (2001) 1908–1913.

[32] W. Gearhart, H. Shultz, College Mathematics Journal 21 (1990) 90–99.

13


