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Abstract

The present paper considers singular value decomposition (SVD) for a class
of linear time-varying systems. The class considered herein describes time-
driven switched linear systems. Based on an appropriate input-output de-
scription, the calculation method of singular values and singular vectors is
derived. The SVD enables us to characterize the dominant input–output sig-
nals using singular vectors, which form orthogonal systems in input and out-
put spaces. The SVD is then applied to switched linear systems to improve
the transient response. A numerical example is provided to demonstrate the
proposed method.

Keywords: Singular value decomposition, switched linear system,
feedforward compensation, linear operator.

1. Introduction

For linear dynamical systems, singular value decomposition (SVD) plays
an important role in analysis and control, and SVD has been investigated
in a number of studies. For example, model reduction methods for finite-
dimensional linear systems have been developed [1, Chapters 7 and 8], and the
finite-dimensional approximation problem of a class of infinite-dimensional
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systems has been considered [2]. Exact formulas for singular values and vec-
tors of a system consisting of an SISO inner function and an MIMO rational
function have been derived [3]. A compensation signal design method for
improving the transient response of linear systems has been derived based
on the SVD for linear time-invariant systems [4]. For constrained systems,
the compensation signal design problem has been reported [5]. Model pre-
dictive control for constrained continuous-time linear systems has also been
developed [6]. In these recent studies, singular vectors serve as effective basis
vectors for generating approximate continuous-time signals in infinite dimen-
sional function spaces. If the formulas for calculating the singular values and
singular vectors for a suitably defined system of interest can be established,
SVD-based methods might be applied to various control and approximation
problems.

In the present paper, we first consider the SVD of an operator describ-
ing the input-output relation of a class of linear time-varying systems and
derive a method for calculating singular values and singular vectors. The
SVD provides orthogonal input and output sequences that enable us to ap-
proximate the original infinite-dimensional input and output spaces using a
finite number of singular vectors. The class of systems considered herein
represents time-driven switched linear systems, and we consider the com-
pensation signal design problem for switched linear systems with a periodic
switching law to improve the transient response using the newly established
SVD. The compensation signal design we consider in the present paper is
based on a feedforward method and the resulting compensation input over
the entire time interval of interest is computed off-line using the desired and
uncompensated responses.

The remainder of the present paper is organized as follows. In Section
2, the SVD of an operator describing a class of linear time-varying systems
is considered, and the calculation method of singular values and singular
vectors is derived. In Section 3, the obtained SVD is applied to a switched
linear system with a periodic switching law, and the compensation law for
improving the transient response is considered. A numerical example is pre-
sented in Section 4 to illustrate the fundamental properties of the proposed
method.
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2. Singular Value Decomposition for a Class of Linear Time-varying
Systems

Consider a class of linear time-varying systems defined over a finite hori-
zon [0, h]:

Σ :

{
ẋ(t) = A(t)x(t) + B(t)v(t), x(0) = 0
z(t) = E(t)x(t)

(1)

(A(t), B(t), E(t)) :=


(A1, B1, E1) 0 ≤ t < t1
(A2, B2, E2) t1 ≤ t < t2

...
...

(AN , BN , EN) tN−1 ≤ t ≤ tN

t0 = 0 < t1 < t2 < · · · < tN = h

where x(t) ∈ Rnx , v(t) ∈ Rnv , and z(t) ∈ Rnz denote the state, input,
and output, respectively. This system represents a time-dependent switched
linear system. Switched linear systems with a periodic switching law can be
described by this particular form (additional details are presented in Section
3). In this section, starting with the introduction of appropriate generalized
input and output spaces, we derive the singular value decomposition method
for the system given in (1), which will be used for the transient improvement
of switched linear systems.

First, define Hilbert spaces V := L2(0, h;Rnv) and Z := Rnx×L2(0, h;Rnz)
with the inner products

⟨f1, f2⟩V :=

∫ h

0

fT
1 (β)f2(β)dβ, f1, f2 ∈ V , (2)

⟨g1, g2⟩Z := g0
T

1 g02 +

∫ h

0

g1
T

1 (β)g12(β)dβ,

g1 =

[
g01
g11

]
, g2 =

[
g02
g12

]
∈ Z (3)

and denote the input and output in V and Z as

v ∈ V , ẑ :=

[
z0

z1

]
∈ Z,

z0 := Fx(h), F ∈ Rnx×nx , (4)

z1(t) := z(t), 0 ≤ t ≤ h
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where F is a weighting matrix for the terminal state. The relationship be-
tween v and ẑ is given by a linear operator Γ ∈ L(V,Z):

ẑ = Γv

Γv :=

[
(Γv)0

(Γv)1

]
,

(Γv)0 =F
N−1∑
s=1

Φ(N,s)(h)

∫ ts

ts−1

eAs(ts−τ)Bsv(τ)dτ

+ F

∫ h

tN−1

eAN (h−τ)BNv(τ)dτ, (5)

(Γv)1[tk,tk+1]
(t) =Ek+1

k∑
s=1

Φ(k+1,s)(t)

∫ ts

ts−1

eAs(ts−τ)Bsv(τ)dτ

+ Ek+1

∫ t

tk

eAk+1(t−τ)Bk+1v(τ)dτ, (6)

tk ≤ t ≤ tk+1, k = 0, . . . , N − 1,

Φ(ℓ,m)(t) :=eAℓ(t−tℓ−1)eAℓ−1(tℓ−1−tℓ−2) · · · eAm+1(tm+1−tm),

ℓ,m ∈ Z+ : ℓ > m ≥ 0,

tℓ−1 ≤ t ≤ tℓ.

Note that (Γv)0 and (Γv)1 denote the weighted terminal state and output
signal corresponding to the input signal v over [0, h], respectively. For the
operator Γ, we consider the following singular value problem:

Γf = σg, Γ∗g = σf, (7)

σ ∈ R, f ∈ V , g ∈ Z, (f ̸= 0, g ̸= 0).

The singular vectors f and g represent the input and output signals in V and
Z. The pairs (f, g) corresponding to the larger singular values σ characterize
the dominant input–output behavior of the system Σ. The following theo-
rem provides a calculation method of the singular values σ and the explicit
characterization of the singular vectors f and g that satisfy the relation (7).

Theorem 1. The singular values are given by the roots of the following
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transcendental equation:

det {M(σ)} = 0, (8)

M(σ) :=
[
− 1

σ
FTF I

]
eJN (σ)d̄N eJN−1(σ)d̄N−1 · · · eJ1(σ)d̄1

[
0
I

]
,

Jm(σ) :=

[
Am

1
σ
BmB

T
m

− 1
σ
ET

mEm −AT
m

]
, d̄m := tm − tm−1, m = 1, 2, . . . , N.

Let σi be a singular value. Then, the corresponding singular vectors fi ∈ V
and gi ∈ Z are given as follows:

fi[tk−1,tk]
(β) =

1

σi

[
0 BT

k

]
eJk(σi)(β−tk−1)eJk−1(σi)d̄k−1 · · · eJ1(σi)d̄1

[
0
I

]
qi,

k = 1, 2, . . . , N, (9)

g0i =
1

σi

[
F 0

]
eJN (σi)d̄N eJN−1(σi)d̄N−1 · · · eJ1(σi)d̄1

[
0
I

]
qi, (10)

g1i [tk−1,tk]
(β) =

1

σi

[
Ek 0

]
eJk(σi)(β−tk−1)eJk−1(σi)d̄k−1 · · · eJ1(σi)d̄1

[
0
I

]
qi,

k = 1, 2, . . . , N, (11)

qi ̸= 0 : M(σi)qi = 0.

Proof. For the operator Γ , the adjoint Γ∗ ∈ L(Z,V) is calculated as follows
(see the Appendix for details):

(Γ∗ẑ)[tk−1,tk](τ) =



BT
k e

Ak
T(tk−τ)ΦT

(N,k)(h)F
Tẑ0

+
N−1∑
s=k

∫ ts+1

ts

BT
k e

Ak
T(tk−τ)ΦT

(s+1,k)(β)E
T
k ẑ

1(β)dβ

+

∫ tk

τ

BT
k e

Ak
T(β−τ)ET

k ẑ
1(β)dβ

tk−1 ≤ τ ≤ tk, k = 1, 2, . . . , N − 1,

BT
Ne

AN
T(h−τ)FTẑ0 +

∫ tN

τ

BT
Ne

AN
T(β−τ)ET

N ẑ
1(β)dβ

tN−1 ≤ τ ≤ tN , k = N

(12)

ẑ =

[
ẑ0

ẑ1

]
∈ Z.
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By introducing the auxiliary variables

p1(t) :=

∫ t

0

eA1(t−τ)B1v(τ)dτ, 0 ≤ t ≤ t1,

pk(t) := eAk(t−tk−1)pk−1(tk−1) +

∫ t

tk−1

eAk(t−τ)Bkv(τ)dτ,

tk−1 ≤ t ≤ tk, k = 2, 3, . . . , N,

qN(t) := eA
T
N (tN−t)FTẑ0 +

∫ tN

t

eA
T
N (β−t)ET

N ẑ
1(β)dβ,

qk(t) := eA
T
k (tk−t)qk+1(tk) +

∫ tk

t

eA
T
k (β−t)ET

k ẑ
1(β)dβ,

tk−1 ≤ t ≤ tk, k = 1, 2, . . . , N − 1

to (5), (6), and (12), the relation (7) is rewritten as the following set of
equations:

ṗk(t) = Akpk(t) +Bkv(t), (13)

σẑ1(t) = Ekpk(t), (14)

tk−1 ≤ t ≤ tk, k = 1, 2, . . . , N,

σẑ0 = FpN(tN), (15)

p1(0) = 0, (16)

q̇k(t) = −AT
k qk(t)− ET

k ẑ
1(t), (17)

tk−1 ≤ t ≤ tk, k = 1, 2, . . . , N,

σv(t) = BT
k qk(t), (18)

qN(tN) = FTẑ0. (19)

By eliminating v and ẑ1 from the differential equations (13) and (17) using
(14) and (18), (13) and (17) yield the following differential equation:[

ṗk(t)
q̇k(t)

]
=

[
Ak

1
σ
BkB

T
k

− 1
σ
ET

k Ek −AT
k

] [
pk(t)
qk(t)

]
.

The solution to this differential equation on [tk−1, tk] is given by[
pk(tk)
qk(tk)

]
= eJk(σ)(tk−tk−1)

[
pk−1(tk−1)
qk−1(tk−1)

]
.
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From equations (15) and (19), the boundary condition qN(tN) =
1
σ
FTFpN(tN),

which implies

[− 1

σ
FTF, I]

[
pN(h)
qN(h)

]
= 0,

is obtained. Then, we have[
− 1

σ
FTF I

] [pN(h)
qN(h)

]
=

[
− 1

σ
FTF I

]
eJN (σ)d̄N

[
pN−1(tN−1)
qN−1(tN−1)

]
= · · ·

=
[
− 1

σ
FTF I

]
eJN (σ)d̄N eJN−1(σ)d̄N−1 · · · eJ1(σ)d̄1

[
0
I

]
q1(0)

= M(σ)q1(0)

= 0. (20)

Since it has been shown that q1(0) ̸= 0 iff f ̸= 0, and g ̸= 0, the matrix
M(σ) in (20) must be singular for the singular value σ. Therefore, the
singular values are given by the roots of equation (8). The singular vectors
(9) through (11) corresponding to the singular value σ are constructed by
expressing v, z0, and z1 using the auxiliary variables pk and qk.

Remark 2. The singular vectors {fi}, and {gi} form orthogonal sequences in
spaces V and Z. The singular vectors fi corresponding to the large singular
values describe the input signals over [0, h] that have a significant effect on
the input-output dynamics of the linear time-varying system (1) because the
output ẑ is given as σi · gi, which indicates that the output gi is multiplied by
σi when fi is applied to the system.

Remark 3. The singular values are calculated by using general methods such
as the bisection algorithm. Once the singular values are calculated from the
determinant equation (8), the singular vectors are easily computed from (9)
through (11) because they have the form of the autonomous response of a
switched linear system. Although there are infinitely many discrete singular
values, which approaches zero, we use only larger singular values and the
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Figure 1: Switched linear system with compensation.

corresponding singular vectors in the compensation design. When a singular
value σi is found from (8), it may be necessary to check whether σi is the
largest root. In [7], the method for counting the zeros (roots) for a similar
type of equation on a given interval has been considered based on a winding
number method in complex analysis. This approach is also applicable to the
present case.

Based on the SVD for switched linear systems obtained in this section, we
derive a feedforward compensation signal design method for switched linear
systems.

In the following, we normalize the singular vectors as ∥fi∥V = 1, ∥gi∥Z = 1
and denote the singular values by σ1 ≥ σ2 ≥ σ3 ≥ · · · in decreasing order
and the corresponding singular vectors by fi and gi (i = 1, 2, . . . ).

3. Transient Improvement for a Switched Linear System with Pe-
riodic Switching

A switched system consists of several subsystems and a switching sig-
nal that determines the transition of the dynamics among the subsystems.
The stabilizing switching law, system structures (controllability and observ-
ability), and optimal control have been investigated in a number of studies
[8, 9, 10, 11, 12, 13].

From practical viewpoint, there are many systems which are formulated
as switched systems. In addition, some control problems can be formulated in
the framework of switched systems, e.g., multi-controller scheme for systems
with large uncertainty (see, for example, [8, 10, 14]). A typical example of a
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switched system is an electronic circuit with an on-off switch realized using
transistor (e.g., DC-DC converter). In this system, the on-off switch acts
as a discrete switching signal, which corresponds to switch the subsystem,
and a voltage (or current) input signal corresponds to a continuous-time
input signal. A simple model of a manual transmission is also an example
of switched systems, where the gear shift position is a discrete-valued input
and the input acceleration is a continuous-time signal [15]. Two distinctive
switching laws for switched systems are the time-driven switching law and the
even-driven (state-dependent) switching law, and various switching laws have
been proposed so far [8]. When the event-driven switching law is applied to a
switched system, the resulting system is considered as a hybrid system whose
dynamics changes depending on the value of the state. In the case of the
time-dependent switching law, the resultant system is considered as a time-
varying system. In the control of these systems, the relationship between
the switching of subsystems and continuous-time signal has to be taken into
account to design control inputs. The SVD considered in the previous section
provides a way to clarify this relationship for, in particular, switched linear
systems with the time-driven switching law.

In the optimal control of the switched systems, the optimal design of
both the switching signal and continuous-time input is by nature a difficult
problem [8]. Moreover, if one pursues optimality exclusively, the switch-
ing frequency might become very high or the switching law might require
infinitely many switchings on a finite interval [12, 13], which is not desir-
able from a practical viewpoint. Instead of designing the switching signal to
achieve good performance, we consider the feedforward compensation signal
design problem.

In this section, based on the SVD for the class of linear time-varying sys-
tems developed in the previous section, we derive a method for improving
the transient response of a switched linear system with a periodic switching
law. The compensation signal is computed off-line beforehand based on un-
compensated and desired transient response over the finite time interval of
interest.

First, we consider the following switched linear system:

Σs :

{
ẋ(t) = As(t)x(t) +Bs(t)u(t)
z(t) = Es(t)x(t)

(21)

where x(t), u(t), and z(t) denote the state, input, and output, respectively.
Subscript s(t) ∈ S := {1, 2, . . . , r} denotes the switching signal, where r is
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the number of the subsystems. When we apply

u(t) = Ks(t)x(t) + v(t) (22)

to Σs, the resulting system Σ̃s (Fig. 1) is described by

Σ̃s :

{
ẋ(t) = Ãs(t)x(t) + Bs(t)v(t)
z(t) = Es(t)x(t)

Ãs(t) := As(t) +Bs(t)Ks(t).

In (22), v(t) denotes the compensation signal that we will design to improve
the transient response. If feedback gain matrices Ki and coefficients ωi exist
such that the following convex combination of Ãi is Hurwitz:

A0 =
∑
i∈S

wiÃi (ωi ≥ 0,
∑
i∈S

ωi = 1), (23)

then the system can be stabilized via periodic switching signal as follows
[8, 9]. Let Ki and wi be one pair that satisfies (23). Then, for a small T > 0,
the periodic switching signal

s(t) =


1, t ∈ [kT, (k + ω1)T )
2, t ∈ [(k + ω1)T, (k + ω1 + ω2)T )
...

...
r, t ∈ [(k + 1− ωr)T, (k + 1)T )

k = 0, 1, . . .

stabilizes the system exponentially because matrix Ad := eωrArT · · · eω1A1T =
eA0T+f(T )T 2

(f is an analytic and bounded matrix-valued function) can be
stable for T > 0, and x((k+ 1)T ) = Adx(kT ) holds. Consequently, a system
with the periodic switching signal can be represented in the form of the lin-
ear time-varying system (1). Note that the switching interval of the above
switching law is given by ωi · T . If the lower limit Tlow > 0 for the switching
interval is imposed, one needs to pay attention to the choice of ωi and T
so that the condition ωi · T ≥ Tlow is satisfied. From the implementation
viewpoint, the switching control law is relatively simple because of its pe-
riodicity, and it is especially applicable to the systems where the switching
rule cannot be arbitrarily modified during operation due to limitations on
hardware and/or software.
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For the system stabilized by the periodic switching signal, we consider
the transient improvement by the compensation input v(t) over the finite
horizon 0 ≤ t ≤ h in the sense that the resulting system response approaches
a certain prescribed response. Let

ŷd =

[
xd(h)
yd[0,h]

]
∈ Z

be a desired output in Z (pair of the terminal state and the output signal),
and let

ŷ =

[
x(h)
y[0,h]

]
∈ Z

be the nominal response (without compensation input v). The desired re-
sponse ŷd can be chosen from the response of a certain reference model that
has a good transient property. Define the error ê := ŷd − ŷ ∈ Z. We de-
sign compensation input v(t) such that the resulting system response closely
approximates the desired response ŷd. We construct the compensation input
v(t) by the linear combination of the singular vectors fi ∈ V corresponding
to Ns > 0 singular values in decreasing order, which represent the dominant
input signals over [0, h] in V . Since Ns singular vectors g1, g2, . . . , gNs form
the orthonormal system in Z, the closest element of span{g1, g2, . . . , gNs} to
ê is given by

ê′ :=
Ns∑
i=1

⟨ê, gi⟩Z · gi. (24)

Consequently, by applying the compensation input

v[0,h] =
Ns∑
i=1

1

σi

⟨ê, gi⟩Z · fi, (25)

the error is minimized in the combination of Ns singular vectors fi. When the
compensation input (25) is applied, the approximation error ϵ := ∥ê − ê′∥Z
is given by

ϵ2 = ∥ê−
Ns∑
i=1

⟨ê, gi⟩Z · gi∥2Z

= ∥ê∥2Z −
Ns∑
i=1

∥⟨ê, gi⟩Z∥2Z .
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Thus, ϵ decreases as the number Ns of singualr values and vectors used
increases. The number Ns is a design parameter for approximating the error
ê. Note that although the error decreases monotonically as Ns increases, the
compensation signal might become larger in order to eliminate only small
deviation. There is no single definite way to determine the dimension (the
number of singular values and vectors). However, as the error decreases as
Ns increases, we can possibly use the decrease rate in the error ϵ as an index
for choosing Ns. Let ϵNs be the error when Ns singular values and vectors
are employed, and choose ϵ̄ > 0 for a threshold of the decrease rate of the
error. Then, by increasing Ns, employ the smallest number Ns that satisfies
the inequality ϵNs − ϵNs+1 < ϵ̄.

Remark 4. Note that “transient improvement” is used in the sense that
the output approaches the required output. Thus, the improvement implies
a small error between these two outputs. The choice of the desired output
depends on the control problem under consideration. The desired output can
be chosen from any time-parameterized signals, which could be artificially
constructed or generated from the output of a reference model having de-
sired properties (e.g., small undershoot for a specific control variable, settling
time). The method is useful especially when the output signal needs to be
shaped in the time-domain. We can also deal with the problem in which the
output is required to pass prescribed points over the horizon.

Remark 5. The other bases might be employed in the algorithm to give a
compensation input; however, the singular vectors have some features that the
other base vectors do not have. The singular vectors are derived by solving the
singular value problem of the linear time-varying system under consideration.
Therefore, they have a direct relationship with the system for which the com-
pensation input is designed; the singular values provide an index of influence
on the input-output relationship of the system for the corresponding singular
vectors (note that the norm of the output ẑ is ∥ẑ∥Z = ∥Γfi∥Z = ∥σigi∥Z = σi

for the normalized singular vectors fi ∈ V , gi ∈ Z, see also Remark 2). There-
fore, by employing the singular vectors corresponding to the singular values
in a decreasing order, the subspace spanned by the singular vectors consists
of the dominant signals for the system. This would result in a relatively
small subspace dimension to construct the compensation input as compared
to that in the case when the other bases are employed. In the transient im-
provement problem here, the required signal is first approximated by the linear
combination of the singular vectors gi ∈ Z. Then, the compensation input v

12
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Figure 2: State response (solid) and response of the average system (dashed).

generating such required signal can be simply given by the linear combination
of the corresponding singular vectors, fi ∈ V. Thus, the design procedure is
fairly simplified by employing the singular vectors fi, gi as bases in input and
output spaces. The compensation signal mentioned previously might become
larger as Ns inreases when not only the singular vectors but also the other
base vectors are employed. This is mainly attributed to the relationship be-
tween the properties of the dynamical system and the required signal and not
the choice of basis employed.

Remark 6. For standard linear time-invariant systems defined on finite in-
terval, the SVD-based compensation method using the orthogonal expansion
technique has been considered in [4]. We have derived herein a compensation
method for switched linear systems using the newly derived SVD for switched
systems.

4. Numerical Example

We next present a simple numerical example to illustrate the fundamental
properties of the proposed SVD-based compensation method.
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Consider the following feedback-compensated switched linear system:

Σ̃s

{
ẋ(t) = Ãs(t)x(t) +Bs(t)v(t)
z(t) = Es(t)x(t)

(26)

S = {1, 2}, Ã1 =

[
−3 2
1 2

]
, Ã2 =

[
1 −1
−3 −5

]
B1 =

[
1.5
1

]
, B2 =

[
1
2

]
, E1 = E2 =

[
1 0
0 1

]
.

Both subsystems are unstable and have the eigenvalues (−3.37, 2.37) and
(−5.46, 1.46). We first design the stabilizing periodic switching law according
to the method described in Section 3. When we choose the coefficients w1 =
0.5 and w2 = 0.5 in (23), the matrix A0 = w1Ã1 + w2Ã2 becomes Hurwitz
and can therefore be stabilized by periodic switching. The stable matrix
Ad = e0.5·A2·1 · e0.5·A1·1 (eigenvalues: 0.135 ± 0.2527i) is obtained for T = 1,
and the periodic switching law

s(t) =

{
1, t ∈ [kT, (k + 0.5) · T )
2, t ∈ [(k + 0.5) · T, (k + 1) · T )

k = 0, 1, 2, . . . (27)

exponentially stabilizes the system. Figure 2 shows the state response (x1,
x2) for the initial condition x(0) = [2,−3]T with the periodic switching law
(solid line). The response of the average system (ẋ(t) = A0x(t)) is also shown
as a dashed line. Although the response converges to zero, the behavior is
not smooth at switching instants and sharp changes can be observed. Next,
we design compensation signal v, which improves this response in the sense
that the resulting response of the system comes to resemble that of the av-
erage system. Although we use the response of the average system here, any
response can be used. Note that the response comes to resemble that of the
average system as T in (27) decreases. However, in such a case, much more
frequent switching between subsystems A1 and A2 is required.

To design the compensation signal, we first compute the singular val-
ues and singular vectors. For parameters h = 4 (compensation period)
and N = 8, the singular values are computed from Theorem 1 (Fig. 3).
The matrix F in (4) is chosen by the solution to the Lyapunov equation
FTF = P : AT

0 P + PA0 + I = 0. Figures 4 and 5 depict the normalized
singular vectors fi ∈ V and g1i ∈ L2(0, h;R2)(i = 1, 2, 3, 9, 10). The singular
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Figure 3: Singular values σ1, . . . , σ13.
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Figure 4: Normalized singular vectors fi ∈
L2(0, h;R).

vectors corresponding to the small singular values σ9, and σ10 tend to exhibit
oscillating behaviors. As mentioned in Remark 2, when the singular vector
f1 corresponding to the largest singular value is applied to the system (26)
(v(t) = f1(t)), the output response z = x is given by σ1 ·g11(t) = 1.8353 ·g11(t),
which implies that the system generates a magnified signal of g11(t). Note also
that the singular value σi represents the value of the norm of the output gi
corresponding to the unit energy input v = fi. When the normalized singular
vector f10 corresponding to small singular value σ10 is applied to the system,
σ10 · g110(t) = 0.2563 · g110(t) is generated in the output, which implies that the
the singular vectors corresponding to the smaller singular values have less of
an effect on the input–output relation. Using seven (Ns = 7) singular values
σ1, σ2, · · · , σ7, we design the compensation signal v according to the method
considered in Section 3. Figure 6 shows the compensation signal. The am-
plitude around the initial time is larger to improve the large deviation of the
original response. Figure 7 shows the state response with compensation. The
response approaches that of the average system.

The responses for Ns = 13 are also shown in Figs. 6 and 7. Although the
compensation signal for Ns = 13 exhibits similar behavior near the initial
time, the amplitude is larger than that of the compensation signal for Ns = 7
after t = 0.5 [s]. Even if we use more singular values, the amplitude would
become larger and eliminate only small deviations.
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Figure 5: Singular vectors g1i ∈ L2(0, h;R2)(∥gi∥Z = 1), left:x1, right:x2.

5. Conclusion

In the present paper, we have considered the SVD of an operator repre-
senting the input-output relation of a class of linear time-varying systems.
The class of the systems describes time-driven switched linear systems. We
have derived a computation method for singular values and singular vec-
tors of the operator. Based on this SVD, the compensation signal design
for switched linear systems with a periodic switching law is discussed. A
numerical example was presented in order to demonstrate the fundamental
properties of the proposed method.

Although we focus our attention on generating only a continuous-time sig-
nal to improve the transient, it would be important to design the switching
signal and the continuous-time signal simultaneously. A possible extension
of the reseach is incorporating system constraints, which has not been con-
sidered in this paper. From practical viewpoint, applying the method to a
realistic model is also a topic of future research.
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Appendix A. Derivation of the adjoint Γ∗ ∈ L(Z,V) in (12)

First, we compute the following inner product:

⟨ẑ,Γv⟩Z = ⟨
[
ẑ0

ẑ1

]
,

[
(Γv)0

(Γv)1

]
⟩Z

= ẑ0T(Γv)0 +

∫ h

0

ẑ1T(β)(Γv)1(β)dβ. (A.1)

The first and second terms in (A.1) are calculated as follows:
(i) first term

ẑ0T(Γv)0 = ẑ0TF
N−1∑
s=1

Φ(N,s)(h)

∫ ts

ts−1

eAs(ts−τ)Bsv(τ)dτ

+ ẑ0TF

∫ h

tN−1

eAN (h−τ)BNv(τ)dτ

=
N−1∑
k=1

∫ tk

tk−1

(
BT

k e
AT

k (tk−τ)ΦT
(N,k)(h)F

Tẑ0
)T

v(τ)dτ

+

∫ tN

tN−1

(
BT

Ne
AT

N (h−τ)FTẑ0
)T

v(τ)dτ,
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(ii) second term∫ h

0

ẑ1T(β)(Γv)1(β)dβ

=
N−1∑
k=1

k∑
s=1

∫ tk+1

tk

∫ ts

ts−1

ẑ1T(β)EkΦ(k+1,s)(β)e
As(ts−τ)Bsv(τ)dτdβ

+
N∑
k=1

∫ tk

tk−1

∫ β

tk−1

ẑ1T(β)Eke
Ak(β−τ)Bkv(τ)dτ

=
N−1∑
k=1

∫ tk

tk−1

N−1∑
s=k

∫ ts+1

ts

ẑ1T(β)EkΦ(s+1,k)(β)e
Ak(tk−τ)Bkdβv(τ)dτ

+
N∑
k=1

∫ tk

tk−1

∫ tk

τ

ẑ1T(β)Eke
Ak(β−τ)Bkdβv(τ)dτ.

For the transformation presented above, we used the reversal of the order
of integration and the change in the order of summation. Consequently, by
definition (2) of the inner product in V , the adjoint Γ∗ ∈ L(Z,V), which
satisfies ⟨ẑ,Γv⟩Z = ⟨Γ∗ẑ, v⟩V , is given by (12).
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