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Abstract
This study proposes a reliability-based multiobjective optimization (RBMO) approach using the satisficing trade-
offmethod (STOM). STOM is a multiobjective optimization method that obtains a highly accurate single Pareto
solution, regardless of the shape of the Pareto set. By introducing an aspiration level, STOM transforms the multi-
objective optimization problem into the equivalent single objective problem. When the given Pareto solution is not
satisfactory, the search process is repeated with a different aspiration level, which is selected using the automatic
trade-offmethod, for example. RBMO considers multiobjective optimization under reliability constraints that con-
sider uncertainties in the design parameters. In this study, the reliability is evaluated by the first-order reliability
method. Therefore, the optimization problem is formulated as a conventional double-loop approach. However, the
validity of the proposed method can be illustrated without a decoupled reliability-based design approach. Through
numerical examples, the proposed method is shown to obtain an accurate Pareto solution for the RBMO problem.
In addition, compared to multiobjective particle swarm optimization, parametrically changing the aspiration level
produces a more accurate, uniformly distributed, and diverse Pareto set. The tracking ability of Pareto solutions
with the same aspiration level is investigated in terms of the target reliability, which clarifies that the shift in the
dominant failure mode influences the kink in the tracking trajectory. Finally, an analysis of the automatic trade-off

method demonstrates that the desired Pareto solution can be obtained by updating the aspiration level, even when
the Pareto surface is nonlinear.

Key words: Reliability-Based Multiobjective Optimization, Satisficing Trade-Off Method, Pareto Set, Automatic
Trade-Off Analysis, First-Order Reliability Method

1. Introduction

Design problems are essentially defined in terms of multiobjective optimization [Mittinen, 2004]. However, most
design problems adopt a single objective optimization method, whereby one objective function is selected from the many
performance indices, and the other objectives are transformed to equivalent constraint conditions. Recently, multiobjective
optimization has become popular, and has been applied to a variety of engineering design problems. Various evolutionary
methods have been developed, such as multiobjective genetic algorithms [Deb et al., 2002] and multiobjective particle
swarm optimization (MOPSO) [Reyes-Sierra and Coello Coello, 2006].

Design parameters such as material properties and applied loads have a number of uncertainties. Their performance
measures also include uncertainties, because these are defined as a function of the uncertain parameters. In reliability
analyses [Madsen et al., 1986] that apply probabilistic theory, uncertain parameters are defined as probabilistic random
variables, and structural failure (i.e., when some performance measure exceeds its allowable range) is evaluated proba-
bilistically. The first-order reliability method (FORM) [Rackwitz and Fiessler, 1978] is one of the primary techniques for
evaluating reliability. FORM first transforms the random variables to independent standardized normal distribution vari-
ables, and then the reliability indexβ is evaluated as the minimum distance between the limit state surface (h(u) = 0) and
the origin in the standardized normal distribution space (U-space). The failure probability is approximated asPf = Φ(−β),
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whereΦ() is the probability distribution function of the standardized normal distribution. Since FORM must evaluate
the minimum distance, it is implemented as an iterative calculation using the Rackwitz–Fiessler method [Rackwitz and
Fiessler, 1978] or nonlinear programming.

Reliability-baseddesign optimization (RBDO) integrates a reliability analysis with an optimization method [Choi et
al., 2007,Valdebenito and Schuëller, 2010]. For example, RBDO can be used to obtain the minimum-weight design under
given reliability constraints, or the maximum-reliability design under given weight constraints. As the reliability analysis
also requires iterative calculations, RBDO is formulated as a time-consuming double-loop approach. Some computation-
ally efficient decoupled approaches have been proposed, such as the single-loop single-vector (SLSV) method [Chen et
al., 1997] and sequential optimization and reliability assessment (SORA) [Du and Chen, 2004]. The development of these
efficient methods has popularized RBDO, which has subsequently been applied to many engineering design problems.

In contrast, research on reliability-based multiobjective optimization (RBMO), which combines multiobjective op-
timization with reliability analysis, is at an earlier stage [Deb et al., 2009, Sinha,2007, Li et al., 2011, Rangavajhala and
Mahadevan, 2011, Greiner and Hajela, 2012]. Most researches have focused on multiobjective genetic algorithms, par-
ticularly NSGA-II [Deb et al., 2002]. To improve the computational efficiency of the evolutionary approach, one of the
present authors proposed a hybrid-type MOPSO for the RBMO problem [Kogiso et al., 2012,Kogiso and Kawaji, 2013].
This hybrid MOPSO incorporates a constraint satisfaction technique using gradient information. The technique has two
functions: moving design candidates with constraint violations to the feasible region using sensitivity information from
the violated constraints, and then moving these to the feasible boundary using the bisection method. The hybrid MOPSO
successfully obtains the Pareto set with high accuracy in the early stages of the search. The computational efficiency of the
method is superior to that of conventional evolutionary algorithms like NSGA-II. However, the computational efficiency
is still inferior to that of mathematical programming methods.

This study proposes a new method by applying the satisficing trade-off method (STOM) [Nakayama and Sawaragi,
1984] to RBMO to efficiently obtain a Pareto solution of the RBMO problem. STOM has been applied to numerous
engineering design problems, e.g., [Nakayama et al., 1995, Kitayama and Yamazaki, 2012], but has not yet been applied
to the RBMO problem. STOM is a multiobjective optimization method that obtains a single, highly accurate Pareto
solution, regardless of the shape of the Pareto set. By introducing an aspiration level that corresponds to the user’s
preference for each objective function, STOM transforms the multiobjective optimization problem into the equivalent
single objective problem. Mathematical programming techniques can be applied to the transformed problem, meaning
that STOM obtains a Pareto solution efficiently. In addition, a highly diverse and uniformly distributed Pareto set can be
obtained by parametrically changing the aspiration level. STOM is an interactive approach, because the search process
is repeated by changing the aspiration level until the user is satisfied with the solution. The automatic trade-off analysis
method [Nakayama, 1992] is one way of updating the aspiration level using sensitivity information.

Note that the efficient single-loop algorithm for RBMO is not adopted in this study. As STOM produces the equiv-
alent single objective optimization problem, it is possible to adopt efficient RBDO methods such as SLSV or SORA.
However, this study adopts the FORM reliability analysis and performs a double-loop optimization, because our aim is to
investigate STOM applied to RBMO. Efficient decoupled RBDO methods will be applied at a later date to improve the
computational efficiency.

Through numerical examples, the efficiency of STOM for the RBMO problem is discussed by comparing its perfor-
mance with that of the hybrid-type MOPSO [Kogiso et al., 2012,Kogiso and Kawaji, 2013]. It is shown that the proposed
method obtains a more accurate, uniformly distributed, and diverse Pareto set than that of MOPSO, and that the Pareto
front can be obtained by changing the aspiration level parametrically. The tracking ability of Pareto solutions with the
same aspiration level is investigated in terms of the target reliability, and we find that the shift in dominant failure mode in-
fluences the kink of the tracking trajectory. Finally, the automatic trade-offanalysis shows that the desired Pareto solution
can be obtained by updating the aspiration level, even when the Pareto surface is nonlinear.

2. Reliability-Based Multiobjective Optimization

RBMO considers the reliability constraints imposed by uncertainties in design parameters such as material prop-
erties and applied loads. In this study, design variables and random variables are denoted asd = [d1, · · · ,dn]T and
z = [z1, · · · , zl ]T , respectively. The random variables are assumed to be independent of each other, and their mean and
standard deviation are denoted asµ = [µ1, · · · , µl ]T andσ = diag[σ1, · · · , σl ]T , respectively. In many cases, the mean
values of the random variablesµ are adopted as the design variablesd.
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Fig. 1 Concept of FORM. Reliability indexβ is obtained as the minimum distance from the origin to the
limit state surfaceh(U) = 0 in U-space, whereϕ2() is a joint density function of the two-dimensional
standardized normal distribution. The point that gives the minimum distance is called the the design point
u∗, whereβ = ||u∗||. The failure probability is approximated asPf = Φ(−β) by linearizing the limit state
function around the design point.

2.1. First-Order Reliability Analysis
The limit state function corresponding to thej-th failure mode is denoted asg j(d, z) ( j = 1, · · · , k), and the failure

probabilityPf j is defined as the probability that thej-th limit state function takes a negative value:

Pf j = P(g j(d, z)≤ 0). (1)

As it is difficult, even impossible, to evaluate this probability, the reliability is evaluated by a Monte Carlo simulation or an
approximation method. FORM [Rackwitz and Fiessler, 1978] is one of the main methods for the evaluation of reliability.
In FORM, the random vectorz is transformed into the standard normal distribution space (U-space), and the reliability
is evaluated by the reliability indexβ j , which is defined as the minimum distance from the origin to thej-th limit state
surface inU-space (see Fig. 1). The reliability index is obtained through the following problem:

Minimize: β j =
√

uTu (2)

subjectto: h j(d,u) = 0, (3)

whereh j(d,u) is the j-th limit state function, formulated inU-space, that is transformed fromg j(d,u). The limit state
function is then linearized around the design pointu∗. As shown in Fig. 1, the failure probability is approximated by a
one-dimensional standardized normal distribution functionΦ():

Pf j = Φ(−β j) ( j = 1, · · · ,m). (4)

In the RBMO problem, the failure probability constraint (which states that the failure probability should not exceed
the upper limitPt

j , Pf j ≤ Pt
j) is rewritten using the reliability index as follows:

β j = −Φ−1
[
P(g j(d, z)< 0)

]
≥ βt

j , ( j = 1, · · · ,m) (5)

whereβt
j is the target reliability index for thej-th failure mode corresponding toPt

j = Φ(−βt
j).

2.2. Formulation of RBMO
In this RBMO problem, the reliability constraints state that the failure probabilities must be lower than the allowable

values. This is the only difference from the conventional multiobjective optimization problem. The RBMO problem is
formulated as follows:

Minimize: F(d) = ( f1(d), f2(d), · · · , fk(d)) (6)
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Fig. 2 STOM Pareto solution search process in the objective function space. Pareto solutionf ∗ is obtained as the
intersection between the Pareto surface and the line connecting the ideal pointf I and the aspiration point
f A.

subject to: β j = −Φ−1
[
P(g j(d, z) < 0)

]
≥ βt

j , ( j = 1, · · · ,m) (7)

dL ≤ d ≤ dU , (8)

where fi(d) is the i-th objective function,βt
j is the allowable value of the reliability index for thej-th failure mode, and

dU anddL are the upper and lower bounds of the design variables, respectively.
In this study, we adopt a double-loop algorithm using FORM. For further improvement, decoupled methods may be

adopted in future.

3. Satisficing Trade-off Method and Automatic Trade-off Analysis

STOM [Nakayama and Sawaragi, 1984] is an interactive multiobjective optimization method that obtains one Pareto
solution by solving the min-max problem according to the given aspiration level. STOM can obtain the Pareto solution,
even if the Pareto surface is not convex. As shown in Fig. 2, STOM obtains one Pareto solution at the intersection between
the Pareto surface and the line connecting the ideal point and the aspiration level. Even if this line does not cross the Pareto
surface, STOM will obtain the closest point as a Pareto solution.

3.1. STOM for RBMO
This study applies STOM to RBMO. The flow of STOM with reliability constraints is summarized in Fig. 3, and can

be briefly described as follows.

Step 1 The ideal pointf I
i (i = 1, · · · , k) of each objective is determined. The ideal point is usually determined by

solving a single-objective optimization problem considering only the corresponding objective functionfi(d). The user
then decides the aspiration levelf A

i (i = 1, · · · , k) for each objective function.

Step 2 The following weighting factor is introduced for each objective function:

wi =
1

f A
i − f I

i

, (i = 1, · · · , k). (9)

The multiobjective optimization problem is then formulated as follows:

Minimize: max
i∈[1,k]

wi( fi(d) − f I
i ) + α

k∑
i=1
wi fi(d) (10)

subject to:β j = −Φ−1
[
P(g j(d, z) < 0)

]
≥ βt

j ( j = 1, · · · ,m) (11)

dL ≤ d ≤ dU , (12)
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Fig. 3 Flowchart of RBMO using STOM. First, set the ideal pointf I
i and the aspiration levelf A

i . Then,
evaluate the weighting factorwi . The multiobjective optimization problem is formulated as a single-
objective optimization based on STOM. The Pareto solution is obtained using a nonlinear mathematical
programming method, where the reliability constraints are evaluated using FORM. If the obtained Pareto
solution does not satisfy the user, the optimization is repeated after the aspiration levelf A

i has been
updated. The automatic trade-off analysis is one method of determining the aspiration level.

whereα is a small positive number (e.g., 10−6) used to avoid convergence to weak Pareto solutions.

Step 3 The min-max problem in Eq. (10) is transformed into the following equivalent single-objective function prob-
lem. For this purpose, we introduce the auxiliary design variabley.

Minimize: y + α
k∑

i=1
wi fi(x) (13)

subject to:β j = −Φ−1
[
P(g j(d, z) < 0)

]
≥ βt

j ( j = 1, · · · ,m) (14)

wi( fi(d) − f I
i ) − y ≤ 0 (i = 1, · · · , k) (15)

dL ≤ d ≤ dU , (16)

where Eq. (15) denotes the auxiliary constraints converted from the objective functions.

The single solution that lies on the Pareto set is obtained according to the aspiration level, as shown in Fig. 2.

Step 4 If the user is satisfied with the optimum solution obtained from the equivalent problem, terminate the search
process. Otherwise, update the aspiration levelf A

i (i = 1, · · · , k) and return to Step 2.

Under STOM, a nonlinear programming method can be adopted to obtain a single Pareto set. Therefore, it is much
more computationally efficient than evolutionary multiobjective optimization methods. In addition, an accurate, uniformly
distributed, and diverse Pareto set can be obtained by parametrically changing the aspiration level. Accordingly, STOM
is a more efficient algorithm than evolutionary methods.

3.2. Automatic Trade-off Analysis
“Step 4” requires the aspiration level to be updated. Several methods have been proposed for this purpose [Kitayama

and Yamazaki, 2012,Nakayama, 1992], and this study adopts the automatic trade-off analysis [Nakayama, 1992].
In updating the aspiration level, the user must identify which objective functions must be improved and which can

be relaxed. Appropriate values of the objective functions can then be determined, and these are directly reflected in the

5



Bulletin of the JSME Vol.X, No.X, XXXX

aspiration level. However, users often overestimate the values to be improved and underestimate those to be relaxed. In
such cases, it is very difficult to obtain a satisfactory Pareto solution.

Theautomatic trade-off analysis [Nakayama, 1992] can resolve this problem by automatically determining a reason-
able aspiration level based on a sensitivity analysis.

Consider the unconstrained multiobjective optimization problem that ignores the reliability and side constraints of
Eq. (13). The Lagrangian is written as:

L(d, y, λ) = y +
k∑

i=1
(λi + α)wi fi(d) −

k∑
i=1
λiwi( f I

i + y), (17)

whereλ = (λ1, λ2, · · · , λk)T contains the Lagrange multipliers of the objective functions. From the stationary condition
with respect to the design variablesd, the following equation is obtained:

k∑
i=1

(λi + α)wi∇ fi(d) = 0. (18)

Under some linearly independent approximations, Eq. (18) can be re-written using a small perturbation∆ fi ≈ ∇ fi .
Here, the objective functions are classified into two groups: (i) the set of objectives to be improvedI I , and (ii) the set

of objectives that will be sacrificedIR. The updated aspiration level for the setI I is determined as follows:

f A
j = f ∗j + ∆ f j , j ∈ I I , (19)

where f ∗j is the current objective function value and∆ f j is the desired value for improvement. From Eq. (18), the sum of
∆ f j in I I should be equal to the sum of∆ f j in IR. When the sacrificed values are evenly distributed across each objective
in IR, this is evaluated from Eq. (18) as follows:

∆ f j =
−1

kI (λ j + α)w j

∑
i∈I I

wi(λi + α)∆ fi j ∈ IR, (20)

wherekI is the number of objectives in setI I . That is, the aspiration value inIR is determined from Eq. (20) as:

f A
j = f ∗j + ∆ f j , j ∈ IR. (21)

Since this determination is based on a linear approximation of the Pareto surface, the process should be repeated
several times for the nonlinear problem to obtain a satisfactory Pareto solution.

4. Numerical Examples

Two numerical examples are given to demonstrate the efficiency of the proposed method.
The first is a mathematical example with a non-convex Pareto set. We demonstrate that the proposed method obtains

a more accurate, uniformly distributed, and diverse Pareto set by parametrically changing the aspiration level, despite
the Pareto surface being non-convex. Then, the tracking ability of Pareto solutions with the same aspiration level is
investigated in terms of the target reliability. We clarify that the shift in the dominant failure mode influences the kink in
the tracking trajectory in terms of the target reliability.

The second is an engineering design example that considers the problem of automobile crashworthiness. We show
that, compared with the hybrid-type MOPSO [Kogiso et al., 2012, Kogiso and Kawaji, 2013], STOM can obtain a more
accurate and uniformly distributed Pareto set by parametrically changing the aspiration level. We then demonstrate that
the automatic trade-offanalysis gives the desired Pareto solution by updating the aspiration level, even when the Pareto
surface is nonlinear.

4.1. Example 1: Mathematical Example
Consider the following problem that has both a convex and non-convex feasible region [Liang et al., 2004] (see

Fig. 4):

g1(d) =
d2

1d2

20
− 1 ≥ 0 (22)

g2(d) =
(d1 + d2 − 5)2

30
+

(d1 − d2 − 12)2

120
− 1 ≥ 0 (23)
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Fig. 4 Feasible domain of Example 1.
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d
2

Fig. 5 Pareto set of Example 1 in the design variable space. Each Pareto solution is obtained by parametrically
changing the aspiration level. The deterministic Pareto set corresponding toβt = 0 lies on the constraint
boundary, eitherg1 = 0 org2 = 0. As the target reliability valueβt becomes larger, the Pareto set shifts up
and right, inside the feasible region.

g3(d) =
80

d2
1 + 2d2 + 5

− 1 ≥ 0

0 ≤ di ≤ 10, (i = 1,2). (24)

Thedesign variablesdi , (i = 1,2) are defined as the mean values of the random variablesx. These are assumed to have
independent normal distributions,N(di , σ

2
i ), (i = 1,2), whereσi is set to 3.0 in this study.

Consider the following two objective function problems:

f1(d) = 3d1 + d2 (25)

f2(d) = −d1 + d2 + 10.

The minimum points off1 and f2 are (0,0) and (0,10), respectively. The Pareto set under the deterministic condition lies
on the boundary of the feasible region, close to thed1-axis in the design variable space, that is, the lower direction in
Fig. 4. The Pareto sets obtained under several target reliability index valuesβt are illustrated in Fig. 5, where the Pareto
curves are obtained by parametrically changing the aspiration level. It is found that the Pareto set moves toward the upper
right of Fig. 4 as the target reliability index becomes larger.

STOM can track the shift in Pareto solutions with the same aspiration level in terms of the target reliability. This
tracking ability is a major difference between STOM and evolutionary methods, which cannot track the shift of each Pareto
solution, though the change in the whole Pareto set can be tracked. Figure 6 shows the shift of some Pareto solutions in
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Fig. 6 Flows A to G correspond to the parametric shift in Pareto solutions with the same aspiration level in terms
of the target reliability index in Example 1. The kinks correspond to shifts in the active constraints, as
shown in Table 1.

the objective function space. The curves indicate the Pareto set, and arrows labeled A–G indicate the shift in the Pareto
solution with the same aspiration level.

The Pareto solutions around the center of the Pareto curves shift radially from the ideal point as the target reliability
value increases. Pareto solutions close to the edge of the Pareto curves are kinked. For example, the flow B around the
upper-left position in Fig. 6 merges with flow A, which is the upper-left edge of the Pareto curve. Similarly, flow F merges
with flow G.

The kinks correspond to a shift in mode. Table 1 shows the mode shifts for three typical flows, wheref1 and f2 are
the objective function values. A value of 0 ing j indicates that the constraint is active, whereg1, g2, andg3 correspond
to the reliability constraints andg4 andg5 are constraints on the auxiliary objective functions. When bothg4 andg5 are
active, the given Pareto solution lies on the line connecting the aspiration level and the ideal points. Otherwise, the Pareto
solution does not follow the aspiration level. Additionally, the active reliability constraints are changed.

4.2. Example 2: Car Side-Impact Problem
As an engineering design example, the RBMO of the automobile crashworthiness problem [Sinha,2007] is evaluated

by the proposed STOM. This problem is used as one of the RBMO benchmarks, and consists of two objective functions in
terms of nine design variables under nine reliability constraints, where the design variables are set as the mean values of
the random variables. The problem formulation is summarized in Table 2, where the reliability constraints are formulated
as follows:

Pf (g j ≥ 0) ≤ Φ(−βt
j), ( j = 1, · · · ,9). (26)

Figure 7 compares the Pareto set obtained by the proposed method, in which we can parametrically change the
aspiration level, and that given by the hybrid-type MOPSO [Kogiso et al., 2012]. It can be seen that STOM obtains more
accurate and uniformly distributed Pareto sets than MOPSO. In particular, as it is a stochastic approach, MOPSO found it
difficult to obtain the upper-left region with the smaller value off1. However, STOM obtains the Pareto solution according
to the aspiration level. In addition, the arrows in Fig. 7 (b) indicate the shift in Pareto solution with the same aspiration
level in terms of the target reliability values.

4.3. Automatic Trade-Off Analysis in Example 2
The examples above illustrate the accuracy of the Pareto solutions obtained under STOM by parametrically changing

the aspiration level.
This subsection demonstrates how the automatic trade-offanalysis works for the car side-impact problem. Assume

that the desired structural weight (f1) is 19.0 kg under the target reliabilityβt = 3.0. The first aspiration level is set

8
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Table 1 Tracking of Pareto solutions in terms of target reliabilityβt in Example 1. Symbols of flows B, C, and F
correspond to those in Fig. 6.f1 and f2 are the objective function values. “0” ing j , ( j = 1, · · · , 5) denotes
that the constraint is active.g1–g3 correspond to the reliability constraints, andg4, g5 are constraints on
the auxiliary objective functions.

(a)Flow B
Objectives Reliability const. Auxiliary const.

βt f1 f2 g1 g2 g3 g4 g5

0 12.20 8.90 0 0 0
1 12.30 9.28 0 0 0
2 12.60 10.35 0 0 0
3 13.52 10.62 0 0
4 14.47 10.43 0 0
5 15.41 10.24 0 0

(b) Flow C
Objectives Reliability const. Auxiliary const.

βt f1 f2 g1 g2 g3 g4 g5

0 14.14 8.60 0 0 0
1 14.35 8.94 0 0 0
2 14.55 9.28 0 0 0
3 14.76 9.61 0 0 0
4 14.97 9.94 0 0 0
5 15.41 10.24 0 0

(c) Flow F
Objectives Reliability const. Auxiliary const.

βt f1 f2 g1 g2 g3 g4 g5

0 21.54 5.97 0 0 0
1 22.13 6.15 0 0 0
2 22.73 6.33 0 0 0
3 23.33 6.50 0 0 0
4 23.69 6.79 0 0 0 0
5 23.04 7.55 0 0 0

to f A1 = (19.0,14.0), where the desired value of the door velocityf2 is determined arbitrarily. The evolution of this
automatic trade-offapproach prior to obtaining the desired solution withf1 = 19.0 can be described as follows:

1st trial Starting from the first aspiration levelf A
1 = (19.0,14.0), the obtained Pareto solution isf (1) = (20.254,14.197).

The value off1 is larger than the desired value.

2nd trial To obtain the desired structural weight of 19.0 kg,∆ f1 is set to 20.254− 19.0= 1.254, and the relaxed value
of the door velocity is obtained as 14.324 from Eq. (20). That is, the aspiration level is set tof A

2 = (19.0,14.342). The
obtained Pareto solution isf (2) = (19.487,14.446). The value off1 is closer to the desired value, but is still too large.

3rd trial Set∆ f1 = 19.487−19.0 = 0.487, and update the aspiration level tof A
3 = (19.0,14.792) according to Eq. (20).

The obtained Pareto optimal solution isf (3) = (19.0,14.792). The desired solution has been successfully obtained, and
the trade-offanalysis is complete.

The evolution of the automatic trade-offprocess is summarized in Fig. 8 and Table 3. We can see from Fig. 8 that
the second and subsequent aspiration levels correspond to the linear approximation of the Pareto curve in the objective
function space.

5. Conclusion

This study has proposed a new RBMO method using STOM. Through numerical examples, the following advantages
over the hybrid-type MOPSO were demonstrated:
• Accurate, uniformly distributed, and diverse Pareto sets are obtained by parametrically changing the aspiration

level. Since each Pareto solution is obtained through a mathematical programming method, STOM obtains more accurate
Pareto sets than those given by the hybrid-type MOPSO.
• The proposed method makes it possible to track not only the change in the whole Pareto surface, but also the

changes in each Pareto solution. We demonstrated the ability to track Pareto solutions with the same aspiration level in

9



Bulletin of the JSME Vol.X, No.X, XXXX

Table 2 Formulation of RBMO for a car side-impact problem [Sinha,2007]. This problem has two objective
functions under nine reliability constraints for nine design variables that correspond to the mean values of
the random variables. The objective and constraint functions are evaluated by polynomial approximation.

(a)Nine design variables, side constraints, and covariance in random variables
Name Variable Lower bound Upper bound Cov. (= σ/µ)
Thicknessof B-pillar inner (mm) d1 0.5 1.5 0.03
Thicknessof B-pillar reinforcement (mm) d2 0.5 1.5 0.03
Thicknessof floor side inner (mm) d3 0.5 1.5 0.03
Thicknessof cross members (mm) d4 0.5 1.5 0.03
Thicknessof door beam (mm) d5 0.5 1.5 0.03
Thicknessof door belt line reinforcement (mm) d6 0.5 1.5 0.03
Thicknessof roof rail (mm) d7 0.5 1.5 0.03
Materialyield stress for B-pillar inner (GPa) d8 0.192 0.750 0.02
Materialyield stress for floor side inner (GPa) d9 0.192 0.750 0.02

(b) Two objective functions
Weight f1 = 1.98+ 4.9d1 + 6.67d2 + 6.98d3 + 4.01d4 + 1.78d5 + 2.73d7

Doorvelocity f2 = 16.45− 0.489d3d7 − 0.843d5d6

(c) Nine constraints
Abdomenload g1 = 1.163− 0.3717d2d4 − 0.484d3d9

Rib deflection upper g2 = 28.98+ 3.818d3 − 4.2d1d2 + 6.63d6d9 − 7.70d7d8

Rib deflection middle g3 = 33.86+ 2.95d3 − 5.057d1d2 − 11.0d2d8 − 9.98d7d8 + 22.0d8d9

Rib deflection lower g4 = 46.36− 9.9d2 − 12.9d1d8

Pubicsymphysis force g5 = 4.72− 0.5d4 − 0.19d2d3

B-Pillar velocity g6 = 10.58− 0.674d1d2 − 1.95d2d8

VC upper g7 = 0.261− 0.0159d1d2 − 0.188d1d8 − 0.019d2d7 + 0.0144d3d5 + 0.08045d6d9

VC middle g8 = 0.214+ 0.00817d5 − 0.131d1d8 − 0.0704d1d9 + 0.031d2d6 − 0.018d2d7

+0.021d3d8 + 0.121d3d9 − 0.00364d5d6

VC lower g9 = 0.74− 0.61d2 − 0.163d3d8 − 0.18d7d9 + 0.227d22

termsof the target reliability, and showed that the tracking path is sometimes kinked because of changes in the dominant
failure mode.
• The automatic trade-offanalysis is effective even for nonlinear Pareto surfaces.

In future work, a decoupled reliability-based design optimization method will be adopted to establish a computation-
ally efficient technique.

Acknowledgment

This research is partially supported by JSPS KAKENHI 26249131.

References

Chen, X., Hasselman, T. K., and Neill, D. J., Reliability based structural design optimization for practical applications,
Proceedings of 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
Vol. 4, (1997), AIAA-97-1403, pp. 2724-2732.

Choi, S-K., Grandhi, R. V., and Canfield, R. A., Reliability-based structural design, (2007), Springer-Verlag.
Deb, K., Pratap, A., Agarwal S., and Meyarivan T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE

Transactions on Evolutionary Computation, Vol. 6, No. 2 (2002), pp. 182-197.
Deb, K., Padmanabhan, D., Gupta, S., and Mall, A. K., Reliability-based optimization using evolutionary algorithms,

IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5, (2009), pp. 1054-1074.
Du, X. and Chen, W., Sequential optimization and reliability assessment method for efficient probabilistic design, ASME

Journal of Mechanical Design, Vol. 126, No. 2 (2004), pp. 225-233.
Greiner, J. and Hajela, P., Truss topology optimization for mass and reliability considerations – co-evolutionary multiob-

jective formulations. Structural and Multidisciplinary Optimization, Vol. 45, No. 4 (2012), pp. 589-613.
Kitayama, S. and Yamazaki, K., Compromise point incorporating trade-off ratio in multi-objective optimization, Applied

Soft Computing, Vol. 12, No. 8 (2012), pp. 1959-1964.
Kogiso, N., Kawaji, S., Ohara, M., Ishigame, A., and Sato, K., Reliability-based multiobjective optimization using hybrid-

10



Bulletin of the JSME Vol.X, No.X, XXXX

13

13.5

14

14.5

15

15.5

16

16.5

16 18 20 22 24 26 28 30

β
t
= 0

β
t
= 3

β
t

= 6

Structural weight f1(d)

D
o
o
r 

v
e
lo

c
it
y
 f

2
(d

)

(a)STOM (b) Hybrid-type MOPSO [Kogiso et al., 2012]

Fig. 7 Comparison of Pareto sets in the car side-impact problem [Sinha,2007]. STOM obtains more accurate and
uniformly distributed Pareto solutions than those given by the hybrid-type MOPSO.

fA1

f(1)

f(2)

f(3)

ideal point

fA2

fA3

Pareto curve

Fig. 8 History of the search for a Pareto solution withf1 = 19.0 using automatic trade-off analysis. Set the
aspiration levelf A1 with f1 = 19.0 and obtain the Pareto solutionf (1). As the value off1 at f (1) is larger
than the desired value, the aspiration level is updated tof A2, and the Pareto solutionf(2) is obtained. As
the value off1 is still too large, the aspiration level is updated again tof A3. Finally, the desired value is
obtained asf (3). The detailed values are listed in Table 3.

type multiobjective PSO algorithms incorporating sensitivity analysis on constraints, Transactions of the Japan So-
ciety of Mechanical Engineers, Series C, Vol. 78, No. 790 (2012), pp. 2229-2240 (in Japanese).

Kogiso, N. and Kawaji, S., Convergence improvement of reliability-based multiobjective optimization using hybrid
MOPSO, Proceedings of 10th World Congress on Structural and Multidisciplinary Optimization, No. 5276, (2013),
pp. 1-10.

Li, F., Luo, Z., and Sun, G., Reliability-based multiobjective design optimization under interval uncertainty, Computer
Modeling in Engineering Science, Vol. 74, No. 1 (2011), pp. 39-64.

Liang, J, Mourelatos, Z. P., and Tu, J., A Single-loop method for reliability-based design optimization, Proceedings of
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineer-
ing Conference, No. DETC2004-57255, (2004), pp. 1-12.

Madsen, H. O., Krenk, S., and Lind, H., Methods of structural safety, (1986), Prentice-Hall.
Mittinen, K M., Nonlinear multiobjective optimization, (2004), Kluwer Academic Publishers.
Nakayama, H. and Sawaragi, Y., Satisficing trade-offmethod for multiobjective programming, Lecture Notes in Eco-

nomics and Mathematical Systems, Vol. 229 (1984), pp. 113-122.
Nakayama, H., Trade-off analysis using parametric optimization techniques, European Journal of Operational Research,

Vol. 60, No. 1 (1992), pp. 87-98.
Nakayama, H., Kaneshige, K., Takemoto, S., and Watada, Y., An application of a multiobjective programming technique

to construction accuracy control of cablestayed bridges, European Journal of Operational Research, Vol. 83, No. 3
(1995), pp. 731-738.

11



Bulletin of the JSME Vol.X, No.X, XXXX

Table 3 Iteration history of the search for a Pareto solution withf1 = 19.0 using automatic trade-off analysis. See
Fig. 8.

Iteration Aspirationlevel Pareto solution
f1 f2 f1 f2

1 19.0 14.0 20.254 14.197
2 19.0 14.342 19.487 14.446
3 19.0 14.792 19.0 14.792

Rackwitz,R. and Fiessler, B., Structural reliability under combined random load sequences, Computer and Structures,
Vol. 9, No. 5 (1978), pp. 489-494.

Rangavajhala, S. and Mahadevan, S., Joint probability formulation for multiobjective optimization under uncertainty,
Journal of Mechanical Design, Vol. 133, No. 5 (2011), p. 051007.

Reyes-Sierra, M. and Coello Coello, C. A., Multi-objective particle swarm optimizers: a survey of the state-of-the-art,
International Journal of Computational Intelligence Research, Vol. 2, No. 3 (2006), pp. 287-308.

Sinha, K., Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety, Structural
and Multidisciplinary Optimization, Vol. 33, No. 3, (2007), pp. 255-268.
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