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Abstract
This study investigates the robustness of a space reflector structure consisting of radial ribs and hoop cables by
using the multiobjective optimization method. The radial ribs are deformed into a parabola shape by cable tensions
applied to the hoop cables that are arranged concentrically around the central hub and to the tie cables that are
connected to the deployable structure. The design problem is to achieve the ideal deformation shape for the
radial rib under the prescribed cable tensions through the determination of the rib height distribution. In addition,
the ability to adjust the shape by changing the cable tension is required for handling uncertainty under actual
environment condition. A simplified structural model with only one radial rib is used for structural design, where
the cables are replaced by equivalent tensions. This study adopts the multiobjective optimization method to verify
the structural design by investigating the trade-offbetween the deformation error and its sensitivity with respect
to the cable tensions. Robustness corresponds to lower value of sensitivity, that the RMS error is difficult to
deteriorate by changing the cable tension. On the other hand, design with higher value of sensitivity is called
adjustability, because such a design is easy to adjust the deformation shape by the cable tension. The primary
objective of the design problem is to minimize the RMS error between the ideal and the deformation shape of the
rib under the prescribed cable tension in terms of the rib dimensions. The other two objectives are to accomplish
the robustness and the adjustability of the rib deformation shape by adjusting the cable tension using the tie cable
and the outermost hoop cable. This multiobjective optimization problem is evaluated by the satisficing trade-
offmethod (STOM). Through investigating Pareto solutions obtained from the two-objective and then the three-
objective function problems, the effects of cable tension variations on the surface shape error and the robustness
are discussed.

Key words: High-precision space structure, Uncertainty, Multiobjective optimization, Satisficing trade-offmethod,
Structural design verification, Trade-off analysis, Nonlinear finite element method.

1. Introduction

Space antenna for space exploration missions require large aperture area and high surface shape accuracy, as well
as lightweightness. The radial rib and hoop cable structure for the space reflector as illustrated in Fig. 1 [Higuchi et al.,
2009, Tanaka et al., 2011, Miyazaki and Tanaka, 2011] was proposed to satisfy these difficult requirements. The ribs are
arranged in the radial direction from a central hub, hoop cables are connected to the radial ribs and arranged concentrically,
and tie cables are connected between the rib and the backup deployable truss. The ribs are deformed to the ideal parabola
shape by cable tension upon deployment, where they are originally straight upon folding.

The structural design is verified through the one-dimensional rib model shown in Fig. 2 [Tanaka et al., 2011]. The
one-dimensional model consists of a single rib taken from the whole reflector and a cable element that represents the tie
cable. The root of the rib is simply supported, and the lower end of the tie cable is fixed in the vertical direction and free
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Fig. 1 Radial-rib/hoop cable reflector structure [Miyazaki and Tanaka, 2011]. The radial ribs are connected to
the backup deployable structure at a central hub and circumference stand-off struts. The hoop cables are
arranged concentrically around the central hub and the tie cables are connected to the deployable structure.
The radial ribs are deformed into an ideal parabola shape by the cable tension upon deployment.

Fig. 2 Simplified one-dimensional structural model of the rib/cable reflector consisting of the single rib that is
taken from the whole reflector. The root of the rib is simply supported and the hoop cable tension is
modeled as a nodal load while the tie cable is modeled by a cable element and the tension is applied as
the reaction force on the rib deformation. The rib dimension and the unstressed length of the tie cable are
treated as design variables.

to move in the longitudinal direction. The hoop cable tension is modeled as a concentrated nodal load that deforms the rib
into the ideal parabola shape from the original straight form. The deformation transmits the tension force to the tie cable
as a reaction force.

In the conventional model described in reference [Tanaka et al., 2011], the tie cable is modeled as an equivalent nodal
force instead of a cable element, whereas the longitudinal direction is fixed at the rib tip. Then, the structural shape is
designed to remove the reaction force at the tip end. It is difficult to use this method for investigating the effect of tip hoop
cable variations by changing the hoop cable load because the conventional model should make the reaction force at the
rib tip vanish by the finite element method. Therefore, the one-dimensional model is modified to remove the tip constraint
and introduce the tie cable element as shown in Fig. 2. The other constraint imposed is that the cable element should not
be slackened in the design verification.

The structural design problem is to determine the rib height distribution in order to minimize the RMS error between
the ideal parabola shape and the rib deformation shape by the given applied loads, which is evaluated by the nonlinear
finite element method. The design problem can be formulated as an optimization problem, where the rib dimensions and
the unstressed length of the tie cable are treated as design variables. In addition, this study investigates the effect of the
cable tension on the rib deformation and the RMS error minimization design. Under actual situations, material properties
or the applied load have uncertainties that will cause variation in rib deformation from the ideal shape. In that case, the
deformation will be corrected by changing the cable tension. The adjustability is accomplished by increasing the RMS
error sensitivity with respect to the cable tension. On the other hand, a smaller sensitivity increases the rib structure
robustness upon variations of the cable tension. The design with lower RMS error sensitivity value with respect to the
cable tension and lower RMS error is called the robust design in this study. The robust design is generally defined as
the design with the smallest deterioration in performance under a variety of uncertain design parameters, as well as a
reasonable higher performance [Park et al., 2006,Beyer and Sendhoff, 2007].

The objective of this study is to investigate the design problem, especially the trade-offbetween the RMS error and
the RMS sensitivity with respect to the cable tension. For this purpose, the design problem is formulated as a multiob-
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jective optimization problem [Mittinen, 2004]. Then, the trade-off analysis is performed by investigating the Pareto set
distributions. This study adopts the satisficing trade-offmethod (STOM) [Nakayama and Sawaragi, 1984] as the multi-
objective optimization method. STOM can obtain a single, highly accurate Pareto solution, regardless of the shape of the
Pareto set. Therefore, the method is widely applied to engineering design problems [Nakayama et al., 1995, Okamoto et
al., 2014]. Some of the authors developed robust and reliability-based multiobjective optimization methods considering
uncertainty using STOM [Toyoda and Kogiso, 2015, Kogiso et al., 2014]. By introducing an aspiration level that corre-
sponds to the user’s preference for each objective function, STOM transforms the multiobjective optimization problem
into an equivalent single-objective problem. Mathematical programming techniques can be applied to the transformed
problem, meaning that STOM obtains a Pareto solution efficiently. In addition, a highly diverse and uniformly distributed
Pareto set can be obtained by parametrically changing the aspiration level. STOM is an interactive approach because the
search process is repeated by changing the aspiration level until the user is satisfied with the solution. The automatic
trade-off analysis method [Nakayama, 1992] is one way of updating the aspiration level using sensitivity information.

Regarding the multiobjective optimization, it is also important to select a suitable design candidate among the Pareto
solutions. A data-mining method using a self-organizing map [Obayashi and Sasaki,2003] is one of the resolving methods
that figure out some useful relationship among Pareto solutions. This method is widely used in engineering design
problems to extract design information from the Pareto set [Okamoto et al., 2014, Oyama et al., 2010]. A method using
clustering analysis is another visualizing method that makes clear the trade-offamong Pareto solutions. This method has
been applied to engineering design problems such as turbine blade [Jeong et al., 2005] and automobile body structure
design [Kohira and Amano, 2014].

These visualization methods are used to evaluate the trade-offafter obtaining all possible Pareto solutions. In this
study, the range of design candidates is narrowed interactively along with increasing the number of objective functions.
The primary objective of the design is to satisfy the RMS error limit of the rib deformation. First, the RMS error minimized
design is obtained as a reference design by applying a single-objective optimization. Then, multiobjective optimization is
applied to investigate the trade-offbetween the RMS error and its sensitivities with respect to the cable tensions, where the
RMS error and its sensitivity with respect to the tie cable tension or the outermost hoop cable tension are used as the two
competitive objective functions. Uniformly distributed Pareto sets in both objective optimization problems are obtained
by parametrically changing the aspiration level. Through the trade-off analysis, the design range is narrowed to the range
of interest. Then, three objective optimization problems, including RMS error and both sensitivities, are performed to
restrict the aspiration level to the design range of interest. Finally, the trade-off analysis is performed through the obtained
few Pareto solutions. This approach is applied to the three types of rib design studies. The first is a robust design that
minimizes the three objective functions, i.e., the RMS error and the two sensitivities. Then, the adjustability of the rib
structure is investigated using two design strategies; either the tie cable or the outermost hoop cable is used as the adjuster.
The design problems are formulated as maximizing the RMS error sensitivity with respect to the adjuster cable tension
and minimizing the RMS error itself and the other RMS error sensitivity. The validity of the design studies through the
trade-offanalysis is discussed .

2. Multiobjective Optimal Design

A multiobjective optimization problem is an optimization problem with multiple objective functions.

f (x) =
[
f1(x), f2(x), · · · , fk(x)

]T (1)

wherek is the number of objective functions,x = (x1, x2, · · · , xnx)
T are the design variables, andnx is the number of

design variables.
The multiobjective optimization problem is generally formulated as follows:

Minimize: f (x) =
[
f1(x), f2(x), · · · , fk(x)

]T (2)

subject to: g j(x) ≤ 0 ( j = 1, · · · ,m)

xL
i ≤ xi ≤ xU

i (i = 1, · · · ,nx)

whereg j(x) ( j = 1, · · · ,m) are constraint conditions, andxU
i andxL

i are the upper and lower limits of the design variables,
respectively.

In thus study, the three objective functions are defined as the RMS error and the RMS error sensitivities with respect
to the tie cable tension and the hoop cable tension in terms of the rib height and the unstressed length of the tie cable.
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Fig. 3 Flowchart of STOM. First, set the ideal pointf I
i and the aspiration levelf A

i . Then, evaluate the weighting
factorwi . The multiobjective optimization problem is formulated as a single-objective optimization based
on STOM. The Pareto solution is obtained using a nonlinear mathematical programming method. If the
obtained Pareto solution does not satisfy the user, the optimization is repeated after the aspiration levelf A

i
has been updated. The automatic trade-off analysis is one method of determining the aspiration level.

Then, the three design studies are formulated to investigate the trade-offbetween the RMS error and the sensitivities. One
is the robust design that minimizes all objective functions. The others are the adjustability designs that maximizes one
sensitivity and minimizes the RMS error and the other sensitivity. This problem does not have constraints except for the
side constraints. The detail formulation is described in section 3.2.

2.1. Satisficing Trade-off Method (STOM)
STOM is known to be an interactive optimization method that converts a multiobjective optimization problem into

the equivalent single-objective optimization problem by introducing an aspiration level that corresponds to the user’s
preference for each objective function value. The flow of STOM is summarized in Fig. 3 and briefly described as follows.

Step 1 Set the ideal pointf I
i (i = 1, · · · , k) of each objective function. The ideal point is usually determined by solving a

single-objective optimization problem considering only the corresponding objective functionfi(x). The ideal point for the
mean performance is obtained by solving the deterministic design problem. As an alternative, the ideal solution without
solving the optimization problem can be used such as zero to the ideal point. In this study, the ideal point of the RMS
error is set as the single objective optimization. On the other hand, the ideal points are set to zero for the RMS error
sensitivities.

Step 2 Set the aspiration levelf A
i (i = 1, · · · , k) of each objective function and evaluate the weight coefficient,wi , as

follows:

wi =
1

f A
i − f I

i

(i = 1, · · · , k) (3)

Step 3 Formulate the multiobjective optimization problem in Eq. (2) into the weighted Tchebyshev norm problem as
follows:

Minimize: max
i=1,··· ,k

wi

(
fi(x) − f I

i

)
(4)
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Fig. 4 Pareto solution search process of STOM described in the objective function space. The Pareto solutionf ∗

is obtained as the intersection between the Pareto surface and the line connecting the ideal pointf I and
the aspiration levelf A.

subject to: g j(x) ≤ 0 ( j = 1, · · · ,m)

xL
i ≤ xi ≤ xU

i (i = 1, · · · ,nx)

Step 4 The min-max problem in Eq. (4) is transformed into the equivalent single-objective problem by introducing a
slack design variabley as follows:

Minimize: y (5)

subject to: wi

(
fi(x) − f I

i

)
≤ y (i = 1,2, · · · , k)

g j(x) ≤ 0 ( j = 1, · · · ,m)

xL
i ≤ xi ≤ xU

i (i = 1, · · · ,nx)

When Eq. (5) is solved using a nonlinear programming method such as a sequential programming method, an accurate
Pareto optimal solution is obtained in comparison with an evolutionary method.

Step 5 If the objective function values are satisfactory, the search is completed. Otherwise, update the aspiration level
f A
i and return to Step 2. The automatic trade-off analysis method [Nakayama, 1992] is one of the methods used to

reasonably update the aspiration level.

The weight coefficient,wi , plays an important role in obtaining the Pareto solution in the direction of the aspiration
level, which is directly related to the designer’s preference. As shown in Fig. 4, the Pareto optimal solution is usually
located on the line connecting the ideal point and the aspiration level in the objective function space, regardless of whether
or not the aspiration level lies in the feasible region. On the other hand, the optimal solution is often not located on the
line when some constraints are active. In that case, designers can investigate the effect of the active constraints on the
Pareto optimal solution.

An accurate Pareto set is obtained by parametrically changing the aspiration level. Designers can investigate the
desired region in detail only by arranging the aspiration level properly without obtaining the full Pareto set.

3. Design Problem
3.1. Structural model validation through ideal deformation shape design

The original design problem [Tanaka et al., 2011] was formulated as a deterministic optimization problem in order to
determine the rib height distribution under the prescribed tension. In this study, the two-dimensional simple model shown
in Fig. 2 is used to evaluate the deformation shape by a nonlinear finite element method. The objective function is the
RMS error between the deformation shape and an ideal deformation shape, which is defined as follows:

v = u2/16 (6)
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Table 1 Ribunstressed length and cable tension for the simplified structural model shown in Fig. 2. Details are
given in reference [Tanaka et al., 2011].

(a) Rib properties

Section 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8
Unstressedlength (m) 0.25254 0.25279 0.25327 0.25400 0.25500 0.25620 0.25760 0.25930

(b) Hoop cable tension applied at nodal force to the left direction

Node 1 2 3 4 5 6 7 8
Load(N) 0.4187 1.0467 1.0467 1.0467 1.0467 1.0467 2.0934 2.0934

Table 2 Deterministic optimal solution and side constraints for RMS error minimization design. The design is
used as the reference design in the multiobjective optimization problems described in section 3.2.

(a) Rib thickness
Position 0-0.5 0.5-1 1-2 2-3 3-4 4-5 5-6 6-7 7-7.5 7.5-8

Lower limit (mm) 2.5 3.0 4.0 4.0 4.0 4.0 4.0 4.0 2.5 2.0
Optimum height (mm) 2.96 3.87 4.84 5.50 5.96 5.85 5.12 4.13 2.89 2.37

(b) Tie cable unstressed length
Tie cable length

Upperlimit (mm) 70.0
Optimumlength (mm) 63.67

whereu is the longitudinal coordinate andv is the bending deformation.
The rib is modeled by using 80 beam elements, such that the rib between each node in Fig. 2 is equally divided into

10 beam elements. The tie cable is modeled as a single cable element. The root of the rib is simply supported and the
bottom end of the tie cable is fixed in the height direction but is free to move in the lateral direction. The hoop cable
tension values are given as the equivalent nodal force, as listed in Table 1. The tie cable tension is given as a reaction
force resulting from the rib deformation, where the Young’s modulus of the rib and the cable stiffness are set to constants
as 70 GPa and 2000 N, respectively.

In the optimization problem, the beam height is treated as a design variable, where the beam cross section is assumed
to be a rectangular shape and the beam width is set to be constant at 5 mm. The design variables are allocated such that the
beam elements between each node have the same beam height except for the two ends. Both ends allocate two variables
such that the elements between the nodes are divided into two equal parts, and then each variable allocates each of the
five elements on the left- and right-hand sides. Hence, the number of the beam height variables is 10. In addition, the
unstressed length of the cable element is treated as a design variable. The length indirectly affects the rib deformation
shape to change the cable tension that is represented as the reaction force. As a result, the total number of design variables
is 11.

For numerical stability, the lower limits of the rib heights are imposed as listed in Table 2(a). In addition, the upper
limit of the tie cable unstressed length is given as listed in Table 2(b) to avoid slackening of the tie cable. It is confirmed
that no limits are active for this optimization or the following multiobjective optimization problems.

Using the simple model, the RMS error minimization design is obtained as shown in Table 2. The obtained RMS
error is 0.0288mmRMS, which satisfies the design requirement of 0.05mmRMS [Tanaka et al., 2011]. The deformation
error from the ideal deformation shape in Eq. (6) is illustrated in Fig. 5. The error is zigzagged between the nodes because
the rib height is constant between the nodes. It is found that the error range is set within±0.07 mm by separating the
design variables at the root and tip ends of the rib.

The structural model described herein is different from that in the original study [Tanaka et al., 2011]. In the original
study, the tie cable was not modeled as the tie cable element. The cable tension was given as the nodal force at rib node
4 in the vertical direction and the lateral direction was fixed at the rib tip. The optimization was performed to minimize
RMS error, as well as to reduce the reaction force at the tip. It is difficult to use this model for evaluating the effect of
variations of the cable tension on the rib deformation, which is why the current study updates the structural model to that
shown in Fig. 2. The difference between the obtained results and the previous results [Tanaka et al., 2011] is very small.
The RMS error is 0.037mmRMS and the difference of the rib height distribution is small. For the above reasons, this
structural model is considered adequate for the current purpose.

3.2. Formulation of multiobjective optimization problem
The deformation RMS error minimization is not the only design requirement; the RMS error sensitivity is also
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Fig. 5 Deformation error from the ideal deformation shape of the deterministic optimized rib shown in Table 2.

required in order to solve the design problem. This study focuses on the RMS error sensitivity with respect to the cable
tension force as the performance measure of the shape adjustability or the robustness. The sensitivity with respect to the
random variable is widely used to evaluate the performance deterioration under variation of a random variable through
the first-order approximation [Ang and Tang, 1975]. The rib shape is changed by the cable tension. Therefore, the cable
tension is used as the rib shape adjuster when the sensitivity with respect to the tension is large. On the other hand, the
design is called robust when the sensitivity is small. The robustness or adjustability are investigated by formulating the
design problem as a multiobjective optimization problem. The objective functions are described as follows:

f1 = Deformation RMS error from the ideal deformation shape (mm) (7)

f2 = RMS error sensitivity with respect to tension of the tie cable at node 4 (mm/N) (8)

f3 = RMS error sensitivity with respect to tension of the outermost hoop cable at node 8 (mm/N) (9)

where sensitivity with respect to the cable tension is evaluated by the following forward difference:

∂RMS(x, z)
∂zi

≈ RMS(x, z+ ∆zi) − RMS(x, z)
∆zi

(10)

where z denotesthe design parameters as the cable tension. The perturbed value∆zi is set as 0.1% of the nominal
cable tension, that is determined to confirm the numerical stability referred from our previous research [Kogiso et al.,
2011]. Maximization off2 or f3 corresponds to the achievement of adjustability of the rib deformation by changing the
corresponding cable tension. On the other hand, minimization off2 or f3 corresponds to the robust design.

This study considers the following three design strategies formulated as a multiobjective optimization problem, where
the RMS errorf1 is minimized for all three cases to accomplish the ideal deformation shape:

Design study 1 (Minimize f1, f2 and f3) The objective is to achieve robustness upon variations of the tie cable and
the outermost hoop cable tensions.

Design study 2 (Minimize f1 and f2 and maximize f3) f3 is maximized to use the outermost hoop cable con-
nected to node 8 as an adjuster. At the same time,f2 is minimized to achieve robustness upon variation of the tie cable
tension.

Design study 3 (Minimize f1, maximize f2 and minimize f3) f2 is maximized to use the tie cable connected to
node 4 as the adjuster. At the same time,f3 is minimized to achieve robustness upon variation of the outermost hoop cable
tension.

3.3. Verification sequence
As described above, the design requirement for the RMS error corresponding tof1 is set as less than 0.05mmRMS

[Tanaka et al., 2011]. However, the reference values of the RMS error sensitivity have not been referred. Therefore, the
design verification is performed in the following sequence to clarify the effect of variation of cable tension on the rib
deformation.

7



Bulletin of the JSME Vol.X, No.X, XXXX

Table 3 Reference design as RMS error minimization design. This design is obtained from the RMS errorf1
minimization. f2 and f3 are RMS error sensitivity with respect to the outermost cable tension and the tie
cable tension, respectively.

Objective f1 (mmRMS) f2 (mm/N) f3 (mm/N)
Referencevalue 0.0288 66.0 27.8

Fig. 6 Pareto set distribution inf2– f1 space for the two-objective function problem in design study 1: Minimize
deformation error as RMS error (f1) and RMS error sensitivity with respect to the tie cable tension (f2).
Note that this Pareto set is also a part of the Pareto set in design study 2.

Step 1 A single-objective optimization problem to minimize the deformation RMS errorf1 is obtained first. The opti-
mum design listed in Table 3 is used as the reference design. Values of the objective functions on the reference design are
listed in Table 2.

Step 2 Two-objective optimization problems consisting off1 and f2 or f1 and f3 are performed. The aspiration levels
are parametrically changed to obtain a highly diverse and uniformly distributed Pareto set. Then, it is evaluated in terms
of how much the sensitivity is improved by sacrificing the RMS error within the allowable range.

Step 3 Finally, three-objective optimization problem considering all objective functionsf1, f2 and f3 is evaluated, where
the aspiration levels are limited to only the range of interest from the previous step. Then, the effect of variations of cable
tension on the rib deformation is discussed.

Investigating only a limited number of three-objective optimum designs using properly determined aspiration levels
is the major advantages of STOM for design verification. It is also effective to save the computational cost.

4. Design Verifications
4.1. Design study 1

The respective initial Pareto solutions obtained from the two objective function problems of this example are shown
in Figs. 6 and 7, where the two objectives are to minimizef1 and f2, and f1 and f3, respectively. The lower rightmost
Pareto solution in both Figs. 6 and 7 corresponds to the reference point as listed in Table 3. Both Pareto curves show
the trade-off relationship betweenf1 and f2, and f1 and f3. That is, the RMS error increases as the RMS error sensitivity
decreases. Within the allowable range of an RMS error lower than 0.05mmRMS,f2 and f3 decrease by as much as
approximately 20 mm/N and 3 mm/N, respectively.

These Pareto points are obtained by parametrically changing the aspiration levels, where thef1– f2 and the f1– f3
problems use eight and six aspiration levels as shown in Figs. 6 and 7, respectively. These points are initially selected
from the reference points; later, the aspiration level can set as close to the Pareto point as desired. The dotted line in Fig. 7
indicates the connecting line from the ideal point to the aspiration level, showing that the found Pareto solution lies on the
line. This corresponds to the characteristics of STOM shown in Fig. 4.

Then, the three-objective design problem to minimizef1, f2 and f3 is solved by setting the aspiration levels, referring
to the results of the two-objective problems above. The Pareto solutions plot inf2– f3 space is shown in Fig. 8. The values
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Fig. 7 Pareto set distribution inf3– f1 space for the two objective function problem in design study 1: Minimize
deformation error as RMS error (f1) and RMS error sensitivity with respect to the outermost hoop cable
tension (f3). The dotted lines connect the ideal point and the aspiration level. It is found that the Pareto
solution lies on the line. Note that this Pareto set is also a part of the Pareto set in design study 3.

Fig. 8 Pareto solution for the three-objective optimization problem in design study 1: Minimizef1, f2 and f3.
The Pareto solutions described inf2– f3 space and the values off1 are given in the figure. Meaningful
designs are those in the lower left from the reference design indicated as 0.029mmRMS.

correspond to the RMS errorf1. The upper rightmost point of 0.029mmRMS corresponds to the reference design listed
in Table 2. The Pareto solution distribution in Fig. 8 shows thatf2 and f3 have a strong correlation and the possibility of
improvement off2 and f3 by sacrificing the RMS errorf1 within the allowable range.

4.2. Design study 2
This design study corresponds to the outermost hoop cable tension made adjustable to the rib shape by maximizing

the RMS error sensitivity with respect to the cable tensionf3, in addition to minimizing the RMS errorf1 and the RMS
error sensitivity with respect to the tie cable tensionf2. The Pareto set of the two-objective problem that combines
minimization of f1 and maximization off3 is shown in Fig. 9. The two objectives also have a trade-off relationship, as
seen with objectivesf1 and f2 in the Pareto set shown in Fig. 6. The RMS error rapidly deteriorates as the sensitivityf3
increases beyond 35 mm/N. That is, the upper limit off3 should be 35 mm/N.

The Pareto set for the three-objective problem is shown in Fig. 10, where the aspiration levels are determined from
the Pareto set for the two-objective problems. As in the last section, the Pareto set is plotted inf2– f3 space and the values
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Fig. 9 Pareto set distribution inf3– f1 space for the two-objective function problem in design study 2: Minimize
deformation error as RMS error (f1) and maximize RMS error sensitivity with respect to the outermost
hoop cable tension (f3). The dotted lines connect the ideal point and the aspiration level. It is found that
the Pareto solution lies on the line.

Fig. 10 Pareto solution forf1, f2 and f3 in design study 2: Minimizef1 and f2 and maximizef3. The Pareto
solutions described inf2– f3 space and the value off1 are given in the figure.

of the RMS errorf1 are shown in the figure. The right middle point 0.029mmRMS indicates the reference design. From
the plotted Pareto designs, only the two designs plotted in the upper left from the reference design 0.048mmRMS and
0.040mmRMS, improve both sensitivity function valuesf2 and f3 by sacrificing the RMS errorf1. It is found that the
improvement is very small. From the obtained Pareto set, the achievement of this design strategy is very difficult and
inefficient.

4.3. Design study 3
In contrast to the above example, this design study corresponds to the tie hoop cable tension made adjustable to

the rib shape by maximizing the RMS error sensitivity with respect to the cable tensionf2 in addition to minimizing the
RMS error f1 and the RMS error sensitivity with respect to the outermost hoop cable tensionf3. The Pareto set of the
two-objective problems combining the minimization off1 and maximization off2 is shown in Fig. 9. It is found that the
RMS error rapidly deteriorates as the sensitivity valuef2 increases beyond 80 N/mm. The Pareto set for the two-objective
functions to minimizef1 and f3 is shown in Fig. 7.

Then, the three-objective functions problem is evaluated by considering the results of the two-objective optimization
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Fig. 11 Pareto solutions described inf2– f1 space for the two-objective function problem in design study 3:
Minimize deformation error as RMS error (f1) and maximize RMS error sensitivity with respect to the
tie cable tension (f2). The dotted lines connect the ideal point and the aspiration level. It is found that the
Pareto solution lies on the line.

Fig. 12 Pareto solution forf1, f2 and f3 in design study 3: Minimizef1 and f3 and maximizef2. The Pareto
solutions described inf2– f3 space and the value off1 are given in the figure

problems. The obtained Pareto set inf2– f3 space is illustrated in Fig. 12. As in the examples above, the design with
0.029mmRMS corresponds to the reference design. The only efficient designs are the two in the lower right from the
reference point, i.e., 0.047mmRMS and 0.053mmRMS; however, the improvement is very small. Further improvement
should sacrifice the RMS errorf1. As in design strategy 2, this strategy is not efficient.

4.4. Summary of design studies
From these studies, we are able to obtain robust designs that minimized both RMS error sensitivity with respect to

the tie cable and the outermost hoop cables, as shown in design study 1. However, as shown in design studies 2 and 3, it
is difficult to obtain designs satisfying both robustness for cable tension and shape adjustability.

To investigate the difference between the obtained Pareto solutions, differences of the deformation error are shown in
Fig. 13. Here, the deformation RMS error is minimized in all design cases. In total, four two-objective design problems
are evaluated: (i) minimizef1 and f2 in design studies 1 and 2, (ii) minimizef1 and f3 in design studies 1 and 3, (iii)
minimize f1 and maximizef3 in design study 2, and (iv) minimizef1 and maximizef2 in design study 3. There are four
Pareto designs at opposite sides of the minimization off1, the reference design. Figure 13 shows the difference of the
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deformation error distributions between the reference design and the four designs. Comparing the reference design, the
two designs that minimizef2 or f3 are shifted in the negative direction. On the other hand, the other two designs that
maximize f2 or f3 are shifted in the positive direction.

In addition to variation of cable tensions, it is important to investigate the effect of variations in the dimensions.
Figure 14 shows the design variable ratios on the basis of thef1-minimized single-objective design shown in Table 2 and
for the f2 and f3 minimization designs for the two-objective problems in design study 1. Note that the difference is very
small for both the rib heights and the tie cable tension.

Finally, the RMS error sensitivity with respect to the rib height for the reference design is investigated. The results
obtained by forward difference is shown in Fig. 15, where the horizontal axis indicates the node number. The sensitivity
is small at both the root and the tip but extremely high elsewhere. This high sensitivity is in agreement with the results
shown in Fig. 14. The maximum value is 13.9mmRMS/mm between nodes 3 and 4. These results mean that every 0.01
mm change in rib height deteriorates the deformation RMS error by as much as 0.139mmRMS, which is much higher
than the upper limit, 0.05mmRMS. Therefore, the rib requires extremely high manufacturing accuracy.
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Fig. 15 RMS error sensitivity with respect to rib height distribution for the reference design. Horizontal axis
corresponds to the node numbers given in Fig. 2.

5. Conclusions

This study verifies the structural design considering uncertainties of a space reflector structure consisting of radial ribs
and hoop cables by using the multiobjective optimization method. Deformation RMS error with respect to the accuracy
of rib deformation and RMS sensitivities with respect to cable tension, i.e., the outermost hoop cable and the tie cable, are
selected as objective functions to investigate the trade-offbetween the deformation accuracy and variations of the cable
tension. STOM is adopted as numerically efficient multiobjective optimization method.

Although the upper limit of the RMS error has been determined from previous studies [Higuchi et al., 2009, Tanaka
et al., 2011], the target values of the sensitivity terms have not been described clearly. Therefore, a three-step approach
is adopted. First, single-objective optimization is performed to minimize the RMS error; the obtained optimum design
is regarded as the reference value. Then, two sets of two-objective optimization, one including the RMS error and the
other including the sensitivity, are performed to investigate the Pareto set distributions. Finally, the Pareto solutions of a
three-objective optimization problem are obtained to investigate the trade-offrelationship, where the aspiration levels are
determined from results of the two-objective problems.

Three design studies are investigated. One is a robust design that minimizes the RMS error and the two sensitivity
terms. In the other two designs, the sensitivity term is maximized in order to use the outermost hoop cable (Strategy 2)
or the tie cable (Strategy 3) as the deformation control adjuster while the RMS error and the other sensitivity term are
minimized. Through the design studies, the following conclusions are remarked:
• As shown in design study 1, it is useful to obtain robust designs that minimize both RMS error sensitivity terms

with respect to the tie cable and the outermost hoop cables.
• As shown in design studies 2 and 3, however, it is difficult to obtain designs satisfying both the robustness for

cable tension and the shape adjustability.
• The obtained Pareto designs are very sensitive to the rib dimensions. Therefore, such ribs require extremely high

manufacturing accuracy.
The obtained results are much more difficult than we expected for design of high-precision space structure. However,

the quantitative trade-offresults themselves are useful on the design process. This is a significant advantage of our
proposed trade-offanalysis method based on STOM.
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