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    An adaptive estimation method for nonlinear structural deformations is presented. The method is based on the 
ensemble Kalman filter (EnKF), which can effectively handle nonlinearities in structural models by using the Monte-Carlo 
simulation. In this study, a self-tuning algorithm for the system noise in the conventional Kalman filter is extended and 
applied for tuning in the EnKF. To verify the effectiveness of the presented method, a numerical experiment was performed 
for a deployable frame structure system that contains the typical nonlinearities of space deployable structures, that is, the 
geometrical nonlinearity in flexible members and the cable nonlinearity resulting from its slackened state.  
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Nomenclature 
 

tx  :  state vector at t  
tF  :  nonlinear model operator 
tw  :  system noise vector at t  

ty  :  measurement vector 
tH  :  linear observation operator at t  
tv  :  measurement noise vector at t  
tQ  :  covariance matrix of tw  
tR  :  covariance matrix of tv  

a b0  :  a b zero matrix 
n  :  dimension of state vector 
N :  number of measurements 

( )E a  :  Expected value of a  
2
,s i  :  variance of ith system noise 
2
o  :  variance of measurement noise 
( )  :  Dirac's delta function 

M  :  total number of particles 
1|t tx  :  prediction of state vector 
1| 1t t x  :  estimation of state vector 
1|t tP  :  covariance matrix of 1|t tx  

1| 1t t P  :  covariance matrix of 1| 1t t x  
 aI  :  a -dimensional identity matrix 
[ ]i a  :  ith component of vector a  

i A  :  ith row vector of matrix A  
tu  :  nodal displacement vector at t  

ts  :  parameter vector at t  
K  :  dimension of parameter vector 

tG  :  equilibrium equations in finite element 
method 

B  :  nodal Boolean matrix 
0w  :  system noise for an initial particle set 

2
0,s i  :  variance of ith initial system noise 

i  :  factor of ith system noise level 
Subscripts 

t  :  discrete time step 
Superscripts 

(m) :  index number of a particle set 
 
1.  Introduction 
 
  Recently, smart structural systems, where the spacecraft 
structure is designed to be adjustable using actuators on orbit, 
have attracted significant interest in advanced spacecraft 
design. One of the main difficulties in constructing smart 
structural systems is obtaining accurate estimations of the 
current structural states for effective controls because of the 
inadequacy of spacecraft sensors in observing whole structural 
states. Numerical simulations based on finite element (FE) 
models play an important role in compensating for unobserved 
structural data. 
  The key to building effective FE models is to identify 
various uncertainties in the systems, such as uncertain 
structural parameters, before launch. These uncertainties can 
usually be identified using measurement data obtained during 
validation tests on the ground. The accuracy of the model is 
limited by how precisely the validation test can simulate the 
orbital spacecraft environment. In future space missions, such 
as those of advanced space antennas,1) the structural design 
requirements will tend to become increasingly severe, and the 
accuracy of the numerical models estimated based on the 
ground-based validation test could be insufficient. Thus, an 
adaptive estimation, where both state variables and model 
parameters are simultaneously estimated at each measurement 
time step, is desired for space structural state estimations. 
  The Kalman filter has been widely used for adaptive 
estimation;2-4) however, the conventional Kalman filter is 
mainly applied for linear or weakly nonlinear systems, 
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whereas spacecraft structural behaviors often become strongly 
nonlinear because of the lack of rigidity of the members. 
Recently, some adaptive estimation techniques for strong 
nonlinear problems have been proposed based on nonlinear 
filtering techniques and applied to adaptive estimation of 
nonlinear structural problems, such as shear building vibration 
with material nonlinearities and beam oscillation supported by 
cables that only provide resistance to tensile forces.5,6) The 
authors have also applied the ensemble Kalman filter (EnKF), 
an effective nonlinear filtering technique based on a 
Monte-Carlo simulation,7,8) to the model estimation of a planar 
deployable frame structure model.9) In the estimation, we 
considered some typical nonlinearities in space deployable 
structures, such as geometrical nonlinearity in rib members 
and cable nonlinearity due to its own sag. We set the joint 
rigidities as uncertain model parameters and observed that the 
model parameters could be identified using the EnKF; in 
addition, the setting parameters of the EnKF, in particular, the 
system noise levels, strongly affected the estimation results. 
Appropriate settings of system noise levels are key to the 
effectiveness of the adaptive estimation, although they are 
usually unknown. 
  For the conventional Kalman filter, the system noise levels 
are effectively tuned using adaptive Kalman filter techniques, 
where some cost functions are minimized with respect to the 
system noise levels.10-12) In this research, we extend the 
conventional tuning scheme in the conventional adaptive 
Kalman filter to the EnKF and apply it to the adaptive 
estimation of the planar deployable frame structure system. 
We first review the EnKF and its application to the structural 
model estimation problems. Next, we consider the tuning 
scheme of system noise levels. Finally, a numerical 
experiment is performed to verify the effectiveness of the 
presented adaptive estimation. 
 
2.  Ensemble Kalman Filter (EnKF) 
 
  In this section, we review a basic formulation of the 
EnKF,7,8) which is a nonlinear extension of the standard 
Kalman filter. In the EnKF, a priori states are estimated using 
the Monte Carlo method for nonlinear physical simulations, 
whereas in the widely used extended Kalman filter (EKF), 
they are estimated using linearized systems. 
2.1.  Model and observation equations 
  We define the following model and observation equations: 

1 ( , )t t t  tx F x w                   (1) 

t t t t y H x v                     (2) 
  Here, tw  and tv  represent the uncertainties of the model 
and observation equations, respectively. The covariance 
matrices of tw  and tv  are given by the following 
equations:  

   ,T T
t t t tt tE E w w Q v v R            (3) 

In general, the state estimation problem is to find the 
posterior probability density function (PDF) of the state vector 

1tx  given the observation 1ty  with the prior PDF, which is 
the conditional PDF of 1tx  for 1: 1 2[ , , , ]t ty y y y . The 

prior PDF and the posterior PDF are described as follows: 

1: 1 21 1 :   (prior PDF) ( | ) ( | , , , )tt ttp p y yx y yx      (4) 
  1 11: 1 1 2 1 :   (posterior PDF) ( | ) ( | , , , )t t ttp p  yx y y yx      (5) 

  The prior PDF denotes the probability 1tx  at t+1 based on 
past measurements, and the posterior PDF denotes the 
probability 1tx  at t+1 based on the current measurement. 
The state prediction and estimation of 1tx  at t+1 can be 
obtained as the expected values of Eqs. (4) and (5) as follows: 

1 1: 1 1 1:{ | } ( | )t t t t tE p d


  


 x y x x y x             (6) 

1 1: 1 1 1 1: 1{ | } ( | )t t t t tE p d


    


 x y x x y x          (7) 

2.2.  Ensemble approximation 
  The prior and posterior PDFs are usually non-Gaussian 
when the model equations are nonlinear, and hence, numerical 
schemes are needed to evaluate Eqs. (6) and (7). In the EnKF, 
the Monte Carlo approach is applied, and the PDFs in Eqs. (6) 
and (7) are approximated by generating a number of samples, 
which are called particles in the EnKF:7,8) 

( )
1 1: 1 1|

1

1( | ) ( )
M

m
t t t t t

m
p

M
  



x y x x�              (8) 

( )
1 1: 1 1 1| 1

1

1( | ) ( )
M

m
t t t t t

m
p

M
    



x y x x�            (9) 

  The calculation schemes of ( )
1|

m
t tx  and ( )

1| 1
m

t t x  will be 
described in the following subsections. By substituting Eqs. 
(8) and (9) into Eqs. (6) and (7), respectively, we can obtain 
the prediction and estimation of tx  as ensemble means of 
particles, as shown below: 

( )
1| 1| 1|

1

1ˆ
M

m
t t t t t t

mM
  



 x x x�               (10) 

( )
1| 1 1| 1 1| 1

1

1ˆ
M

m
t t t t t t

mM
     



 x x x�            (11) 

Likewise, the covariance matrices of 1|t tx  and 1| 1t t x  are 
approximated by the particle set as shown below: 

   ( ) ( )
1| 1| 1| 1|1| 1|

1

1ˆ ˆ ˆ
1

M Tm m
t t t t t t t tt t t t

mM
    



  
 P P x x x x�     (12) 

   ( ) ( )
1| 1 1| 1 1| 1 1| 11| 1 1| 1

1

1ˆ ˆ ˆ
1

M Tm m
t t t t t t t tt t t t

mM
          



  
 P P x x x x�   (13) 

  The state estimation vector is obtained using the Kalman 
gain matrix, as stated in the next subsection. 
2.3.  State estimation  

State estimation comprises two steps: a prediction step and 
an estimation step. In the prediction step, all particles are 
updated using the following equations: 

( ) ( ) ( )
1| |( , )m m m

t tt t t t x F x w                   (14) 

where ( )m
tw  is the mth realization of the system noise vector 

based on tQ . From this step, we can obtain a priori state 
estimates, that is, 1|ˆ t tx  and 1|

ˆ
t tP  given by Eqs. (10) and (12). 

∼

∼

∼

∼
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  In the estimation step, the estimation vector of the mth 
particle is obtained as follows:7,8) 

 ( ) ( ) ( ) ( )
1 1 111| 1 1| 1|

m m m m
t t ttt t t t t t        x x K y v H x       (15) 

where ( )
1

m
tv  is the mth realization of the measurement noise 

vector based on 1tR , and 1tK  is the Kalman gain matrix 
defined as follows: 

  1
1 1| 1 1 1|1 1

ˆ ˆ ˆT T
t t t t t t tt t


      K P H R H P H           (16) 

  Here 1
ˆ

tR  is the ensemble approximation of 1tR  obtained 
by the following equation.  

( ) ( )
1 1 1

1

1ˆ
1

M
m m Tt t t

mM
  




 R v v                    (17) 

  The state estimation of 1tx can be obtained from Eqs. (11) 
and (15).  
 
3.  Estimation of the Nonlinear Structural Model Based 
on the EnKF 
 
  In the previous section, a standard formulation of the EnKF 
was presented. The authors applied this formulation for 
nonlinear structural model estimation by combining 
displacement and structural properties into a state vector.9) In 
this section, we present an estimation procedure for the 
nonlinear structural model for reference. 
3.1.  Combined state vector and system noise 
  The equilibrium equations of structural mechanics 
discretized by the nonlinear finite element method can be 
described as nonlinear simultaneous algebraic equations with 
respect to displacement vectors as follows: 

1 1( , , )t t t  G u u s 0                 (18) 

  Here, the vector s  represents a K-dimensional parameter 
vector whose components are various structural parameters 
such as Young’s modulus and density. Given tu  and s , we 
can obtain 1tu  by solving Eq. (18). For simplicity, we 
denote 1tu  obtained using an inverse notation shown below: 

1
1 1( , )t tt


 u G u s                 (19) 

The combined state vector for model estimation is defined 
as follows: 

t
t

t

 
 
 

s
x

u
�                   (20) 

  Likewise, the system noise vector is expressed as the 
combined vector as follows:  

,

,

s t
t

u t

 
 
 

w
w

w
�                   (21) 

where ,s tw  and ,u tw  are the system noise in the structural 
equations and the system noise in the parameter time update 
equations, respectively. The system noise ,u tw  can be set to 
zero when the structural parameters only are uncertain in the 
structural system. 
 
 

3.2.  Model equations 
  In our approach, the model equations in the prediction step 
have two parts. The first part is the parameter update: 

1 ,t t t s  s s w                 (22)  
  The second part is the displacement update. This step can 
be performed by substituting Eq. (22) into Eq. (19), as shown 
below: 

1
1 11( , )t t tt


 u G u s               (23)  

3.3.  Observation equations 
  Now, we consider the direct observations of displacement. 
In this case, the nonlinear observation operator can be 
expressed in matrix form as shown below. 

 t KNH 0 B               (24)  

  Note that matrix B  relates the observation to the nodal 
degree of freedom in the finite element mesh. 
3.4.  Estimation procedure 
  The estimation procedure presented in Ref. 9 is shown 
below. 
(Step 1: Generation of an initial particle set) 

The initial particle set is generated by adding initial 
perturbations to the nominal parameter values in each particle 
as shown below: 

 ( ) ( ) 2
0 0 0 0,0|0 , (0, ) : 1,2,im m

s iN m M  s s w w �       (25)  

(Step 2: Time update of each particle) 
In the prediction step, we first produce the realization of 
( ) 2

, , ,, [ ] (0, )m is t s t s iN w w �  in each particle. Then, we update the 
parameter vector as follows: 

( ) ( ) ( )
1| | , 1,2,m m m

tt t t t m M   s s w             (26)  

  Next, the displacement vector of each particle is updated 
using Eq. (23). Thus, the state prediction vector is given as 
follows: 

( )
1|( )

1| ( )
1|

, 1,2,
m

t tm
t t m

t t
m M




 
  
 

s
x

u
            (27)  

  In addition, the covariance matrix 1|
ˆ

t tP  of 1|t tx  is 
calculated by Eq. (12). 
(Step 3: Calculation of Kalman gain) 

The Kalman gain is calculated using Eq. (16) with 1|
ˆ

t tP  
obtained in step 2. 
(Step 4: Estimation of each particle) 

All particles are updated using Eq. (15) with the Kalman 
gain given in step 3. Note that the displacement and parameter 
vector estimations are provided by means of the ensemble 
mean of the particle set as follows: 

( ) ( )
1| 1 1| 11| 1 1| 1

1 1

1 1ˆ ˆ,
M M

m m
t t t tt t t t

m mM M
      

 

  s s u u         (28)  

  In addition, the covariance matrix 1| 1
ˆ

t t P  of these 
estimations is calculated by Eq. (13). 
(Step5) 
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We return to step 2 until the estimation process is 
completed. Thus, we can sequentially obtain the estimations 
of the displacement vector and parameters at each observation 
time step. 
 
4.  Self-Tuning of System Noise Setting 
 

The setting of the system noise vector has great influence 
on both the efficiency and the accuracy of the estimation 
results.9) To determine the appropriate setting in the EnKF, we 
extended a self-tuning scheme for system noise setting for the 
conventional Kalman filter to the EnKF. 
  A number of methods have been proposed for system noise 
tuning for the conventional Kalman filter.10-12) Tuning is 
usually effected by minimizing the proper cost function, 
which is composed of only state estimations and 
measurements. These tunings are usually applied for the linear 
Kalman filter.10-12) For nonlinear problems, Gemson and 
Ananthasayanam presented the following cost function in the 
EKF:13) 
 

  1
| 1

1
( 1)

tN
T T

t t t tt t t
t t

J
N






 e H P R ea H      (29)  

  Here, a  is the design parameter vector whose components 
are system noise variances, and te  is the innovation vector 
defined as follows: 

| 1t t t tt  e y H x              (30) 

  Further, tN  denotes the total number of time steps for 
constructing J . In our research, to perform the tuning of the 
system noise in the EnKF, we extended the cost function Eq. 
(29) as follows:  

  1( ) ( )
| 1

1 1

1 1 ˆ( ˆ)
tN M

m T mT
t t t tt t t

t t m
J

N M



 

  a e H P H R e    (31)  

where 
( ) ( )

| 1
m m

t tt t t e y H x              (32) 

The tuned vector can be obtained as the minimization of J 
as follows: 

ˆ argmin ( )J
a

a a              (33) 

  In the linear Kalman filter, J can be minimized analytically, 
but in the EnKF, an optimization scheme is necessary to 
minimize J. In our research, we applied the steepest descent 
method for solving this minimization problem; for this 
purpose, a  was updated by the following equation:  

(0, )

( 1, ) ( , )

k

i k i k
dJc
d

  
a

a a
a

          (34) 

  Here, i is the iteration step number in the line search; k is 
the iteration step number in the steepest descent method; and c 
is the scale factor.  
 
 
 

5.  Numerical Results 
 
5.1.  Analysis model 
  Consider a simple planar deployable frame structure system 
(Fig. 1), which is the same model as that investigated in Ref. 
11. This structure is composed of a rib, a guide bar, a mast, 
and a cable that is set to deform the rib. The guide bar is 
linked to the mast with a slide hinge. The rib is deployed by 
moving the slide hinge upward along the mast. The top of the 
rib is connected to the slide hinge by the cable; the natural 
length of the cable is set moderately so that a tensile force is 
applied to the cable during deployment. Two hinges are 
installed to connect the rib to the mast and to the guide bar.  
  Some of the main factors causing uncertainties in the 
deployable structure system are friction and gaps in the hinged 
joints. Hence, in this numerical experiment, we set three 
rotation springs in the hinged joints, and the coefficients of 
these springs, which were assumed to have small spring 
constants, are considered to be the uncertain parameters of the 
system. 

This numerical model contains nonlinearities typical of 
space deployable structures, that is, the geometric nonlinearity 
in the rib undergoing large deformations and the cable 
nonlinearity in the change from the slackened state to tensile 
state during deployment. In this research, the effectiveness of 
the proposed system noise-tuning scheme was investigated by 
applying it to such a nonlinear structural system. 
  The right-hand side of Fig. 2 shows the finite element 
model and the observation points that are used for data 
assimilation. Both the guide bar and the rib are discretized by 
beam elements. The cable is modeled by the spring element 
whose compressive resistance is set to zero. The translational 
penalty springs are installed in the hinged joints to satisfy their 
constraint conditions. In this experiment, four observation 
nodes, where x and y displacements are measured, were used. 
These nodes were located near the root of the rib (node 3), 
near the connection point between the rib and the guide bar 
(node 12), near the slide hinge (node 32), and near the top of 
the rib (node 22), as shown in Fig. 2. The material properties 
of all components are listed in Table 1. The coefficients of the 
penalty springs were set to 6 N/m10 . 
  The quasi-static analysis was conducted by the 
displacement increment method, where the prescribed 
displacement was gradually applied to the slide hinge to shift 
it from the initial position to the deployed position. This 
involved a total of 3000 steps. The left-hand side of Fig. 2 
shows the shapes of the deployment in each incremental step. 
In this analysis, the cable was in tension at step 2469. 
5.2.  Setup of the numerical experiment 
  In the numerical experiment, each incremental step was 
assumed to be an observation step for data assimilation. First, 
we conducted a conventional nonlinear finite element analysis 
with real spring coefficient values. Then, each measurement 
was generated by adding normal random noise, whose 
standard deviation was set to 10-3 m, to the calculated 
displacement. 
  The real values of three rotation spring coefficients were set 
as 100 Nm/radr

jk  , and the initial values in data 
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assimilation were set as 0 200 Nm/radjk  . Here, the 
subscript j = 1, 2, and 3, and these values denote the spring 
location in the root rib, the slide hinge, and the connection 
between the rib and the guide bar, respectively. The standard 
deviation of the system noise vector is given as following:  

0
,s j j jk                   (35) 

  Self-tuning of the system noise setting was performed based 
on the steepest descent method described in section 4. The 
design parameter vector was defined as follows: 

( , ) ( , ) ( , ) ( , )
1 2 3

Ti k i k i k i k     a              (36) 

  The second term in the right-hand side of Eq. (34), that is, 
the sensitivity vector of J with respect to a, was numerically 
evaluated by the central difference method as follows: 

(0, )

(0, ) (0, )( ) ( )
2k

j k k
j j j j

j

dJ J J
d

   


    
   aa

    (37) 

where j is a small perturbation value. In the solution 
process, this vector component was normalized as shown 
below:  

(0, ) (0, )(0, )

2
3

1k kk

j j j

j

dJ dJ dJ
d dd 

      
              


a aa a aa

     (38) 

  The line search is continued until the following condition 
holds true: 

( , ) ( 1, )
4

(0,0)

( ) ( ) 10
( )

i k i kJ J
J





a a

a
              (39) 

  The minimization process continues until the following 
condition holds true:  

(0, 1) (0, )

2
3

6

1
10

k k

j j

j

dJ dJ
d d





    
          


a aa a

         (40) 

  The solution procedure for the self-tuning algorithm is 
summarized in Fig. 3. First, we set the initial value a and 
the total number of time steps Nt. Further, EnKF was applied 
for Nt steps with a, and during this process, J and dJ/da 
were calculated using Eqs. (31) and (37). The step in the line 
search was incremented, and a were updated using Eq. (34). 
Then, the EnKF with i,ka were applied to evaluate J. Unless 
condition Eq. (39) was true, i and i,ka were updated. If the 
condition was true, the sensitivity vector was calculated using 
Eq. (37), and k were updated. If condition (40) was true, 
self-tuning was completed. In this experiment, kj was set to 
2.5 × 10, and j was set to 0.01×j. The values of the 
scale factor and Nt were set to c = 10 and 3000, respectively. 
The number of particles M was set to 1000. 
5.3.  Results 

Table 2 presents the results of the minimization of J. It 
shows that the cost function, which was normalized by J(a), 
reduced to 74% of the initial step value at the optimal step. 

Figure 4 shows comparisons of the estimation errors of (a) 
k1, (b) k2, (c) k3, between the initial system noise setting and 
the tuned filter setting, and Fig. 5 shows the comparisons of 
the x and y displacement estimation errors in some of the 
observed nodes (nodes 12 and 22) and the unobserved nodes 
(nodes 7 and 17) of the rib. Node 7 is located at the midpoint 

 

Fig. 1.  Deployable frame structure system. 

Fig. 2.  Finite element model and observation points. 

Table 1.  Material properties. 
Member Rigidity Length [m] 
Rib 5.88 × 109 Nm2 1.0
Guide bar 5.88 × 109 Nm2 0.44
Cable 1.39 × 106 N 0.87

 

 

 
 

Fig. 3.  Flow chart in the system noise tuning. 

Table 2.  Tuning results. 
 J/J0 1 2 2 

Initial 1.0 2.50 × 10-7 2.50 × 10-7 2.50 × 10-7

Optimal 0.74 1.72 × 10-5 1.72 × 10-5 7.00 × 10-5
 

Fig. 3.   Flow chart in the system noise tuning.
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of the root of the rib and the connection point, and node 17 is 
located at the midpoint of the connection point and the top of 
the rib. In these figures, the upper plot shows the estimation 
errors in the initial setting, while the lower plot shows those in 
the tuned setting. The 3-standard deviation intervals (3) are 
also depicted in the figures. The standard deviation was 
obtained by calculating the square root of variances of the 
corresponding particle set. 

The estimation errors in the initial setting are small only 
around the final incremental step, whereas at the large part of 
the incremental step, the errors lie in the area enclosed by 3. 
In the tuned setting, in almost all the incremental steps, the 

estimation errors lie in or near the 3area (Fig. 4). The same 
trends are observed in Fig. 5. These results indicate that 
system noise tuning can improve the accuracies of covariance 
of estimations. This plays an important role in evaluating 
estimation results in practical situations, where the real-state 
values are unknown. 

 
6.  Conclusion 
 
  An adaptive estimation method for nonlinear structural 
deformations based on the ensemble Kalman filter was 
presented. A self-tuning of system noise setting was 
effectively applied to the estimation problem of the 
deployable frame structure system. A numerical example was 
provided to verify the effectiveness of the presented method. 
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Fig. 4. Comparison of the estimation error between the initial systemnoise 
setting and the tuned filter setting: (a) k, (b) k2, (c) k3. 
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Fig. 5.  Comparison of the estimation errors of nodal displacements between the initial system noise setting and the tuned filter setting: Nodes 12 and 
22 are observed, and Nodes 7 and 17 are unobserved. 


