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Following a previous paper [Phys. Rev. E 88, 052907 (2013)], we study in detail the mechanism of aging
transition in globally and diffusively coupled excitable and oscillatory units. Here two of the three models taken up
in the earlier work are used, each composed of a large number of units with their bifurcation parameters forming
a uniform distribution. The control parameters are the coupling strength and the average of the bifurcation
parameters. The present work is mostly devoted to a region of the phase diagram near the aging transition
boundary with the coupling strength greater than its critical value for the onset of bistability and hysteresis.
The bifurcation structure of each system at the aging transition boundary is investigated theoretically as well
as numerically. Moreover, we show that critical scaling laws of order parameters S and M used in the previous
paper are different depending on which region of the coupling strength to be chosen.
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I. INTRODUCTION

Large-scale coupled oscillators appear in a variety of areas
in science and technology and have been contributing greatly to
the developments of those areas [1–5]. Although there are quite
a few achievements in both theory and experiment concerning
the dynamics of such systems [6,7], there are not so many
studies about the robustness of their dynamic activity against
the deterioration of constituent oscillators [8–17]. Such a study
started nearly a decade ago, in which the concept of “aging,”
defined as an increase in the ratio of inactive oscillators (i.e.,
damped oscillators in a generalized sense) in the system, was
proposed and led to a discovery of an aging transition, namely,
a transition from a dynamic state to a static one caused by
the aging [8]. The critical ratio of inactive elements at which
an aging transition takes place can be used as a measure of
the robustness of the system’s dynamic activity against the
deterioration of elements [8]. This quantity has also been used
in the study of complex networks (see, e.g., [18–20]). There
are many possible applications of the numerical and theoretical
studies on the effects of aging defined above. One example
is to develop biological pacemakers which can be created
by revitalizing nonoscillatory heart pacemaker cells through
a molecularbiological technique, in which the information
of the critical ratio of inactive cells is crucial in order to
recover the dynamic activity of the heart pacemaker [14,21].
Another example is found in the area of robotics, because any
robot is driven by an artificial central pattern generator (CPG)
[22,23], i.e., a system of coupled oscillators, and its robustness
against the deterioration of its components is therefore of vital
importance in maintaining the activity of the CPG. Moreover, it
is reported that for those who suffer from Parkinson’s disease,
the median frequency of the electroencephalogram (EEG) is
lower than that of normal people [24], which fact might be
due to an increase in the ratio of nonoscillatory neurons. A

*Corresponding author: daido@ms.osakafu-u.ac.jp
†Present address: Meitec Corporation, Osaka Engineering Center,

Nakazaki Nishi 2-4-12, Kita-Ku, Osaka 530-0015, Japan.

possible reason is that, as shown below, the system’s period,
reflected by a mean field, lengthens as it approaches the aging
transition boundary in the course of aging, provided that the
coupling strength is larger than a critical value to appear as
Kf below. The dynamic activity, especially synchronization,
plays an important role in neural systems [25], as well as many
other disciplines, and hence it is indispensable to extensively
investigate the robustness of the dynamic activity of coupled
oscillators against the aging.

The aim of the present paper is to explore a region near the
aging transition boundary that is left untouched in a previous
paper dealing with globally coupled excitable and oscillatory
units [26] and also to elucidate scaling laws of order parameters
at that boundary in such a system. In the next paragraph, the
content of the previous work is explained and then, in the
following paragraph, the purpose of this work as well as main
results are clearly stated.

In the previous paper [26] we discussed the behavior of large
heterogeneous ensembles of globally and diffusively coupled
units, each obeying the saddle-node bifurcation on an invariant
circle (SNIC) scenario to exhibit either excitability or oscilla-
tion depending on its bifurcation parameter. The heterogeneity
means the distribution of the bifurcation parameter within the
ensemble, which is set to be a uniform distribution in the paper
(see Ref. [14] for the case of a two-value distribution in the
same context, which was published earlier). If the support
of the distribution includes the saddle-node bifurcation point,
then decreasing its average causes the ratio of inactive elements
to increase, eventually leading to an aging transition [12,13].
The previous paper is concerned with three different ensembles
whose units are phase oscillators, Morris-Lecar systems [27],
and simplified oscillators, where the last one corresponds
to the normal form of saddle-node bifurcation. The main
purpose of the previous paper is to examine the effect of aging
following earlier studies done for the case of the Hopf scenario
[8–11]. A common feature of the three ensembles is that the
(K,μav) phase diagram, where K and μav are, respectively,
the coupling strength and the average value of the bifurcation
parameters in each ensemble, consists of three regions: static
phase (SP), dynamic phase I (DP1), and dynamic phase II
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(DP2). The difference between DP1 and DP2 is whether the
mean field is asymptotically constant (DP1) or not (DP2).
Another common feature is the appearance of bistability and
hysteresis at or near the aging transition boundary when the
coupling strength reaches a threshold value, Koc. In two of the
ensembles mentioned above (phase and simplified oscillators)
with K = Koc, the ratio of oscillating components to the
system size grows from zero, following a fractional power
law with an exponent of 2/3 when the system exceeds the
aging transition boundary from SP. The main focus here is on
the region 0 � K � Koc.

The purpose of the present work is to elucidate the
bifurcation structure related to the aging transition in the
region K > Koc and to clarify the critical behaviors of order
parameters S and M (see below for details) at the aging
transition boundary in a whole range of K . Here we only
consider two of the three populations mentioned above, i.e.,
the one composed of phase oscillators and the other formed
by simplified ones. There are two main results of the present
work: One is the finding of a branching of dynamic solutions
belonging to DP2 at a critical value of K that creates a new
dynamic branch, hereafter referred to as a floating branch,
and the other is the observation that the critical exponents of
S and M discontinuously change as K is increased. These
results are explained either analytically or based on numerical
observations.

The paper is organized as follows. Section II is devoted to a
description of the models and the order parameters mentioned
above. Then, in Sec. III, numerical results are presented and a
self-consistent theory is developed for each model to explain
those simulation results. Section IV is concerned with scaling
behaviors of the order parameters. Finally, in Sec. V, the paper
is summarized with some remaining subjects stated. In the
Appendix, theoretical expressions of a macroscopic quantity
are presented for the ensemble of simplified oscillators.
Numerical simulations were performed by means of the fourth
order Runge-Kutta method with a time step of 0.01.

II. MODELS AND ORDER PARAMETERS

The model systems employed in the present work are
displayed below:

(1) First is the phase oscillator model [12,26,28],

dθj

dt
= aj − sin θj + K

N

N∑
i=1

sin(θi − θj ), (1)

for 1 � j � N , where θj and aj are the phase and the
bifurcation parameter of the j th oscillator. The latter is set
as

aj = aav − γ + 2
j − 1

N − 1
γ, (2)

where aav is the mean value of all aj and γ > 0 is the half-width
of the uniform distribution. Because of a symmetry of this
model, only the region aav > 0 is treated below.

(2) Second is the simplified oscillator model [26],

dxj

dt
= μj + x2

j + K

N

N∑
i=1

(xi − xj ), (3)

for 1 � j � N , where xj is restricted in the range −1 � x � 1;
if xj (t) = 1, then xj (t + 0) is reset to −1. To simulate
the evolution of this model, after each step of numerical
integration, the new values of xj (1 � j � N ) are examined
and if some of them are larger than or equal to 1, then they
are all reset to −1 and this process is repeated, where it is
taken into account that the time step 0.01 is small [29]. The
bifurcation parameters μj are given in the same way as for
system (1):

μj = μav − γ + 2
j − 1

N − 1
γ. (4)

For this model, we consider the case K < 2, because,
otherwise, the saddle-node bifurcation does not occur in any
unit.

The order parameters S [12,26] and M [8,26,30,31] are
defined as

S =
⎛
⎝N−1

N∑
j=1

〈|xj − 〈xj 〉|2〉
⎞
⎠

1/2

, (5)

M = 〈|X − 〈X〉|2〉1/2, (6)

where xj stands for the state vector of the j th unit, X ≡∑N
j=1 xj /N is the mean-field, and the brackets stand for a time

average. The third order parameter, R, is the ratio of oscillating
units to the system size N in an ensemble [26]. The order
parameter S is used to detect the nonstationarity of the system,
while the order parameter M works to distinguish the dynamic
phases: DP1 (M = 0) and DP2 (M > 0). The units of systems
(1) and (3) are all one-dimensional and hence xj and X are
replaced with xj and X, respectively, in model (3), while in
model (1), we use eiθj as xj and

Z = 1

N

N∑
j=1

eiθj (i = √−1) (7)

as the mean field [3]. Of course, the order parameter R is zero
in SP and nonvanishing in either of the two dynamic phases.
The criteria for identifying SP, DP1, and DP2 are specified in
the captions of phase diagrams to appear below.

III. NUMERICAL RESULTS AND THEORY

In this section, we describe results of numerical simulations
and explain some of them theoretically on the basis of a self-
consistent analysis for each model.

A. Phase oscillator model

A global (K,aav) phase diagram is given in Fig. 1(a), which
is the same as Fig. 3(a) of the previous paper [26], except for
the theoretical boundary where R vanishes. Figure 1(b) shows
a region just beyond K = Koc ∼ 0.9 with four boundaries
found by simulation. Boundary A is where the system makes
a transition from SP to DP1 or DP2 for increasing aav with
relayed initial conditions (see the caption of Fig. 1). Boundary
B is where a reverse transition occurs from DP1 to SP for
decreasing aav with initial conditions taken the same way.
The other two boundaries separate DP1 and DP2, which have

052226-2



BIFURCATION AND SCALING AT THE AGING . . . PHYSICAL REVIEW E 93, 052226 (2016)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

a a
v

K

(a)

SP

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.9  0.95  1  1.05  1.1  1.15  1.2

a a
v

K

(b)

DP1

DP2

SP

A

B

FIG. 1. Phase diagrams of the phase oscillator model, Eq. (1). (a) γ = 0.5, N = 2000: DP1 (upper left side, red), DP2 (upper right side,
green). The broken curve (blue) is a theoretical boundary at which the order parameter R vanishes. (b) γ = 0.5, N = 3200: Relayed initial
conditions are used, which means using the final point in phase space computed for the last value of aav as the initial condition for its next
value with K fixed. The real curve (label A, red) and the broken curve with shorter line segments (label B, blue) are the boundaries between SP
and DP for growing and decreasing aav, respectively. The broken curve with longer line segments (green) and the dotted curve (magenta) are
the boundaries between DP1 and DP2 found for aav changing in the same directions as above. The boundaries A and B are drawn by detecting
the start of oscillation of the N th unit, because it has the largest value of a in the ensemble and the system is in SP if it does not oscillate. The
criterion of oscillation is that the magnitude of its average frequency is larger than π/tcp, where tcp is the computational time after a transient.
The boundaries separating DP1 and DP2 are drawn under the same criterion as in Ref. [26]; i.e., if M >

√
2/N , then the system is considered

to lie in DP2.

been obtained by increasing and decreasing aav. Their slight
discrepancies might be due to finite-size and finite-time effects.
Note that the area bounded by both A and B is the region of
hysteresis in which SP and DP coexist. An interesting feature
of this phase diagram is that as K is increased, the hysteresis
region rapidly shrinks at K = Kf ∼ 1.149 and disappears at
K = Kh ∼ 1.155.

Let us now examine in more detail how the hysteresis
region suddenly shrinks at K = Kf ∼ 1.149. Figure 2 displays
the area in which bistability is observed. For K = Kf, the
hysteresis region is found to split into two regions: The upper
one, where hysteresis remains, terminates at K = Kh ∼ 1.155,
as seen in Fig. 1(b) as well, but in the lower one no hysteresis
occurs, although both SP and DP overlap there, indicating
bistability. Figure 3 presents the behaviors of S, M , and R

against aav for K < Kf, K ∼ Kf, Kf < K < Kh, and K > Kh.
Figures 3(b) and 3(c) reveal that a tiny change in K leads to a
creation of a new dynamic branch cut from the original one at
K = Kf, where 1.148 [Fig. 3(b)] < Kf < 1.149 [Fig. 3(c)]. The
mechanism of this branching will be clarified after developing
a self-consistent theory. The new dynamic branch will be
referred to as the floating branch in the rest of the paper,
as already mentioned.

We now develop a self-consistent theory in the thermody-
namic limit N → ∞. This theory only covers SP and DP1,
in both of which the mean-field Z as defined in Eq. (7)
remains constant except for a transient period. Then the j th
unit evolves, obeying the equation

dθj

dt
= aj − A sin(θj − β), (8)

where

Aeiβ ≡ 1 + KZ (A > 0). (9)

Hereafter aav > γ is assumed. Now suppose that A is in the
interval aav − γ � A � aav + γ , in which case the ratio of

oscillating elements to N in the population is given by

R = aav + γ − A

2γ
. (10)

Calculations of 〈eiθj 〉 using Eq. (8) for all j yield

Z = 1

N

N∑
j=1

〈eiθj 〉 = {F1(A,aav) + iF2(A,aav)}
4γ

Aeiβ, (11)

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975
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FIG. 2. Phase diagram for the phase-oscillator model beyond
and near K = Koc ∼ 0.90 (γ = 0.5, N = 3200,6400). The regions
labeled “SP, DP1” and “SP, DP2” are where both phases coexist. The
squares (magenta) and asterisks (blue) locate the upper and lower
ends of the floating branch. The solid squares (orange) show the
boundary between DP1 and DP2, part of which for K < Kf is the
same as the dotted curve (magenta) in Fig. 1(b). The two black curves
are theoretical boundaries below (above) which a solution belonging
to DP1 (SP) emerges for the first time as aav is increased (decreased).
The agreement between theory and simulation is excellent. Other
details are the same as Fig. 1(b).
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FIG. 3. Behaviors of the order parameters S, M , and R in the phase-oscillator model (γ = 0.5, N = 6400). Relayed initial conditions are
used (see the caption of Fig. 1). The data displayed (asterisks, red; squares, green) are those for increasing and decreasing aav, respectively,
while solid circles (blue) show the floating branch with its neighborhoods included. The vertical lines in each panel show where discontinuous
transitions take place, except for the rightmost vertical line of panel (d). (a) K = 1.13; (b) K = 1.148 (immediately before K = Kf);
(c) K = 1.149 (immediately after K = Kf); (d) K = 1.16 (>Kh). The floating branches in (c) and (d) were found using the final values of all
variables around a roughly middle point of the same branch for a previous value of K as the initial condition.

where

F1(A,aav) ≡ π

2
− sin−1 u − u

√
1 − u2, (12)

with u ≡ (aav − γ )/A, and

F2(A,aav) ≡ 4γ aav

A2
− v

√
v2 − 1 + ln(v +

√
v2 − 1), (13)

where v ≡ (aav + γ )/A. Referring to Eq. (9), we find a self-
consistent equation to determine both A and β:

Aeiβ = 1

1 − K
4γ

{F1(A,aav) + iF2(A,aav)} . (14)

An equation of A follows from the last equation by taking the
modulus of both of its sides. Then β is fixed by Eq. (14) with
a solution of A’s equation inserted. Let ac denote the critical
value of aav at which the system makes a transition from SP to
DP1. Noting that A = ac + γ there, we obtain an equation of
ac as follows:

ac + γ = 1√{
1 − K

4γ
F1(ac + γ,ac)

}2 + {
K
4γ

F2(ac + γ,ac)
}2

.

(15)

For K = Koc, the bifurcation of a solution belonging to DP1
changes its character from normal to inverted [26], so that the

critical value of K is determined by the condition

1/

(
dR

daav

)
ac

= 0. (16)

By numerically solving Eqs. (15) and (16), we have found

Koc = 0.903 597 1 . . . (17)

and also ac = 0.938 598 8 . . . for K = Koc. The theoretical
boundary aav = ac obtained from Eq. (15) is shown in
Fig. 1(a), agreeing with the aging transition boundary found
by simulation. However, this is only the case with the region
K � Koc. The discrepancy between both of them appears for
K > Koc, becoming more and more serious as K grows in that
region. Figure 4(b) gives clearer evidence for the disagreement
for large K in the form of a bifurcation diagram. This point
is addressed later. The order parameter S can be calculated as
follows:

S =
√√√√1 − 1

N

N∑
j=1

|〈eiθj 〉|2

=
√

1 + aav − γ

2γ
− A

2γ

{
I (v) + 4

3

}
, (18)
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FIG. 4. Critical behavior of the order parameter S in the phase-oscillator model (γ = 0.5, N = 6400). (a) K = 0.85 (<Koc). The symbols
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caption of Fig. 1). See the point at which the lower theoretical curve with S > 0 (blue) intersects the horizontal axis, whose abscissa is ac. The
right (red) and left (green) vertical lines correspond to boundaries A and B, respectively, in Fig. 1(b).

where

I (x) ≡ 2
3x3 − x − 2

3 (x2 − 1)
3
2 . (19)

Similarly, the self-consistent equation of A can be derived
in other cases as well. For the case A > aav + γ , all units are
stationary. By way of Eq. (8), we obtain

Aeiβ

{
1 − K

4γ
(G1 + iG2)

}
= 1 (20)

and

Z = G1 + iG2

4γ − K(G1 + iG2)
, (21)

where

G1 ≡ sin−1 v − sin−1 u + v
√

1 − v2 − u
√

1 − u2,

G2 ≡ v2 − u2, (22)

with u and v introduced above. In this case, S = M = R = 0.
For the case 0 < A < aav − γ , all units are oscillators and

hence R = 1. It is possible to obtain the results

Aeiβ

[
1 − K

2iγ
{h(v) − h(u)}

]
= 1 (23)

and

Z = h(v) − h(u)

2iγ − K{h(v) − h(u)} , (24)

where

h(x) ≡ 1
2 (x

√
x2 − 1 − ln |x +

√
x2 − 1| − x2). (25)

The order parameter S is given by

S =
√

1 − A

2γ
{I (v) − I (u)}, (26)

with I (x) defined earlier.
Let us now make a comparison between theory and

simulation. In Fig. 1(a), a theoretical boundary is drawn on
which the order parameter R vanishes. A nice agreement is
found with the boundary obtained by simulation for K � Koc,

which is because the supercritical side lies in DP1 and hence
the above theory is applicable. This is also the case with Fig. 2,
in which the two black boundaries, due to theory, agree with
simulation results. We can also confirm the validity of theory in
Figs. 5 and 6, where the behaviors of S and |Z| are displayed.
It should be noted, however, that the theory developed above is
only applicable to SP and DP1. The reason why the theoretical
ac shifts downward from the boundary between SP and DP for
K > Koc [see Fig. 1(a)] is obvious from Fig. 5, which shows
bifurcation diagrams of |Z| for both K < Koc and K > Koc.
It is found in Fig. 5(b) that for K > Koc, the branch of R = 0
extends beyond aav = ac to a point, say, aav = aJ where it
turns back, eventually meeting another branch with R > 0 at
a = ac. The middle curve in the bistable region, composed of
these two branches which merge at aav = ac, is expected to be
unstable and therefore aav = ac deviates downward from the
jumping point aav = aJ encountered as aav is varied upward
with relayed initial conditions. This result is consistent with
Fig. 4 (b), where the stable and unstable branches with R = 0
in the region of ac < aav < aJ perfectly overlap because of
S = 0 in either branch.

Let us now consider the mechanism of the appearance of
the floating branch. Figure 6 displays a couple of bifurcation
diagrams and also Z’s behaviors on the complex plane.
Figure 6(a), which is a bifurcation diagram just after K = Kf,
indicates that there is an interval of aav in which no DP2 solu-
tions exist. Namely, at both ends of the interval, discontinuous
transitions occur from DP2 to SP. As K grows, this interval
expands and eventually at K = Kh its right end reaches the
point where the saddle-node bifurcation of SP solutions takes
place and this situation remains the same for K > Kh [see
Fig. 6(b)]. On the other hand, what happens at the lower
end of the floating branch is also a discontinuous transition
from DP1 to SP due to the saddle-node bifurcation of DP1
solutions. Then what is the mechanism of the discontinuous
transitions from DP2 to SP? Figures 6(c) and 6(d) give a hint to
it: Comparing both panels makes us realize that as the system
approaches the discontinuous transition point from above, the
unstable fixed point (SP) becomes closer and closer to the orbit
of Z. Hence, the discontinuous transition is expected to happen
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FIG. 6. Mechanism of the branching of dynamic solutions corresponding to DP2 in the phase-oscillator model (γ = 0.5, N = 6400),
where the ordinate is |Z|. Simulation results have been obtained using relayed initial conditions (see the caption of Fig. 1). The simulation data
in panels (a) and (b) are the moduli of Z’s time averages. (a) K = 1.149 (immediately after K = Kf). Simulation results: data for increasing
aav (+, red) and for decreasing aav (×, green) and the floating branch with its neighborhoods included (asterisk, blue). The curves are due
to theory: The upper cyan and lower magenta curves correspond to SP and DP1, respectively. The discontinuous transitions from DP2 to SP
occur at aav ∼ 0.9604 and ∼0.9631. (b) K = 1.16 (>Kh). Simulation results: data for increasing aav (+, red) and the floating branch with its
neighborhoods included (asterisk, blue). The curves are due to theory: The upper cyan and lower magenta curves correspond to SP and DP1,
respectively. Note that in each of the above two panels, the point at which the floating branch deviates from the theoretical DP1 branch divides
the former branch into DP1 and DP2. (c) Behavior of Z on the complex plane: K = 1.149, aav = 0.9645. Simulation results: the closed curve
(red, DP2) and the point (+, green, SP). Theory: three points (×, blue, SP, stable), (asterisk, magenta, SP, unstable), and (square, cyan, DP1,
unstable). (d) Behavior of Z on the complex plane: K = 1.149, aav = 0.9635. Details are the same as panel (c).
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FIG. 7. Trajectories of Z on the complex plane obtained from
the phase-oscillator model (γ = 0.5, N = 6400). The smallest (red),
middle (green), and largest (blue) “closed” curves are for (K,aav) =
(1.05,0.958), (1.13,0.965), and (1.2,0.97), respectively.

because of their collision with the disappearance of the orbit
after that. This same scenario has been confirmed for the left
end of the interval with no DP2 solutions (data not shown).
It has also been confirmed that the period of the closed orbit
on the complex plane becomes larger as the system moves
closer to each transition point, which is consistent with the
above scenario. As the coupling strength K approaches Kf

from above, that interval should become smaller and vanish
at K = Kf. However, although this scenario seems plausible,
it has yet to be supported by developing a theory to cover the
region of DP2.

Before going on to the next section, let us see how the mean-
field Z behaves on the complex plane as the time t increases.
Here we concentrate on its behavior at three points in the phase
diagram shown in Fig. 1(b), which are located just beyond the
aging transition boundary with label A. Figure 7 shows the
orbits of Z at those points. The smallest one there comes from
a point belonging to DP1, whereas the other two correspond
to the rest of the points that are located in DP2. The smallest
orbit in the figure is generated by finite-size fluctuations and
hence of the minimum size. Moreover, in DP2, the size of
the orbit grows with K , as confirmed in Fig. 7. These results
are consistent with the definitions of DP1 and DP2. Figure 8
displays the pattern of all average frequencies for each of the
three points used in Fig. 7, where the average frequency of the
j th unit means the time average of θ̇j , i.e., 〈θ̇j 〉. No frequency
synchronization can be found among the oscillating units for
the point in DP1, but for the rest of the points, there exist two
clusters of frequency synchronization and for the point with
the largest K , the larger cluster overwhelms the other. This is
the reason why the thickness of the middle-size orbit is much
larger than that of the largest one, as seen in Fig. 7.

B. Simplified oscillator model

In this section, we study the behavior of the simplified
oscillator model, as displayed in Eq. (3) [26]. This is to confirm
the generality of the findings reported in the foregoing section
for the phase-oscillator model. Each unit of the present model,
although simple, plays a significant role in nonlinear dynamics
as the normal form of the saddle-node bifurcation [32]. Hence,
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FIG. 8. Average frequency vs j for the phase oscillator model
(γ = 0.5, N = 6400). The parameters K and aav of the data labeled
“a”, “b”, and “c” are the same as those of the smallest, middle, and
largest “curves” in Fig. 7, respectively.

if the present system exhibits qualitatively the same behavior
as the previous one, its generality should be guaranteed. As
described below, this is actually the case.

Figure 9 presents global and local phase diagrams of
the simplified oscillator model. It is already reported in
Ref. [26] that the global one, Fig. 9(a), is similar to that
of the phase-oscillator model, Fig. 1(a). We also see that
its local structure near K = Koc = 0.2 shown in Fig. 9(b) is
qualitatively the same as that in Fig. 1(b). There are two more
common features of the two models in terms of the phase
diagram: One is the disagreement between the theoretical
and numerical aging transition boundaries on which R is
zero for K > Koc, as noticed in Fig. 9(a), and the other is
the appearance of the floating branch, as shown in Fig. 10.
The latter is also confirmed by checking out the behaviors
of the order parameters in Fig. 11. As to the discrepancy
between the two boundaries, the reason is just the same as in
the case of the phase-oscillator model (see Fig. 12). Figure 13
is evidence that the branching of dynamic solutions belonging
to DP2 takes place in the same way as in the phase-oscillator
model: Panel (a) is similar to Figs. 6(a) and 6(b) demonstrates
that the discontinuous transition from DP2 to SP at the right end
of the floating branch is caused by a collision between the orbit
and an unstable fixed point belonging to DP1. This scenario
has also been numerically confirmed to apply to the similar
transition at the left end of the hysteresis region, in which the
orbit collides with the unstable SP fixed point (data not shown).
In Fig. 14, the time series data of X are shown for three points
located just beyond the boundary with label A in Fig. 9(b);
one of them lies in DP1 (the data with almost no variation),
while the rest belong to DP2. All average frequencies in the
population are plotted against unit number j in Fig. 15, which
have been computed at the same points in the phase diagram.
What we can learn from these two figures is the same as what
Figs. 7 and 8 reveal.

A self-consistent theory for the simplified oscillator model
is already developed in the previous paper [26], but it is only for
the purpose of studying the behavior of the order parameter R.
Here the theory is extended to explain the behaviors of the other
order parameters in SP and DP1. Part of the results displayed
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FIG. 9. Phase diagrams of the simplified oscillator model, Eq. (3). (a) γ = 0.02, N = 1000: DP1 (upper left side, red), DP2 (upper right
side, green) [26]. The broken curve (blue) is a theoretical boundary at which the order parameter R vanishes. (b) γ = 0.02, N = 4000:
Relayed initial conditions are used (see the caption of Fig. 1). The meanings of the line styles (colors) and the labels are the same as in
Fig. 1(b). The boundaries A and B are drawn using the criterion that the system is in DP if S > 0.02. Moreover, the boundaries separating
DP1 and DP2 are determined by the same criterion: The system is in DP2 if M > 0.02. Note that the value 0.02 is not very different from√

1/N (=0.0158 . . . for N = 4000) used in drawing panel (a) [26].

below already appears in the same paper. The system size N

is assumed to be infinity. Moreover, only the case μav > γ is
considered in what follows.

First of all, it should be noticed that a unit with μj larger
than μ∗ oscillates, while it does not oscillate otherwise, where

μ∗ ≡ K2

4
− KX. (27)

It is then possible to construct a self-consistent equation of X

for three different cases. For the case μav − γ � μ∗ � μav +
γ , the equation of X reads

X = 1

2γ

∫ μ∗

μav−γ

dμ

(
K

2
− √

μ∗ − μ

)

+ 1

2γ

∫ μav+γ

μ∗
dμ

{
K

2
− B

(
μ − μ∗,

K

2

)}
, (28)
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FIG. 10. Phase diagram near K = Kf ∼ 0.355 for the simplified
oscillator model (γ = 0.02, N = 4000). Details are the same as in
Fig. 2. The criteria to identify the boundaries are the same as in
Fig. 9(b). The upper theoretical boundary (black curve) is drawn
using Eq. (34).

where

B(s,w) ≡
√

s

2

ln{s + (1 + w)2} − ln{s + (1 − w)2}
tan−1

(
1+w√

s

) + tan−1
(

1−w√
s

) .

See the previous paper [26] for how to derive the last equation.
The order parameter R is given by

R = μav + γ − μ∗

2γ
. (29)

As derived in Ref. [26], the critical value at which R vanishes
turns out to be

μc = −γ − K2

4
+ 2

3
K

√
2γ . (30)

The equation of R is also derived from Eqs. (27)–(29) (see
Eq. (9) of Ref. [26]), leading to the formula Koc = √

2γ . By
calculating 〈x2

j 〉 and using the expression of 〈xj 〉 given in
Eq. (6) of the same paper, where the j th unit is supposed to be
oscillating, we obtain

S2 = 1

N

N∑
k=1

〈(xk − 〈xk〉)2〉

= 1

2γ

∫ μav+γ

μ∗
dμ

[
μ∗ − μ + 2

T
− 1

4T 2

×
{

ln

(
μ + 1 − K + KX

μ + 1 + K + KX

)}2]
, (31)

where T is the period of an oscillating unit, i.e.,

T = 1√
μ − μ∗

{
tan−1 1 − (K/2)√

μ − μ∗ + tan−1 1 + (K/2)√
μ − μ∗

}
.

For the case μav + γ < μ∗, all units become asymptotically
stationary, thus enabling us to obtain the following equation
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FIG. 11. Behaviors of the order parameters S, M , and R in the simplified oscillator model (γ = 0.02, N = 4000). Relayed initial
conditions are used (see the caption of Fig. 1). (a) K = 0.354; (b) K = 0.354 934 (immediately before K = Kf); (c) K = 0.36 (<Kh ∼ 0.374);
(d) K = 0.377 (>Kh). Other details are the same as in Fig. 3.

of X:

X = 1

2γ

∫ μav+γ

μav−γ

dμ

(
K

2
− √

μ∗ − μ

)

= K

2
+ 1

3γ

{
(μ∗ − μav − γ )

3
2 − (μ∗ − μav + γ )

3
2
}
. (32)

The remaining case is μav − γ > μ∗, in which case R = 1
and we have the equation of X as follows:

X = 1

2γ

∫ μav+γ

μav−γ

dμ

{
K

2
− B

(
μ − μ∗,

K

2

)}
. (33)
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FIG. 12. Behavior of X in the simplified oscillator model (γ = 0.02, N = 4000). The simulation results here are time averages of X. (a)
K = 0.15 (<Koc = 0.2) (see the formula of Koc in the text and Ref. [26]). The simulation results (+, red) exist in the whole region of μav, which
are perfectly covered by the theoretical results that consist of two parts: μav < μc ∼ −0.005, where R = 0 (SP, green curve), and μav > μc,
where R > 0 (DP1, blue curve). (b) K = 0.35. The branches connected with the two vertical lines are the simulation results which have been
obtained by increasing (+, red) and decreasing (×, green) μav with relayed initial conditions (see the caption of Fig. 1). There are also two
theoretical branches: Part of the lower branch (SP, R = 0, blue curve) with positive slopes perfectly overlaps with the simulation result, while
the upper branch (DP1, R > 0, magenta curve) initially agrees with the branch obtained by simulation (×, green), but starts to disagree after
that, which is because the system enters DP2 there.
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FIG. 13. Bifurcation diagram and trajectories in the simplified oscillator model (γ = 0.02, K = 0.356 > Kf). Simulation results (N =
4000) have been obtained using relayed initial conditions (see the caption of Fig. 1). (a) Simulation results, which are time averages of X:
data for increasing μav (+, red) and for decreasing μav (×, green) and the floating branch with its neighborhoods included (asterisks, blue).
The curves are based on theory: The upper black and lower cyan curves respectively correspond to DP1 and SP. The discontinuous transitions
from DP2 to SP happen at μav ∼ −0.005 06 and ∼−0.003 73. (b) Trajectories on the (X,Y ) plane, where μav = −0.005 145 833 3 . . . and Y is
defined as

∑N

j=1 x2
j /N . The orbit (red) is due to simulation, while the point (+, green) corresponds to DP1 (unstable, theory). Calculations of

Y in SP and DP1 are easily performed on the basis of the theory developed in the text (see the Appendix).

In Fig. 13 as well as Fig. 12, some results obtained by
solving the above equations are presented, showing nice
agreement with simulation results. Using Eq. (32), it is possible
to obtain the coordinate of the turning point existing in the
branch of X with R = 0 [see Fig. 12(b)], say, μav = μJ,

μJ = −K2

4
− γ + K

3γ

{
(2γ + U 2)

3
2 − U 3

} − U 2, (34)

where U ≡ (K/2) − (γ /K). This result reveals that μJ = μc
for K = Koc and also that μJ > μc for K > Koc, in agreement
with the simulation result displayed in Fig. 12(b). It should be
noted that μav = μJ corresponds to the boundary between SP
and DP as μav is increased from below in the region K > Koc

[see Figs. 9(b) and 10].

IV. SCALING BEHAVIORS OF ORDER PARAMETERS

Before concluding this paper, we here focus on how the
order parameters S and M scale at the aging transition
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FIG. 14. Time series of X in the simplified oscillator model
(γ = 0.02, N = 4000). The smallest (red), middle (green), and
largest (blue) amplitude curves are the data for (K,μav) =
(0.3,−0.001), (0.33,−0.0005), and (0.377, − 0.0005), respectively.

boundary. The main result is that their scaling laws vary from
one region of K to another.

A. The case 0 � K < Koc

The previous paper [26] shows that in this case, R grows
linearly from the critical point. This is done both analytically
and numerically for the simplified model, while for the phase-
oscillator model it is done only numerically, since analytical
studies of the critical region is much harder in the latter. In this
article, the same policy is taken again. In this region of K , the
supercritical side belongs to DP1, where R > 0 and M = 0,
and hence we only have to focus on the critical behavior of
S here. For a theoretical study, we employ the expression of
S for the simplified model, as displayed in Eq. (31), which
yields

S2 = 4

3π

√
2γR

3
2 + O(R2), (35)
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FIG. 15. Average frequency vs j for the simplified oscillator
model (γ = 0.02, N = 4000). The parameters K and μav of the
data labeled “a”, “b”, and “c” are the same as those of the smallest,
middle, and largest amplitude curves in Fig. 14, respectively.
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FIG. 16. Critical scaling behavior of S in the region 0 � K < Koc. The straight line in each panel shows the slope of 3/4. (a) The
phase-oscillator model with γ = 0.5 and K = 0.5. The system size N : 1600 (+, red), 6400 (×, green), 25 600 (asterisks, blue), 102 400
(squares, magenta). (b) The simplified oscillator model with γ = 0.02 and K = 0.12. The system size N : 4000 (+, red), 16 000 (×, green),
64 000 (asterisks, blue). The straight line here is drawn using the asymptotic formula of S, namely, Eq. (36) combined with Eq. (10) of Ref. [26].

as μav approaches μc from above. This result leads to the
following relation between S and R:

S ∼=
√

4

3π

√
2γR

3
4 . (36)

Note that this relation holds for K = Koc as well. Referring to
R’s critical behavior in this region of K [26], we find that S

obeys the following scaling law:

S ∝ (μav − μc)
3
4 . (37)

This prediction is verified in Fig. 16 for both models.

B. The case K = Koc

It is shown in the previous paper [26] that the order
parameter R grows with the exponent of 2/3 at K = Koc for
the two models. Combining this result with Eq. (36), we obtain

S ∝ (μav − μc)
1
2 . (38)

The data presented in Fig. 17 support the above result for both
models.

C. The case K = Kh

Until the coupling strength K reaches Kh starting from Koc,
the transition to the dynamic phase remains discontinuous.
Here we examine how the order parameters S and M scale at
the aging transition boundary for K = Kh. Note that R itself
makes an abrupt change from zero to a finite value for K >

Koc, irrespective of whether the transition is continuous or not
(see Figs. 3 and 11). Since in the present case the mean-field
is not constant in the supercritical region that lies in DP2, the
self-consistent theory developed in the previous section is not
applicable and also so for K > Kh. Hence, we need to rely on
simulation results to clarify the critical behaviors of S and M .
Figure 18 provides them for the two models, suggesting the
scaling laws

S ∝ (aav − ac)
1
5 , M ∝ (aav − ac)

1
5 , (39)

for the phase-oscillator model and likewise for the simplified
oscillator model. This unusual exponent of 1/5 may originate
from the fact that for K = Kh, the saddle-node bifurcation of
fixed points belonging to SP (SP) and the collision of the orbit
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FIG. 17. Critical scaling behavior of S at K = Koc. The straight line in each panel shows the slope of 1/2. (a) The phase-oscillator model
with γ = 0.5. The system size N : 4000 (+, red), 16 000 (×, green), 64 000 (asterisks, blue), and 256 000 (squares, magenta). (b) The simplified
oscillator model with γ = 0.02. The system size N : 8000 (+, red), 32 000 (×, green), 128 000 (asterisks, blue), and 512 000 (squares, magenta).
The straight line here is drawn in the same way as in Fig. 16(b).
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FIG. 18. Critical scaling behaviors of S and M at K = Kh. The symbols: S (+, red) and M (×, green). The straight lines in each panel
show the slope of 1/5. (a) The phase-oscillator model with γ = 0.5 and N = 25 600. Here K = Kh = 1.156 275. (b) The simplified oscillator
model with γ = 0.02 and N = 16 000. In this case, K = Kh = 0.37 375.

of Z (X,Y ; see the caption of Fig. 13 and Appendix for the
definition of Y ) with the unstable fixed point occur at the same
value of aav (μav) in the phase (simplified) oscillator model.
However, since no evolution equation of the mean field is
available for each model at the moment, it remains as a future
subject to derive the exponent theoretically.

D. The case K > Kh

Figure 19 displays an example of the critical behaviors of
S and M for K > Kh for each model, suggesting the scaling
laws

S ∝ (aav − ac)
1
4 , M ∝ (aav − ac)

1
4 , (40)

for the phase-oscillator model and likewise for the simplified
oscillator model. As mentioned above, this region of K is out
of the range where the self-consistent theory is applicable.
A possible explanation is that the scaling laws in the present
region of strong coupling may inherit those of S and M in the
limit K → ∞. Take the phase-oscillator model as an example.
As discussed in Ref. [12], in this limit, all units are perfectly
synchronized. Let the common phase be θ and it obeys

dθ

dt
= a − sin θ, (41)

where a is used to stand for aav for simplicity. In this limit, S

equals M because of Z = eiθ . Some calculations enable us to
obtain

S =
√

〈|eiθ − 〈eiθ 〉|2〉

=
√

2

a + √
a2 − 1

(a2 − 1)
1
4

∼= 2
3
4 (a − 1)

1
4 , (42)

where the last expression is the one for the limit a → 1 + 0
(note that ac → 1 for K → ∞ [12]). This result indicates that
1/4 is exactly the common scaling exponent of S and M in
the strong coupling limit. Actually, numerical observations for
finite K may explain M’s exponent. Figure 20 shows that the
continuous transition from SP to DP2 for K > Kh seems to
follow the SNIC scenario, namely, a limit cycle orbit emerges
after the disappearance of a pair of stable and unstable fixed
points that correspond to SP [see Fig. 20(a)]. In this case, the
period of the limit cycle diverges, obeying an inverse square-
root law as the control parameter approaches the saddle-node
bifurcation point from above, which is consistent with the
long period of Z as shown in Fig. 20(b). Hence, the above
analysis performed for system (41) may be used to explain
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FIG. 19. Critical scaling behaviors of S and M for K > Kh. The symbols: S (+, red) and M (×, green). The straight line in each panel
shows the slope of 1/4. (a) The phase-oscillator model with γ = 0.5, K = 1.19, and N = 12 800. (b) The simplified oscillator model with
γ = 0.02, K = 0.5, and N = 16 000.
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FIG. 20. Behavior of Z for K beyond and near Kh in the phase-oscillator model (γ = 0.5, N = 6400, K = 1.16 > Kh). (a) A trajectory
and fixed points on the complex plane. Simulation results: the orbit (red, aav = 0.965 75), stable SP points; (+, green, aav = 0.965 25) and (×,
blue, aav = 0.9655). Note that the latter SP points overlap SP points obtained by theory for the same parameter values (see below). Theory: two
pairs of SP points (asterisks, magenta, aav = 0.965 25; squares, cyan, aav = 0.9655), where in each pair, the left (right) one is unstable (stable),
and the other is an unstable DP1 point (solid square, orange, aav = 0.965 75). The validity of theory is confirmed by the excellent agreement
between its SP points and corresponding simulation results. (b) Time series of ReZ (lower curve, red) and ImZ (upper curve, green), where
the same data as the closed orbit in panel (a) are used (aav = 0.965 75).

M’s exponent, 1/4, for K > Kh. However, the exponent of S

is not explained at this stage.

V. SUMMARY AND DISCUSSION

The present paper has clarified how transitions between the
static and the dynamic phases occur for two models of globally
coupled excitable and oscillatory units numerically and in part
analytically. The distribution of bifurcation parameters is set
to be the uniform type for each model. Common features of
the two models are as follows: (1) a hysteresis region exists
in the range Koc < K < Kh; (2) a floating branch starts from
K = Kf at which the hysteresis loop drastically shrinks, which
has been found to be caused by a collision between the mean-
field’s orbit and an unstable fixed point; (3) order parameter
S exhibits different critical behaviors depending on K , i.e.,
0 � K < Koc, K = Koc, K = Kh, and K > Kh; and finally
(4) order parameter M obeys the same scaling laws as S for
K � Kh. To be more specific with (3), the critical exponent
of S, say, β, decreases discontinuously as K grows, except
for K = Kh: β = 3/4 (K < Koc), 1/2 (K = Koc), 1/5 (K =
Kh), 1/4 (K > Kh). In other words, the growth of S from zero
tends to be sharper and sharper as the system proceeds to a
larger K region.

In various applications of coupled oscillators, such as CPGs
[22,23] and information processing (see, e.g., [33]), it is of
vital importance to keep the dynamic activity of such systems
against the deterioration of constituent oscillators caused by
accidents or aging in the ordinary sense. Sufficient knowledge
about the location of the aging transition boundary in the phase
diagram and its structure would greatly help in avoiding the
inactivation of the full system by controlling both the coupling
strength and the average of bifurcation parameters (e.g., the
average of external currents in neural populations). For this
purpose, the above results should be quite useful. The branch-
ing of dynamic solutions (DP2) reported in the present paper
produces a sharp decrease in the size of the hysteresis loop
as the average value of bifurcation parameters is varied. The

magnitude of the sudden decrease is not large in each model,
which is due to the small values of γ adopted in the present
study. That magnitude increases by setting γ to be larger values
[34] and also depends on the choice of a model from among a
variety of candidates. This may also be the case with the size
of the bistable region in the phase diagram. The knowledge
of the branching, hysteresis, and bistability in between the
small and large K regions can therefore be crucial information
to evade a sudden inactivation of the whole system brought
about by adjusting the coupling strength. It is also helpful in
controlling the system that the critical scaling of S tells whether
the supercritical side is DP1 or DP2. As to the generality of
these findings, the simplified oscillator model taken up in the
present work is composed of normal forms of the saddle-node
bifurcation, as mentioned earlier. The fact that the model shows
the above features may guarantee their generality. Our analysis
has also provided with a possible scenario for the slowing of
EEG [24] as stated at the beginning of this paper; i.e., it may
be caused by the elongation of the period of the mean field
as the system located in DP2 approaches the aging transition
boundary in the course of ordinary aging, where the coupling
strength needs to be larger than Kf.

However, there are some remaining subjects. First, at this
stage, no accurate theory is available for the region DP2 where
the mean field persistently oscillates, making it difficult to
develop an exact theory. For this reason, the scaling laws of
S and M found numerically for K � Kh are conjectures at
this moment, although heuristic explanations have been given.
For the same reason, the mechanism of the appearance of
the floating branch is only based on numerical observations
and part of the theoretical results. Second, the dimensionality
of the units considered in the present study is unity and it
remains unclear whether the above results hold when the unit
dimensionality is greater than 1. In fact, the previous paper
[26] reports that the way in which bistability starts to appear
as the coupling strength exceeds a critical value depends on
the unit dimensionality, i.e., a large population of globally
coupled Morris-Lecar systems exhibits a different scenario in
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this regard than the two models studied there and in this paper.
Hence, more realistic models comprising higher-dimensional
units need to be investigated to confirm to what extent the above
features are general. These subjects are now under study and
will be reported elsewhere.
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APPENDIX

Here presented are expressions of Y defined by

Y = 1

N

N∑
j=1

x2
j (A1)

for SP and DP1 in the simplified oscillator model.
For SP, Y is given by

Y = K2

4
+ μ∗ − μav + K

3γ

{
(μ∗ − μav − γ )

3
2

− (μ∗ − μav + γ )
3
2
}
, (A2)

where μ∗ is defined in Eq. (27). Then, for DP1, Y becomes

Y = 1

N

N∑
j=1

〈
x2

j

〉

= Y1 + Y2 + 1

2γ

∫ μav+γ

μ∗
dμ

{
2

T

+ K

2T
ln

(
μ + 1 − K + KX

μ + 1 + K + KX

)}
, (A3)

where the expression of T is given below Eq. (31) in the text,
and

Y1 ≡ K2

8γ
V − K

3γ
V

3
2 + 1

4γ
V 2, (A4)

with V ≡ μ∗ − μav + γ , and

Y2 ≡ 1

2γ

(
K2

2
− KX

)
(μav + γ − μ∗)

− 1

4γ
{(μav + γ )2 − (μ∗)2}. (A5)
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