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Abstract 
  

Gene expression technology namely microarrays, offers the ability to measure the 

expression levels of thousands of genes simultaneously in biological organisms. Gene 

expression data produced by the microarrays are expected to be of significant help in the 

developments of efficient cancer diagnoses and classification platforms. Many 

researchers have analyzed gene expression data to select a small subset of informative 

genes for cancer classification using various intelligent approaches. As a result, the 

selection of the small subset has improved classification accuracy. However, due to the 

small number of samples compared to the huge number of genes (high-dimension), 

irrelevant genes, and noisy genes, the most approaches face difficulties to select the small 

subset. Therefore, the ultimate goal of this research is to propose intelligent approaches 

for selecting a small (near-optimal) subset of informative genes from gene expression 

data for cancer classification. Support vector machine classifiers (SVMs) were used to 

measure classification accuracies on the gene subsets that produced by all the proposed 

approaches. The first six proposed approaches were produced based on genetic 

algorithms (GAs), whereas the remaining approaches were extensions of particle swarm 

optimization (PSO).  

First, a multi-objective strategy in a hybrid of GAs and SVMs (GASVM) was 

proposed to improve the performance of GASVM that uses a single-objective approach. 

It is called MOGASVM. The strategy has been developed based on maximization of 

classification accuracy and gene subset size minimization. In this strategy, multi-

objective problems have been accommodated by using specialized fitness functions in 

GAs. The ultimate goal of the strategy is to search and select a nondominated gene subset 

Pareto front. It was tried on four benchmark gene expression data sets and obtained 

encouraging results on those data sets as compared with an approach that used a single-

objective strategy in GASVM.  

Second, an approach using two hybrid methods was then introduced. This approach 

includes MOGASVM and an improved GASVM (GASVM-II). It was proposed to 

overcome the limitations of MOGASVM and GASVM-II that developed separately 
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before. In the first phase, GASVM-II is applied to manually select genes from overall 

gene expression data in order to produce a subset of genes. It is used to reduce the 

dimensionality of the data, and therefore the complexity of the search or solution spaces 

can also be decreased. In the second phase, MOGASVM is used to select and optimize a 

small subset of informative genes from the subset that is produced by the first phase. The 

approach was assessed and evaluated on four well-known gene expression data sets, 

showing competitive results.  

Third, a cyclic hybrid method based on GASVM-II has been proposed. It differs 

from other GASVM-based methods in one major part, namely it involves a cyclic 

approach, whereas the GASVM-based methods did not use any cyclic approach. 

Basically, the cyclic hybrid method repeats the process of GASVM-II to iteratively 

reduce the dimensionality of data and produce potential gene subsets. Five real gene 

expression data sets were used to test the effectiveness of the method. Experimental 

results show that the performance of the proposed method is superior to other 

experimental methods and previous related works in terms of classification accuracy and 

the number of selected genes. In addition, a scatter gene graph and the list of informative 

genes in the best gene subsets are also presented for biological usage.  

Fourth, an iterative approach based on MOGASVM is then developed. Generally, it 

is almost completely the same with the proposed cyclic hybrid, but it uses MOGASVM 

to replace GASVM-II in the process to yield potential gene subsets and reduce the 

dimensionality of data iteratively. To demonstrate its effectiveness, four gene expression 

data sets are used. Experimental results show that the approach is efficient in finding 

genes for classifying cancer classes.  

Fifth, a two-stage method was proposed to surmount the drawbacks of GASVM-

based methods in previous related works. In the first stage, a filter method such as gain 

ratio (GR) or information gain (IG) is applied on overall gene expression data to preselect 

genes and finally produce a subset of genes. The dimensionality of data is also can be 

decreased. The second stage applies MOGASVM to automatically optimize the gene 

subset that is produced by the first stage. As a result, it yields a small (near-optimal) 

subset of informative genes. The two-stage method was evaluated on four publicly 
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available gene expression data sets. The results show that the proposed method 

outperforms existing methods and other experimental methods.  

Sixth, since a two-stage method does not perform well as expected, a three-stage 

method that includes frequency analysis in the third stage was proposed. The frequency 

analysis is implemented to identify the most frequently selected genes in near-optimal 

gene subsets. The most frequently selected genes are presumed to be the most relevant 

for the cancer classification. The three-stage method differs from methods in previous 

works in one major part. The major difference is that it involves three stages (using a 

filter method, a hybrid method, and frequency analysis), whereas the previous works 

usually had only one stage (using a filter method or a hybrid method) or two stages (using 

a filter method and a hybrid method). The proposed method has been tested and 

evaluated for gene selection on five gene expression data sets that contain binary classes 

and multi-classes of tumor samples. Based on the experimental results, the performance 

of proposed method is better than that of other methods in previous related works. The 

list of informative genes in the final gene subset is also presented for biological usage. 

Seventh, a modification of binary PSO was proposed to overcome the limitations of 

the conventional version of binary PSO and previous PSO-based methods. A scalar 

quantity called particle’s speed and a novel rule for updating particle’s positions are 

introduced in this modified binary PSO. This particle’s speed and rule are proposed in 

order to reduce the probability of genes to be selected for the cancer classification. By 

performing experiments on 12 different gene expression data sets, the modified binary 

PSO outperforms other previous related works, including the conventional version of 

binary PSO in terms of classification accuracy, the number of selected genes, and running 

times.  

Eighth, an enhancement of binary PSO with the constraint of particle’s velocities 

was proposed. The constraint is introduced in the enhanced binary PSO to increase the 

probability of genes to be unselected for the classification. Experimental results on five 

actual gene expression data sets show that the performance of the proposed approach is 

superior to other previous related works, as well as to conventional binary PSO tried in 

this work.  
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Ninth, a modified sigmoid function and the particle’s speed were introduced and 

implemented in binary PSO. This modified sigmoid function and particle’s speed 

decrease the probability of genes to be selected for the cancer classification. The 

proposed method was experimentally assessed on five well-known gene expression data 

sets. In this sense, comparisons with the existing of binary PSO and several PSO-based 

methods show competitive results.  

As a conclusion, 12 benchmark gene expression data sets have been used in this 

research to test the effectiveness of the proposed intelligent approaches. Overall, 

experimental results show that the performances of the proposed approaches are superior 

to previous related works as well as methods experimented in this work in terms of 

classification accuracy, the number of selected genes, and running times. 
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Chapter 1 

Introduction 
 

 

Bioinformatics is defined as an application of computation tools to capture, analyze, and 

interpret biological data. It is an interdisciplinary field, which harnesses computer science, 

mathematic, engineering, and biology. It represents a relatively new area of computer science 

and engineering to handle and manage large amounts of data generated by advance 

technologies which are designed for measuring biological systems. The use of computational 

intelligence methods in analyzing the biological data is currently at the forefront of its field 

and represents a major opportunity in the research of computational intelligence communities.  

The problem of cancers in this world is a growing one. A traditional cancer diagnosis 

relies on a complex and inexact combination of clinical and histopathological data. This 

classic approach often fails when dealing with atypical tumors or morphologically 

indistinguishable tumor subtypes. Recent advances in microarrays technology have led to a 

promising future of cancer diagnosis using new molecular-based approaches. This technology 

allows scientists to measure the expression levels of thousands of genes simultaneously in 

biological organisms. The most important application of gene expression data that are 

produced by the microarrays technology is the selection of informative genes for cancer 

classification. For quick reference, a glossary of structural genomic terms is also provided in 

Appendix B. 

 

 

1.1 Microarrays 
 

Microarrays technology is a machine that can be used to measure the expression levels of 

thousands of genes simultaneously under different cancerous or normal samples [22]. 

Microarrays experiments are used to gather information from tissue and cell samples about 

gene expression differences that are useful in diagnosing diseases [9]. It produces gene 
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 M genes 

N samples

g1,2 l1 g1,M g1,1

g2,1 g2,2 g2,M l2 

  

gN,1 gN,2 gN,M lN 

Class label 

( 1)N MG × + =  

 

expression data as the final product. Therefore, it provides a new way for people to 

understand molecular behaviors in abnormal tissues and improve classification performances 

for accurate in cancer diagnosis and treatment. At the same time, the microarrays lead many 

issues for biologists with the large amount of data generated [37]. These issues have required 

molecular biologists to collaborate with computer scientists who have some experience in the 

development of intelligent approaches for processing and analyzing the huge amount of data 

[28]. This research uses gene expression data to select information genes for cancer 

classification.  

 Usually, the matrix of gene expression data, ( 1)N MG × +  contains different values of gene 

expression levels on a large scale. This matrix is organized as shown in Fig. 1.1, where  

M = the total number of genes in each sample of ( 1) ,N MG × +  

N = the total number of samples in ( 1) ,N MG × +  

,i jg = a numeric value of the gene expression level of the jth gene in the ith sample, 

1, 2,.., ;i N=  1, 2,.., ,j M=  

il = a class label for the ith sample, { 1, 1}il ∈ − +  for binary classes and { 1, 2,..., }il C∈ + + +  for 

multi-classes where  C+ =  the total number of classes in ( 1).N MG × +  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. The matrix of gene expression data. 
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1.2 Cancer Classification Based on Gene Expression Data 
 

Recently, there are many classifiers such as support vector machines (SVMs), neural 

networks, etc. have been used for cancer classification of gene expression data. Based on the 

favorable results of SVMs from previous works [6],[9],[28], this research uses SVMs to 

classify cancer classes. Moreover, SVMs have many advantages such as flexibility in 

choosing a similarity function, sparseness of solution when dealing with large data, the ability 

to handle large feature space, and the ability to identify outliers [6]. The detail of SVMs can 

be found on in Mukherjee’s thesis [28].  

 A cancer classification model has two phases: 1) Gene selection; and 2) classification 

[10]. The first phase uses a gene selection method to select genes, while in the phase stage; a 

classifier is implemented to perform classification process. Figure 1.2 shows the model of 

cancer classification. 

 

 

 

 

 

 

 

 

Fig. 1.2. The model of cancer classification. 

 

Most previous works widely used two manners for measuring the accuracy of cancer 

classification. The manners are the leave-one-out-cross-validation (LOOCV) procedure to 

obtain LOOCV accuracy, and test accuracy measurement to produce test accuracy. For the 

LOOCV procedure, one sample from the training set is excluded, and the rest of training 

samples, N-1 are used to build a classifier. Then, the built classifier is used to predict the class 

that has been left out, and this process is repeated for each sample in the training set. The 

LOOCV accuracy is obtained by the overall number of correct classifications, divided by the 

number of samples in the training set, N. For the test accuracy measurement, the final 

Phase 1: Gene selection 

Phase 2: Classification

Gene expression 
data 

Selected genes

Cancer classes
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classifier is built using all the training samples, and the classes of test samples from the 

testing set are classified one by one using the built classifier. The test accuracy is estimated 

by the number of the correctly classified test samples, divided by the number of samples in 

the testing set. In this research, the LOOCV procedure is used for measuring classification 

accuracy on the training set due to the small number of samples in gene expression data, and 

most previous works also used it; whereas for the calculation of classification accuracy on the 

testing set, the test accuracy measurement is used.  

 

 

1.3 Gene Selection from Gene Expression Data 
 

The selection of a small subset of informative genes from thousands of genes is a 

critical step for accurate cancer classification. Usually, a gene selection method is used to 

select a subset of informative genes that maximizes the classifier’s ability to classify samples 

more accurately [24]. In pattern recognition domain, gene selection is called feature selection. 

The gene selection has several advantages: 

• Maintain or improve classification accuracy. 

• Reduce the dimensionality of data. 

• Yield a small subset of genes. 

• Remove irrelevant and noisy genes. 

• Decrease computational times. 

• Reduce the cost in a clinical setting. 

 

In the context of cancer classification, gene selection methods can be classified into two 

categories [24]. Figure 1.3 shows the difference between the categories.  If a gene selection 

method is carried out independently from a classification procedure, it belongs to the filter 

method. Otherwise, it is said to follow a hybrid (wrapper) method. Signal to noise ratio 

[9],[10], threshold number of misclassification scores [4], cosine coefficient, information gain, 

and euclidean distance [7] are some of the widely known the filter method. The hybrid 

method is performed dependently on classifiers and conducted in search space for selecting 

and evaluating subsets of genes. In this approach, a classifier is included as a part of its 
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evaluation function. Furthermore, it performs some form of state space searches to select 

genes in order to maximize the evaluation function. This evaluation process is repeated until 

a condition has been satisfied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. The categories of gene selection methods. 

 

In the early era of microarrays analyses, most previous works have used the filter 

method to select genes since it is computationally more efficient than the hybrid method 

[3],[11],[19],[36]. Many filter methods are normally mentioned as individual gene-ranking 

methods. Usually, they evaluate a gene based on its discriminative power for the target 

classes without considering its correlations with other genes. This mechanism may result in 

inclusion of irrelevant and noisy genes in a gene subset for the cancer classification. These 

genes increase the dimensionality of the gene subset, and in turn affect the classification 

performance. A few years ago, several hybrid methods, especially a hybrid of genetic 

algorithms (GAs) and classifiers, have been implemented to select informative genes 

[8],[23],[26],[31]. Recently, several gene selection methods based on particle swarm 

optimization (PSO) have been proposed to replace GA in the hybrid method. PSO is a new 

population based stochastic optimization technique proposed by Kennedy and Eberhart [14]. 

It is motivated from the simulation of social behaviors of organisms such as bird flocking and 

Genes selection 

Gene expression data Gene expression data 

Genes subset generation 

Classifier Classifier

Gene subset Near-optimal gene subset 

Genes Evaluation  

 Gene selection

a) Filter methods b) Wrapper methods 
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fish schooling. The hybrid methods usually provide greater accuracy than the filter methods 

since genes are selected by considering and optimizing correlations among genes. 

 

 

1.4 Problem Statements 
 

Although the mechanism of cancer classifications has improved over the past 30 years, there 

has been no general and perfect approach for identifying new cancer classes or assigning 

tumors to known classes [10]. It is because there can be so many pathways causing cancer. 

The traditional methods of cancer classifications are mostly dependent on the morphological 

appearance of tumors and their applications are limited by existing uncertainties [10]. 

Moreover, the methods also have various limitations especially in discriminating between 

two similar types of cancers. Therefore, microarrays technology has been introduced to solve 

the limitations of the methods by offering ability to measure the gene expression levels of 

thousands of genes simultaneously in biological organisms such as human and animal. Due to 

the large amount of gene expression data generated by the microarrays technology, 

computational intelligence approaches are needed to analyze and process the data. 

Almost all the computational intelligence approaches for the cancer classification of 

gene expression data started with gene selection methods [7]. Thus, there is a need to firstly 

select informative genes that contribute to a cancerous state by using gene selection methods 

[26] in order to maximize the classifier’s ability to classify samples more accurately. An 

informative gene is a gene that is useful for cancer classification. However, the gene selection 

process poses a major challenge because of the following characteristics of gene expression 

data: The huge number of genes compared to the small number of samples (high-dimensional 

data), irrelevant genes, and noisy data. 
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1.5 Goal and Objectives of the Research 
 

The ultimate goal of this research is to propose intelligent approaches based on GAs and PSO 

for selecting a small (near-optimal) subset of informative genes from gene expression data for 

cancer classification. In order to reach the goal, several objectives need to be achieved: 

• To propose a multi-objective strategy in GASVM for improving the performance of 

GASVM that uses a single-objective approach. 

• To propose an approach using two hybrid methods in order to reduce the complexity 

of data and optimize genes subsets. 

• To propose a cyclic hybrid method based on GASVM-II for repeatedly reducing the 

dimensionality of data and producing potential gene subsets. 

• To propose an iterative approach based on MOGASVM in order to decrease the 

complexity of data. 

• To propose a two-stage method using a filter method and a hybrid method for 

preselecting and optimizing gene subsets, respectively. 

• To propose a three-stage method that includes frequency analysis in its third stage in 

order to identify the most frequently selected genes in near-optimal gene subsets. 

• To propose a modification of binary particle swarm optimization based on introduced 

particle's speed and a novel rule in order to overcome the limitations of the 

conventional version of binary PSO. 

• To propose an enhancement of binary PSO with the constraint of particle’s velocities 

for increasing the probability of genes to be unselected for cancer classification. 

• To propose an improvement of binary particle swarm optimization based on a 

modified sigmoid function and introduced particle's speed in order to solve the 

weaknesses of the conventional version of binary PSO and previous PSO-based 

methods. 
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1.6 Scopes of the Research 
 

Since the goal of this research is to introduce and propose intelligent approaches in selecting 

a small subset of informative genes for cancer classification, the scopes of this research are 

stated as follows: 

• Focusing on the modifications and enhancements of GASVM-based methods and 

PSO-based methods for selecting genes from gene expression data.  

• Using and applying SVMs to classify samples from genes subsets that produced by 

GASVM-based methods and PSO-based methods.  

• Conducting experiments on 12 public and benchmark gene expression data sets that 

contain binary classes and multi-classes: Colon, leukemia (Leukemia1), lung, MLL 

(Leukemia2), SRBCT, 11_Tumors, 9_Tumors, Brain_Tumor1, Brain_Tumor2, 

Lung_Cancer, Prostate_Tumor, and DLBCL. These data sets can be freely accessed 

by online and will be explained in the next chapters. 

 

 

1.7 Organization of the Thesis 
 

This thesis is organized into 11 chapters. The general information of each chapter is given as 

follows: 

 

• Chapter 1 introduces main keywords that used in this research such as GAs, PSO, 

gene selection, microarrays, gene expression data, and cancer classification. It also 

describes about problem statements, goal, and scopes of this research. 

• Chapter 2 describes a multi-objective strategy in GASVM (MOGASVM) for gene 

selection. It is proposed to improve the performance of GASVM that uses a single-

objective approach. In this strategy, multi-objective problems have been 

accommodated by using a specialized fitness function in GAs. 

• Chapter 3 discusses an approach using two hybrid methods. These hybrid methods are 

MOGASVM and GASVM-II. It was developed to overcome the limitations of 

MOGASVM and GASVM-II that developed separately before. 
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• Chapter 4 describes a cyclic hybrid method based on GASVM-II. Generally, this 

method repeats the process of GASVM-II to produce potential gene subsets and 

reduce the dimensionality of data repeatedly. 

• Chapter 5 concerns on the discussion of an iterative approach based on MOGASVM. 

Basically, it is almost completely the same with the proposed cyclic hybrid, but it uses 

MOGASVM to replace GASVM-II. 

• Chapter 6 discusses a two-stage method. It is proposed by using a filter method and a 

hybrid method to surmount the drawbacks of GASVM-based methods in previous 

related works. 

• Chapter 7 describes a three-stage method that includes frequency analysis as an extra 

process in the last stage. This frequency analysis is implemented to identify the most 

frequently selected genes in near-optimal gene subsets. 

• Chapter 8 introduces a modification of binary PSO. A scalar quantity called particle’s 

speed and a novel rule for updating particle’s positions are introduced in this modified 

binary PSO. 

• Chapter 9 discusses an enhancement of binary PSO. The constraint of particle’s 

velocities is introduced in the enhanced binary PSO to increase the probability of 

genes to be unselected for the classification. 

• Chapter 10 describes a modification of binary PSO. A modified sigmoid function and 

the particle’s speed are implemented in this modified binary PSO. Both the 

implementations decrease the probability of genes to be selected for the cancer 

classification. 

• Chapter 11 gives the conclusion remarks of obtained results of all the proposed 

intelligent approaches, and suggests interesting ideas for the future research. 
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Chapter 2 

A Multi-Objective Genetic Algorithm 
 

 

2.1 Introduction 

 
Multi-objective optimization (MOO) is an optimization problem that involves multiple 

objectives or goals. Generally, the objectives estimate different aspects of solutions. It is 

necessary to be aware that gene selection is a MOO problem in the sense of classification 

accuracy maximization and gene subset size minimization. Therefore, Chapter 2 describes 

and proposes a multi-objective strategy in GASVM for gene selection and the classification 

of gene expression data. This is known as MOGASVM. 

 

 

2.2 A Multi-Objective Strategy in GAs 
 

MOGASVM was developed to improve the performance of GASVM that uses a single-

objective [23]. All information about GASVM such as flowcharts, algorithms, chromosome 

representations, fitness functions, and parameter values are available in Mohamad et al. [23].  

 In the sense of classification accuracy maximization and gene subset size minimization, 

gene selection can be viewed as an MOO problem. Formally, each gene subset (a solution) is 

represented by x (an n-dimensional decision vector). It is associated with a vector objective 

function ( )f x :  

 

1 2( ) ( ( ), ( ),..., ( ))mf x f x f x f x=  (2.1)

 

with 1 2( , ,..., )nx x x x X= ∈  where X  is the decision space, i.e., the set of all expressible 

solutions. The vector objective function ( )f x  maps X  into mℜ , where ℜ  is the objective 
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space and 2m ≥  is a number of objectives. if  is the thi  objective. The vector ( )z f x=  is an 

objective vector. The image of X  in the objective space is the set of all attainable points z  

(Fig. 2.1). If all objective functions are for maximization, a subset x  is said to dominate 

another x  ( x∗ ) if and only if: 

 

x x∗>  if 

{1,..., }, ( ) ( ) {1,..., }, ( ) ( )i i j ji m f x f x j m f x f x∗ ∗∀ ∈ ≥ ∧∃ ∈ >  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. The n-dimensional decision space maps to the m-dimensional objective space. 

 

A solution (gene subset) is said to be Pareto optimal if it is not dominated by any other 

solutions in the decision space. A Pareto optimal solution cannot be improved with respect to 

any objective without worsening at least one other objective. The set of all feasible 

nondominated solutions in X  is referred to as the Pareto optimal set, and for a given Pareto 

optimal set, the corresponding objective function values in the objective space are called the 

Pareto front [12]. 

The Pareto front in this research is defined as the set of nondominated gene subsets. 

MOGASVM is one promising approach to find or approximate the Pareto front. The roles of 

this approach are guided by the search towards the Pareto front while keeping the 

nondominated solutions as diverse as possible. Therefore, the original GASVM is customized 

z1 x1 

xn zm X, the decision space 

x2 z2 

Z, the objective space 
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to accommodate multi-objective problems by using specialized fitness functions. The 

ultimate goal of MOGASVM is to identify a nondominated gene subset Pareto front. This 

subset (individual) is evaluated by its accuracy on the training data and the number of genes 

selected in it. These criteria are denoted as 1f  and 2f  separately, and are used in a fitness 

function. Therefore, the fitness of individuals is calculated by Eq.(2.4) as follows: 

 

1 1 ( )f w A x= ×  (2.2)

2 2 (( ( )) / )f w M R x M= × −  (2.3)

1 2( )fitness x f f= +  (2.4)

 

where ( ) [0,1]A x ∈  is the leave-one-out-cross-validation (LOOCV) accuracy of the training 

data using only the expression values of the selected genes in a subset ,x  where ( )R x  is the 

number of selected genes in x . M  is the total number of genes, 1w  and 2w  are two priority 

weights corresponding to the importance of the accuracy and the number of selected genes, 

respectively, where 1 [0.1,0.9]w ∈  and 2 11w w= − , and 2f  is calculated as above in order to 

support the maximization function of the minimization of gene subset size. In this research, 

the accuracy is more important than the number of selected genes (gene subset size). 

 Ambroise and McLachlan [2] have indicated that because of “selection bias”, the test 

results could be over-optimistic if the test samples were not excluded from the classifier 

building process in a hybrid approach. Therefore, the proposed MOGASVM totally excludes 

the test samples from the classifier building process in order to avoid the influence of the bias. 
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2.3 Experimental Results 
 

2.3.1 Data sets 
 

Two benchmark gene expression data sets are used to evaluate the proposed approach; 

leukemia cancer, colon, lung cancer, and mixed-lineage leukemia (MLL) cancer. Table 2.1 

summarizes the data sets. 

 

 

Table 2.1. The summary of gene expression data sets. 

Data set  No. 
classes 

No. samples 
in the training 
set 

No. samples 
in the test set 

No.  
genes Source 

Leukemia 2 (ALL 
and AML) 

38 (27 ALL 
and 11 AML) 

34 (20 ALL 
and 14 AML) 7,129 

http://www.broad.mit.
edu/cgi-
bin/cancer/datasets.cgi 

Lung  
2 (MPM 
and 
ADCA) 

32 (16 MPM 
and 16 
ADCA) 

149 (15 MPM 
and 134 
ADCA) 

12,533 
http://chestsurg.org/pu
blications/2002-
microarray.aspx. 

MLL 
3 (ALL, 
MLL, and 
AML) 

57 (20 ALL, 
17 MLL, and 
20 AML) 

15 (4 ALL, 3 
MLL, and 8 
AML) 

12,582 
http://www.broad.mit.
edu/cgi-
bin/cancer/datasets.cgi 

Colon 
2 (Normal 
and 
tumor) 

62 (22 normal 
and 40 tumor) Not available 2,000 

http://microarray.princ
eton.edu/oncology/aff
ydata/index.html 

Note: 
MPM = malignant pleural mesothelioma. 
ADCA = adenocarcinoma. 
ALL = acute lymphoblastic leukemia. 

 
MLL = mixed-lineage leukemia. 
AML = acute myeloid leukemia. 

 

 For the leukemia, Lung, and MLL cancer data set, the LOOCV procedure is applied on 

the training set to obtain LOOCV accuracies, and the accuracy test measurement is applied 

on the testing set to measure test accuracy. However, for the colon cancer data set, only the 

LOOCV procedure is used because this data set only has the training set. 
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2.3.2 Experimental setup 
 

Three important criteria are used to evaluate the MOGASVM performances; test accuracy, 

LOOCV accuracy, and the number of selected genes. 

 The experimental results presented in this section pursue two objectives. The first 

objective is to show that gene selection using MOGASVM is needed in order to reduce the 

number of genes and achieve better classification of the gene expression data. The second 

objective is to show that MOGASVM is better than the original version of GASVM that used 

a single-objective approach. To achieve these objectives, several experiments were conducted, 

10 times each, for both data sets using different values of 1w  and 2w  ( 1 [0.1,0.9]w ∈  and 

2 11w w= − ). The subset that produces the highest LOOCV accuracy with the lowest number 

of selected genes is chosen as the best subset. SVM, GASVM (single-objective), and 

GASVM version 2 (GASVM-II) were also used in this research as a comparison with 

MOGASVM. GASVM-II has been proposed by Mohamad et al. [23].  

 

 

2.3.3 Result analysis and discussion 
 

Table 2.2 and Table 2.3 show the results of the experiments for all the data sets using 

different values of 1w  and 2.w  A value of the form x y±  represents an average value x  with 

a standard deviation .y  Overall, the classification accuracy and the number of selected genes 

for both data sets fluctuated because of the diversity of the solutions based on adjusted 

weights ( 1w  and 2w ). Moreover, multiple objectives search simultaneously in a run, and 

consequently populations tend to converge to the solutions which are superior in one 

objective, but poor at others. The highest averages of LOOCV and test accuracies for 

classifying leukemia samples were 95.53% and 84.41%, respectively, using 1 0.8w =  and 

2 0.2,w =  while 93.23% LOOCV accuracy was obtained for the colon data set using 1 0.7w =  

and 2 0.3w = . The highest averages of LOOCV accuracy and test accuracy for classifying the 

lung data set were 73.31% and 85.84%, respectively, while 94.74% and 90%, respectively of 
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the MLL data set. The highest averages of the accuracies of both the data sets were obtained 

by using 1 0.7w =  and 2 0.3w = .  

 

 

Table 2.2. Classification accuracies for different gene subsets using MOGASVM on the 

leukemia and colon data sets (10 runs on average). 

Weight Average for the leukemia  
data set 

Average for the colon  
data set 

Accuracy (%) 
1w  2w  

LOOCV Test 
No. selected 

genes 
LOOCV 

accuracy (%) 
No. selected 

genes 

0.1 0.9 94.74 ± 
0.00 

84.12 ± 
1.52 

2,196.5 ± 
10.88 

90.65 ±  
1.27 

398.8 ±  
6.36 

0.2 0.8 95.26 ± 
1.11 

83.24 ± 
2.79 

2,205.1 ± 
15.19 

91.45 ±  
1.08 

419.5 ±  
7.95 

0.3 0.7 95.00 ± 
0.83 

83.24 ± 
3.12 

2,199.1 ± 
25.83 

92.58 ±  
0.83 

429.2 ±  
12.22 

0.4 0.6 95.53 ± 
1.27 

83.53 ± 
2.48 

2,220.8 ± 
31.60 

92.74 ±  
0.85 

430.1 ±  
10.50 

0.5 0.5 95.26 ± 
1.11 

82.65 ± 
3.24 

2,231.2 ± 
26.84 

92.90 ±  
0.83 

443.0 ±  
9.19 

0.6 0.4 95.26 ± 
1.11 

82.65 ± 
2.93 

2,210.9 ± 
25.09 

92.26 ±  
0.68 

429.0 ±  
10.37 

0.7 0.3 95.00 ± 
0.83 

83.24 ± 
2.79 

2,201.4 ± 
15.87 

93.23 ±  
1.02 

446.3 ±  
18.90 

0.8 0.2 95.53 ± 
1.27 

84.41 ± 
2.42 

2,212.6 ± 
26.63 

92.90 ±  
1.13 

445.9 ±  
27.92 

0.9 0.1 95.53 ± 
1.27 

83.82 ± 
2.50 

2,218.3 ± 
28.29 

92.26 ±  
0.68 

435.3 ±  
12.89 

Note: The best results are shown in the shaded cells. The colon data set only has 
LOOCV accuracy since it only has the training set. 

 

 A total of 2212.6 average genes in a subset were finally selected to obtain the highest 

accuracies (LOOCV and test) of the leukemia data set, whereas 446.3 average genes were 

selected of the colon data set. The averages genes of the lung and MLL data sets were 4418.5 

and 4465.2 genes, respectively. Hence, the subsets were chosen as the best subsets. The best 

subsets are called the best-known Pareto front because it is close to the true Pareto front. 
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MOGASVM has found the best subsets since it distributed successfully diverse gene subsets 

over a solution space. 

 

 

Table 2.3. Classification accuracies for different gene subsets using MOGASVM on the lung 

and MLL data sets (10 runs on average). 

Weight Average for the lung data set Average for MLL the data set 

Accuracy (%) Accuracy (%) 
1w  2w  

LOOCV Test 
No. selected 
genes LOOCV Test 

No. selected 
genes 

0.1 0.9 75 ±  
0 

84.43 ± 
4.16 

4,416.5 ± 
17.90 

94.74 ±  
0 

88.67 ± 
5.49 

4,472.1 ± 
29.40 

0.2 0.8 75 ±  
0 

85.24 ± 
4.68 

4,421.3 ± 
21.53 

94.74 ±  
0 

89.33 ±  
4.66 

4,470.6 ± 
16.54 

0.3 0.7 75 ±  
0 

84.16 ± 
3.79 

4,416.6 ± 
13.59 

94.74 ±  
0 

88.67 ± 
7.06 

4,466.9 ± 
21.25 

0.4 0.6 75 ±  
0 

81.75 ± 
4.30 

4,410.3 ± 
26.30 

94.74 ±  
0 

89.33 ± 
4.66 

4,471.4 ± 
19.50 

0.5 0.5 75 ±  
0 

84.10 ± 
4.78 

4,415.7 ± 
25.40 

94.74 ±  
0 

89.33 ± 
5.62 

4,465.3 ± 
24.60 

0.6 0.4 75 ±  
0 

84.90 ± 
4.04 

4,423.2 ± 
19.62 

94.74 ±  
0 

88.67 ± 
3.22 

4,479.2 ± 
21.73 

0.7 0.3 75.31 ±  
0.99 

85.84 ± 
3.97 

4,418.5 ± 
50.19 

94.74 ±  
0 

90.00 ± 
3.51 

4,465.2 ± 
18.34 

0.8 0.2 75 ±  
0 

83.22 ± 
4.86 

4,419 ± 
15.25 

94.74 ±  
0 

88.00 ± 
6.13 

4,479.3 ± 
22.24 

0.9 0.1 75 ±  
0 

83.83 ± 
4.30 

4,423.3 ± 
19.66 

94.74 ±  
0 

88.00 ± 
6.13 

4,468.4 ± 
16.03 

Note: The best results are shown in the shaded cells. 
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Table 2.4. The results of the best subsets in 10 runs ( 1 0.8w =  and 2 0.2w =  of the leukemia 

data set, 1 0.7w = and 2 0.3w =  of the colon, lung, and MLL data sets).  

 

 

Table 2.5. The benchmark of MOGASVM with GASVM (single-objective) and SVM on the 

leukemia and colon data sets.  

Leukemia data set  
(Average; the best) 

Colon data set  
(Average; the best) 

Accuracy (%) Method 
No. selected 
genes LOOCV Test 

No. selected 
genes 

LOOCV 
accuracy (%) 

MOGASVM (2,212.6 ±  
26.63; 2,252) 

(95.53 ±  
1.27; 97.37) 

(84.41 ±  
2.42; 88.24) 

(446.3 ±  
18.90; 446) 

(93.23 ±  
1.02; 95.16) 

GASVM 
(Single-
objective) 

(3,574.9 ±  
40.05; 3,531) 

(94.74 ±  
0; 94.74) 

(83.53 ±  
2.48; 88.24) 

(979.8 ±  
35.80; 940) 

(91.77 ±  
0.51; 91.94) 

SVM (7,129 ±  
0; 7,129) 

(94.74 ±  
0; 94.74) 

(85.29 ±  
0; 85.29) 

(2,000 ±  
0; 2,000) 

(85.48 ±  
0; 85.48) 

Note: The best results are shown in the shaded cells.  
 

 

 

 

 

 

 

 

Data set LOOCV (%) Test (%) Experiment no. No. selected genes 

Leukemia 97.37 88.24 4 2,252 

Colon 95.16 - 7 446 

Lung 78.13 93.29 7 4,433 

MLL 94.74 93.33 7 4,437 
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Table 2.6. The benchmark of MOGASVM with GASVM (single-objective) and SVM on the 

lung and MLL data sets.  

Lung data set (Average; the best) MLL data set (Average; the best) 
Accuracy (%) Accuracy (%) Method No. selected 

genes LOOCV Test 
No. selected 
genes LOOCV Test 

MOGASVM (4,418.5 ±  
50.19; 4,433) 

(75.31 ±  
0.99; 78.13) 

(85.84 ±  
3.97; 93.29) 

(4,465.2 ±  
18.34; 4,437) 

(94.74 ±  
0; 94.74) 

(90.00 ±  
3.51; 93.33) 

GASVM 
(single-
objective) 

(6,267.8 ±  
56.34; 6,342) 

(75.00 ±  
0; 75.00) 

(84.77 ±  
2.53; 87.92) 

(6,298.8 ±  
51.51; 6,224) 

(94.74 ± 
 0; 94.74) 

(87.33 ±  
2.11; 86.67) 

SVM (12,533 ±  
0; 12,533) 

(65.63 ±  
0; 65.63) 

(85.91 ±  
0; 85.91) 

(12,582 ±  
0; 12,582) 

(92.98 ±  
0; 92.98) 

(86.67 ±  
0; 86.67) 

Note: The best results are shown in the shaded cells.  
 

 All LOOCV results of the leukemia data set were much higher than the test results due 

to the problem of over-fitting. The data set properties, i.e., thousands of genes with less than a 

hundred samples in the training sets, probably cause the over-fitting, where a decision surface 

of the classifier performs well on the training set, but poorly on the test set. 

 Table 2.4 shows that the best performances (LOOCV and test accuracies) were 97.37% 

and 88.24%, respectively, for the leukemia data set using 2252 genes. For the colon data set, 

the highest LOOCV accuracy was 93.55% using 446 genes. The best performances for the 

leukemia and colon data sets were found in the fourth and seventh experiments, respectively,  

while for the lung and MLL data sets, the best performances have been found in the seventh 

experiments.  

 In Tables 2.5 and 2.6, the LOOCV accuracy, the test accuracy, and the number of 

selected genes are given in parentheses. The average results are given in the parentheses and 

the best results are highlighted in the shaded cells. This table shows that the performances of 

MOGASVM were better than that of GASVM and SVM in terms of the LOOCV accuracy, 

the test accuracy, and the number of selected genes on average and for the best results. In 

general, MOGASVM reduces the number of genes to about a quarter of the total, whereas 

GASVM reduces the number to about a half of the total. This is due to the ability of 

MOGASVM to search different regions of a solution space simultaneously, and therefore, it 

is possible to find a diverse set of solutions in a high-dimensional space. Moreover, it may 
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also exploit the structures of good solutions with respect to different objectives to create new 

nondominated solutions in unexplored parts of the Pareto optimal set. This suggests that gene 

selection using the multi-objective approach is needed for disease classification of gene 

expression data. 

 

 

2.4 Summary 
 

In this chapter, MOGASVM has been designed, developed, and analyzed to solve gene 

selection problems. By performing experiments on MOGASVM, the present work found that 

the classification accuracy and the number of selected genes for both data sets fluctuated and 

were not equal when using different values of 1w  and 2w . This result shows that there are 

many irrelevant genes in gene expression data, and some of them act negatively on the 

accuracy acquired by the relevant genes. Generally, MOGASVM achieved significant 

LOOCV accuracy, test accuracy, and the number of selected genes, and was better than 

GASVM (single-objective) and SVM because its multi-objective strategy could find a diverse 

solution in a Pareto optimal set. MOGASVM can also be extended to other applications such 

as pattern recognitions, computer visions, and cognitive sciences. However, MOGASVM did 

not achieve the greatest accuracy, and the number of selected genes was still high. Therefore, 

the next chapter (Chapter 3) will propose GASVM-II+MOGASVM to reduce the number of 

selected genes and increase classification accuracy.  
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Chapter 3 

An Approach Using Two Hybrid Methods 
 

 

3.1 Introduction 
 

Mohamad et al. [23] have reported that a hybrid of GAs and SVMs (GASVM), and also an 

improved GASVM called GASVM-II which has both advantages and disadvantages. This 

present work proposes a new approach called GASVM-II+MOGASVM which utilizes the 

advantages of MOGASVM and GASVM-II. The advantage of MOGASVM is that it can 

automatically select and optimize a number of genes to produce a gene subset. However, it 

performs poorly with high-dimensional data. In contrast, GASVM-II performs well with 

high-dimensional data. It can also reduce the complexity of search spaces, and may be able to 

evaluate all possible subsets of genes. Nevertheless, the drawback of GASVM-II is that it 

selects a number of genes manually to yield a gene subset. Therefore, this chapter proposes 

and describes an approach using two hybrid methods for selecting informative genes. It is 

developed to improve the performances of MOGASVM and GASVM-II. 

 

 

3.2 The Proposed Approach 
 

Figure 3.1 shows that the flowchart of GASVM-II+MOGASVM involves two phases. In the 

first phase, GASVM-II is applied to manually select genes from the overall gene expression 

data in order to produce a subset of genes. It is used to reduce the dimensionality of the data, 

and therefore, the complexity of the search or solution spaces can also be decreased. 
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Fig.3.1. The flowchart of GASVM-II+MOGASVM. 

 

In the second phase, MOGASVM is used to select and optimize a small subset of 

informative genes from the subset that is produced by the first phase. If the size of the subset 

is small and the combination of genes is not complex, MOGASVM can easily find and 

optimize the subset. MOGASVM is applied because it can automatically select a number of 
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genes and finally produce an optimized gene subset. This second phase can also remove 

noisy genes because the first phase has reduced the size and complexity of the search spaces. 

The fitness of individuals is calculated as follows: 

 

1 2( ) ( ) ( ( ( )) / )fitness x w A x w M R x M= × + × −  (3.1)

 

in which ( ) [0,1]A x ∈ is the LOOCV accuracy on the training data using only the expression 

values of the selected genes in a subset x , and ( )R x is the number of selected genes in x . M  

is the total number of genes, and 1w  and 2w  are two priority weights corresponding to the 

importance of accuracy and the number of selected genes, respectively, where 1 [0.1,0.9]w ∈  

and 2 11 .w w= −  In this chapter, the accuracy is more important than the number of selected 

genes.  

 

 

3.3 Experimental Results 
 

3.3.1 Data set 
 

Four benchmark gene expression data sets are used to evaluate the proposed approach, i.e., 

those for leukemia cancer, colon cancer, lung, and MLL. The summary of the data sets has 

been shown on Table 2.1 in Chapter 2. For the leukemia cancer, lung cancer, and MLL 

cancer data sets, LOOCV is applied on the training set, and an accuracy test measurement is 

carried out on the test set to measure the classification accuracy. However, for the colon 

cancer data set, only the LOOCV procedure is used because this data set only has the training 

set. 

 

 

 

 

 



 23

3.3.2 Experimental Setup 
 

Table 3.1 contains the parameter values for GASVM-II+MOGASVM. These values are 

chosen based on the results of preliminary runs. In order of importance, three criteria are 

considered to evaluate the performances of the proposed approach; test accuracy, LOOCV 

accuracy, and the number of selected genes. 

 

Table 3.1. Parameters of the proposed approach (GASVM-II+MOGASVM). 

                             Data Set 
    Parameters 

Leukemia  Colon  Lung  MLL  

No. populations 100 100 100 100 

No. generations 1000 1000 1000 1000 
Replacement rate (Roulette wheel 
selection) 0.8 0.8 0.8 0.8 

Crossover rate (Two-point) 0.7 0.7 0.7 0.7 

Mutation rate (Flip & gaussian) 0.01 0.01 0.01 0.01 

1w  0.8 0.7 0.7 0.7 

2w  0.2 0.3 0.3 0.3 

Cost for generalization of SVMs  100 100 0.7 100 
 

 The experimental results presented in this section pursue two objectives. The first 

objective is to show that gene selection using GASVM-II+MOGASVM is needed for better 

classification of the gene expression data. The second objective is to show that GASVM-

II+MOGASVM is better than GASVMs (single-objective and multi-objective) and GASVM-

II. To achieve these objectives, several experiments are conducted on the proposed approach, 

10 times on each data set. In the first stage, different numbers of preselected genes are chosen 

(10, 20, 30,..., 600). Furthermore, in the second stage, GASVM chooses a number of the final 

selected genes automatically. Lastly, it produces an optimized gene subset that contains the 

final selected genes. The subset that produces the highest LOOCV accuracy with the least 

possible number of selected genes is chosen as the best subset. SVM, GASVMs, and 

GASVM-II were also experimented for comparison with GASVM-II+MOGASVM.  
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Table 3.2. Classification accuracies for different gene subsets using GASVM-

II+MOGASVM (10 runs on average). 

Average for the leukemia data set Average for the colon data set 

Accuracy (%) 
No. 

preselected 
genes LOOCV Test 

No. final 
selected 
genes 

LOOCV 
accuracy 

(%) 

No. final 
selected genes 

600 100 ± 0 77.94 ± 8.00 34.5 ± 3.92 98.23 ± 0.51 58.5 ± 4.81 

400 100 ± 0 76.77 ± 10.78 11.9 ± 1.66 99.52 ± 0.78 26.9 ± 4.70 

200 100 ± 0 76.47 ± 8.20 3.2 ± 0.79 99.52 ± 0.78 10.7 ± 2.00 

100 100 ± 0 69.71 ± 11.52 3.1 ± 0.74 98.39 ± 3.48 9.9 ± 1.20 

90 100 ± 0 77.35 ± 5.20 4.3 ± 1.16 99.03 ± 1.13 11.6 ± 2.01 

80 100 ± 0 74.41 ± 9.51 4.0 ± 1.49 99.36 ± 0.83 11.8 ± 3.12 

70 100 ± 0 69.71 ± 11.01 4.4 ± 1.35 99.52 ± 0.78 11.6 ± 2.17 

60 100 ± 0 75.59 ± 7.08 19.4 ± 15.59 98.87 ± 1.09 9.8 ± 1.75 

50 100 ± 0 73.24 ± 6.42 4.8 ± 1.14 96.94 ± 4.20 9.8 ± 1.48 

40 100 ± 0 67.06 ± 10.26 4.8 ± 2.15 97.74 ± 3.42 10.7 ± 1.89 

30 100 ± 0 71.77 ± 8.34 4.8 ± 1.69 96.94 ± 4.84 8.6 ± 1.84 

20 100 ± 0 74.71 ± 12.10 4.5 ± 1.72 94.03 ± 7.37 7.0 ± 3.09 

10 100 ± 0 85.88 ± 8.86 4.4 ± 1.35 92.74 ± 6.90 6.0 ± 3.23 

Note: The results of the best subsets are shown in the shaded cells. 
 

 

3.3.3 Result analysis and discussion 
 

Table 3.2 shows that the highest averages of LOOCV and test accuracies for classifying 

leukemia cancer samples are 100% and 85.88%, respectively, while 99.52% LOOCV 

accuracy is obtained for the colon data set. Figure 3.2 shows that GASVM-II+MOGASVM 

has produced 100% LOOCV accuracy and 94.16% test accuracy for the lung data set, while 

Fig. 3.3 displays the highest averages of LOOCV accuracy and test accuracy for the MLL 

data set are 100% and  92%, respectively. In Table 3.2, Fig. 3.2, and Fig. 3.3, the values of 

the form x y±  represent an average value x  with a standard deviation y . 
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Fig. 3.2. A relation between the classification accuracies and the numbers of selected genes 

on the lung data set (10 runs on average). 

 

 

100±0

100±0

100±0100±099.65±0.7499.65±0.7499.3±01.23

99.47±0.8599.82±0.55100±099.65±1.11

99.65±0.74

100±0

85.33±6.8992±8.2

74±9.66
77.33±14.47

75.33±8.92

83.33±9.56

80±9.43

74±12.35
72.67±11.53

79.33±11.95

79.33±12.35

76±10.52

86.67±7.7

6.7±1.16

29.1±1.79

13.5±1.08

7.4±1.9

8.4±1.9

8.2±2.25

8.6±2.12

8.4±1.78

8.7±1.57
8.3±1.49

7.7±2.31

8.1±2.33

6.5±0.71

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90 100 200 400 600
No. Preselected Genes

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

5

10

15

20

25

30

N
o.

 F
in

al
 S

el
ec

te
d 

G
en

es

LOOCV Test No. Final Selected Genes

 
Fig. 3.3. A relation between the classification accuracies and the numbers of selected genes 

on the MLL data set (10 runs on average). 
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Table 3.3. The result of the best gene subsets in 10 runs. 

Data set No. preselected 
genes 

LOOCV 
(%) 

Test  
(%) 

Experiment  
no.  

No. final 
selected genes 

Leukemia 10 100 97.06 2;4;5 2 
Colon 70 100 - 1 9 
Lung 40 100 98.66 2;6;7;8;9;10 2 
MLL 100 100 100 1;2;6;9 6 

 

 

Table 3.4. The benchmark of GASVM-II+MOGASVM with GASVMs and SVM on the 

leukemia and colon data sets. 

Leukemia data set  
(Average; the best) 

Colon data set  
(Average; the best) 

Accuracy (%) Method No. final  
selected  
genes LOOCV Test 

No. final  
selected  
genes 

LOOCV  
Accuracy  

(%) 

GASVM-
II+MOGASVM 

(3.4 ±  
1.35; 2) 

(100 ±  
0; 100) 

(85.88 ±  
8.86; 97.06) 

(11.6 ±  
2.17; 9) 

(99.52 ±  
0.78; 100) 

GASVM-II (10 ±  
0; 10) 

(100 ±  
0; 100) 

(81.18 ±  
10.21; 94.12) 

(30 ±  
0; 30) 

(99.03 ±  
0.83; 100) 

MOGASVM (2,212.6 ±  
26.63; 2,252) 

(95.53 ±  
1.27; 97.37) 

(84.41 ±  
2.42; 88.24) 

(446.3 ±  
18.90; 446) 

(93.23 ±  
1.02; 95.16) 

GASVM (single-
objective) 

(3,574.9 ±  
40.05; 3,531) 

(94.74 ±  
0; 94.74) 

(83.53 ±  
2.48; 88.24) 

(979.8 ±  
35.80; 940) 

(91.77 ±  
0.51; 91.94) 

SVM (7,129 ±  
0; 7,129) 

(94.74 ±  
0; 94.74) 

(85.29 ±  
0; 85.29) 

(2,000 ±  
0; 2,000) 

(85.48 ±  
0; 85.48) 

Note: The best results are shown in the shaded cells. 
 

 Only 4.4 and 11 genes (the values of averages) were finally selected to obtain the 

highest averages of the accuracies of the leukemia and colon data sets, whereas 2.1 and 6.5 

average genes were selected in the lung and MLL data sets. Almost all the different numbers 

of preselected genes and the final selected genes have obtained 100% LOOCV accuracy on 

the leukemia, lung, and MLL data sets. This result has proven that the proposed approach 

searches and selects the near-optimal solution (the best gene subset) in the solution space 
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successfully. However, the LOOCV accuracies on the three data sets were much higher than 

the test accuracy due to over-fitting of these data sets. Over-fitting is a major problem in the 

classification of gene expression data when the LOOCV accuracy is much higher than the test 

accuracy. This problem happens because the number of training samples is smaller than the 

number of test samples, and many expression values of the test samples may be different 

from those of the training samples. Table 3.3 shows that the best performance of the best 

subsets of all the data sets.  

 

 

Table 3.5. The benchmark of GASVM-II+MOGASVM with GASVMs and SVM on the lung 

and MLL data sets. 

Lung data set  
(Average; the best) 

MLL data set  
(Average; the best) 

Accuracy (%) Accuracy (%) Method No. final  
selected  
genes LOOCV Test 

No. final  
selected  
genes LOOCV  Test 

GASVM-
II+MOGASVM 

(2.1 ±  
0.32;  

2) 

(100 ±  
0;  

100) 

(94.16 ± 
6.85; 

98.66) 

(6.5 ±  
0.71;  

6) 

(100 ±  
0;  

100) 

(92 ±  
8.20;  
100) 

GASVM-II 
(10 ±  

0;  
10) 

(100 ±  
0;  

100) 

(59.33 ± 
29.32; 
97.32) 

(30 ±  
0;  

30) 

(100 ±  
0;  

100) 

(84.67 ±  
6.33;  

93.33) 

MOGASVM 
(4,418.5 ±  

50.19; 
4,433) 

(75.31 ±  
0.99; 

78.13) 

(85.84 ± 
3.97; 

93.29) 

(4,465.2 ± 
18.34; 
4,437) 

(94.74 ±  
0; 

94.74) 

(90 ±  
3.51;  

93.33) 
GASVM 
(single-
objective) 

(6,267.8 ±  
56.34; 
6,342) 

(75 ±  
0;  

75) 

(84.77 ± 
2.53; 

87.92) 

(6,298.8 ± 
51.51; 
6,224) 

(94.74 ±  
0; 

94.74) 

(87.33 ±  
2.11;  

86.67) 

SVMs  
(12,533 ±  

0;  
12,533) 

(65.63 ±  
0;  

65.63) 

(85.91 ± 
0; 

85.91) 

(12,582 ± 
0;  

12,582) 

(92.98 ±  
0; 

92.98) 

(86.67 ±  
0;  

86.67) 
Note: The best results are shown in the shaded cells.  

 

 The benchmark of the proposed approach comparing GASVM-II, GASVMs (single-

objective and multi-objective), and SVM is summarized in Table 3.4 and Table 3.5. The 

LOOCV accuracy, the test accuracy, and the number of selected genes are written in 
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parentheses; the first and second parts are the averages and the best results, respectively. 

GASVM-II+MOGASVM outperformed GASVM-II, GASVMs, and SVM in terms of 

LOOCV accuracy, test accuracy, and the number of selected genes on average and the best 

results. Generally, GASVM-II was better than GASVMs and SVM on all the data sets. A 

small gene subset that is produced by GASVM-II+MOGASVM results in the high 

classification accuracy. This suggests that gene selection using the proposed approach is 

useful for cancer classification of gene expression data. 

 

 

3.4 Summary 
 

In this chapter, an approach using two hybrid methods (GASVM-II+MOGASVM) has been 

proposed, developed, and analyzed for gene selection and cancer classification. This research 

found that many combinations of gene subsets that did not contain equal numbers of genes 

produced different classification accuracy. This finding suggests that there are many 

irrelevant and noisy genes in gene expression data. In addition, the performance of GASVM-

II+MOGASVM were superior to those of GASVM-II, GASVMs, and SVM. Focusing 

attention on a small subset of genes is useful not only because it produces good classification 

accuracy, but also because informative genes in this subset may provide insights into the 

mechanisms responsible for the cancer itself. The proposed approach can also be applied in 

other applications such as robotics, computer intrusion detections, and computer graphics. 

Even though the approach has classified tumors with high accuracy, it still cannot avoid the 

over-fitting problem. A cyclic hybrid method in Chapter 4 will study on how to find a good 

way to reduce the risk of the over-fitting problem and select a smaller subset of genes for 

cancer classification.  
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Chapter 4 

A Cyclic Hybrid Method 
 

 

4.1 Introduction 
 

At the moment, several hybrid methods, especially combinations between GAs and SVMs 

(GASVM), have been implemented to select informative genes [13],[18],[20],[23],[25],[29]. 

The drawbacks of the hybrid methods (GASVM-based methods) in the previous works are 

intractable to efficiently produce a small (near-optimal) subset of informative genes when the 

total number of genes is too large (high-dimensional data); and the high risk of over-fitting 

problems. In order to overcome the limitations of the previous works and solve the problems 

derived from gene expression data, this chapter introduces and proposes a cyclic GASVM-

based method (C-GASVM). This proposed method is optimal in the sense that it minimizes 

the number of selected genes and maximizes the classification accuracy. 

 

 

4.2 Previous Works 
 

Several hybrid methods, i.e., GASVM-based methods have been proposed for genes selection 

of gene expression data [13],[18],[20],[23],[25],[29]. Generally, the previous GASVM-based 

methods performed well in high-dimensional data, e.g., gene expression data since a modified 

chromosome representation and a multi-objective approach has been proposed [23],[25]. 

However, the methods yielded inconsistent results when they were run independently. 

 Li et al. [18] have proposed a GASVM-based method for the same purpose. Next, the 

work of Huang and Chang [13] can simultaneously optimize genes and SVM parameter 

settings by using a GASVM-based method. An improved GASVM-based method has been 

recently introduced in Li et al., [20] to produce a small subset of genes. Peng et al. [29] have 
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introduced a recursive feature elimination post-processing step after the step of a GASVM-

based method in order to reduce the number of selected genes again. 

 Nevertheless, the GASVM-based methods of the previous works are still intractable to 

produce a near-optimal subset of genes from high-dimensional data due to their binary 

chromosome representation drawback [13],[18],[20],[23],[25],[29]. The total number of gene 

subsets produced by GASVM-based methods is calculated by 2 1,M
cM = −  where cM  is the 

total number of gene subsets, and M  is the total number of genes. Based on this equation, the 

GASVM-based methods are almost impossible to evaluate all possible subsets of selected 

genes if M  is too many (high-dimensional data). Although the works of Peng et al. [25] and 

Li et al. [20] have implemented a preprocessing step to decrease the dimensionality of data, 

but it can only reduce a small number of genes, and many genes are still available in the data. 

The GASVM-based methods also face with the high risk of over-fitting problems. The over-

fitting problem that occurred on hybrid methods (e.g., GASVM-based methods) was also 

reported in a review paper written by Saeys et al. [30]. 

 

 

4.3 The Proposed Cyclic Hybrid Method 
 

This chapter proposes C-GASVM for gene selection from gene expression data. C-GASVM 

is a GASVM-based method. C-GASVM in the present work differs from the GASVM-based 

methods in the previous works [13],[18],[20],[23],[25],[29] in one major part. The major 

difference is that the proposed method involves a cyclic approach, whereas the previous 

works did not use any cyclic approach for gene selection. The flowchart of C-GASVM is 

shown in Fig. 4.1. The algorithm of C-GASVM is shown in Fig. 4.2. Basically, C-GASVM 

repeats the process of GASVM-II to produce potential subsets and reduce the dimensionality 

of data repeatedly. 
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Fig.4.1. The flowchart of C-GASVM. 
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Fig.4.2. The algorithm of C-GASVM. 

VARIABLE: 
:c  the cth cycle.    :sn  the number of selected genes. :ax tha chromosome. 
. :ax fitness  the fitness of tha chromosome. .# :ax gene  the number of genes in tha chromosome.  
:cS  a potential subset of genes of cycle c. . :cS fitness  the fitness value of .cS   
.# :cS gene  the number of genes in .cS  :gen  generation.   :N the total number of samples 
:M the total number of genes.  _ :div gene  the divider for the number of selected genes.  

INPUT: 
× +( 1) :N MG  gene expression data (training set). _ :pop num  the number of population.  
_ :gen num  the number of generation.  _ :cross rate  the rate of crossover operator.   _ :mut rate  the rate of mutation operator. 

OUTPUT: 
optS : a near-optimal subset of genes.     . :optS fitness  the fitness value of .optS    .# :optS gene  the number of genes in .optS  

Begin 
=: 0;gen   =: 1;c    =: / _ ;sn M div gene   

× += N (M 1): G ;cS  := 0;cS .fitness  := ;cS .#gene M   

:=0;Sopt   :=0;optS .fitness  := 0;optS .#gene  

while ( >.# 1cS gene ) do    // Step 1: Starting a cyclic process 
for = ≤ + +( 1; _ ; )a a pop num a  

                =: (int, , );a s cx initialise n S    
end_for 

    while ( < )gen gen_num  do  // Step 2: Starting GASVM-II to produce a potential gene subset 
for = ≤ + +( 1; _ ; )a a pop num a  

   ( );aSVM x  
   = × + × −1 2. : ( ) ( ( ( ))/ );a a ax fitness w A x w M R x M    
end_for 

_ ( _ , );selection method roulette wheel gen  

( _ , _ );crossovertwo point cross rate        

( , _ );mutationgaussian mut rate  

= +: 1;gen gen  
end_while   // Step 3: Ending GASVM-II 
return ( );cS     // Step 4: Producing and saving the potential subset for the cycle c  

     if >( . 100)cS #gene  then  // Step 5: Selecting  a number of genes for the next cycle (cycle c+1) 
=: . / _ ;s cn S #gene div gene   

 if <( 100)sn  then 
=: 100;sn   

 end_if 
end_if 
else if < ≤(10 . 100)cS #gene  then 

= −: . 10;s cn S #gene  
end_else_if 
else if < ≤(1 . 10)cS #gene  then 

= −: . 1;s cn S #gene   
  end_else_if      // Step 6: Ending the selection process 

           = +: 1;c c    =: 0;gen  
end_while      // Step 7: Ending the cyclic process 
for = < + +( 0; ; )i i c i     // Step 8: Compare and select an optimal subset among potential subsets 

if >( . )i optS fitness S .fitness  then    

   =: ;opt iS S   .opt iS fitness = S .fitness;   .opt iS #gene = S .#gene;  

            end_if 
end_for 
return ( );optS          // Step 9: Producing a near-optimal subset of selected genes 

End 
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4.3.1 Chromosome representation for C-GASVM 
 

The present work uses integer chromosome representation in C-GASVM in order to 

overcome the limitation of the binary chromosome representation in previous related works 

[13],[18],[20],[25],[29]. The present work modifies the mechanism of gene selection of C-

GASVM based on the representation to efficiently select gene subsets from high-dimensional 

data. The modification idea is based on Eq.(4.1) to reduce the number of gene subsets by 

fixing the number of selected genes. The fixing process is automatically done by a cyclic 

process in C-GASVM for each cycle. 

 

!
!( )!M x

My C
x M x

= =
−

 (4.1)

 

where M xC is the total number of subsets of selected genes x from the total number of genes 
.M  

 

 

 
 

Fig.4.3. A relation between the number of subsets y and the number of selected genes x from 

the total number of genes M. 

 

 Figure 4.3 shows a graph based on Eq.(4.1). A maximum number of subsets are reached 

when the number of selected genes is chosen at M/2. Hence, the selection number at M/2 or 
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about M/2 should be avoided. If the selection uses the number, C-GASVM is impossible to 

evaluate all subsets due to the huge number of subsets. Conversely, all subsets of genes are 

possible evaluated if a small or large number of the selected genes are chosen. In this 

research, C-GASVM only chooses the large number of selected genes in each cycle in order 

to avoid an over-fitting problem. If the selection chooses the small number, C-GASVM faces 

with the problem. This is reported and proved by the subsection of experimental results in 

this chapter. 

  

 
1g  2g  … 1−sng  sng  

 

 

 

 

 

Fig.4.4. Integer chromosome representation in C-GASVM. 

 

Therefore, in C-GASVM, the chromosome representation is modified as shown in Fig. 

4.4 which has integer representation. It includes values of integers jg  that indicate which 

genes are needed to be selected among the total genes in a data set. For example, if 10,=jg  

then C-GASVM selects the 10th gene from the data set, and groups it into a subset of genes. 

The number of selected genes is represented by .sn  The number of jg  in a chromosome is 

equal to .sn  The binary chromosome representation of GASVM-based methods in the related 

previous works [13],[18],[20],[25],[29] is encoded with all genes and its size depends entirely 

on the total number of genes, .M  In contrast, the integer chromosome representation in C-

GASVM is only encoded with a number of selected genes that is automatically fixed by the 

cyclic process. Hence, the total number of genes, M does not really affect the size (length) of 

the chromosome so as to keep its size relatively small. Its size can vary according to M  and 

sn . The size of chromosomes and the number of selected genes are also the same for a 

similar cycle, but they are different for dissimilar cycles. Finally, a chromosome (a gene 

Note:  
sn = a number of selected genes from an input set ( 1cS − ), 1 .sn M≤ ≤   

M =  the total number of genes in an input set ( 1cS − ).  
jg  = an integer value in a chromosome, 1 .jg M≤ ≤   

j =  the jth gene in a chromosome, 1 .sj n≤ ≤   
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subset) is represented as 11 2( , ,..., , ).s sn nx g g g g−=  For example, the tha chromosome is 

represented by 11 2( , ,..., , ).s sn n
a a a a ax g g g g−=  

 

 

4.3.2 A fitness function for C-GASVM 
 

A fitness value of individuals (gene subsets) is calculated as follows: 

 

1 2( ) ( ) ( ( ( )) / )fitness x w A x w M R x M= × + × −  (4.2)

 

where [ ]( ) 0,1A x ∈ is the LOOCV accuracy on the training set using the only expression 

values of the selected genes in a gene subset, .x  This accuracy is provided by SVM. ( )R x  is 

the number of selected genes in .x M  is the total number of genes for each sample in the 

training set. 1w  and 2w are two priority weights corresponding to the importance of accuracy 

and the number of selected genes, respectively, where [ ]1 0.1,0.9w ∈  and 2 11 .w w= −  

 

 

4.4 Experiments 

 

4.4.1 Data sets 
 

Five real gene expression data sets that contain binary classes and multi-classes are used to 

evaluate the performance of C-GASVM; leukemia, colon, lung, and mixed-lineage leukemia 

(MLL), and small round blue cell tumors (SRBCT) data sets. The summary of the first four 

data sets has been shown on Table 2.1 in Chapter 2. The SRBCT data set is a multi-classes 

data set. It has four classes; ewing family of tumors (EWS), rhabdomyosarcoma (RMS), 

neuroblastoma (NB), and burkitt lymphomas (BL). The training set contains 63 samples (22 

EWS, 20 RMS, 12 NB, and 8 BL), whereas the test set contains 20 samples (6 EWS, 5 RMS, 
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6 NB, and 3 BL). There are 2,308 genes in each sample. It can be downloaded at 

http://research.nhgri.nih.gov/microarray/Supplement/. 

 

 

4.4.2 Experimental setup 
 

Since the number of training samples in gene expression data is small, the accuracy on the 

training set is calculated through the LOOCV procedure. For the test accuracy, SVM is built 

using all the training samples, and the classes of test samples from the test set are predicted 

one by one using the SVM. The test accuracy is estimated by the number of the correctly 

classified test samples, divided by the number of samples in the test set. 

Table 4.1 contains parameter values for C-GASVM. These values are chosen based on 

the results of preliminary runs. Three criteria following their importance are considered to 

evaluate the performances of C-GASVM and other experimental methods; test accuracy, 

LOOCV accuracy, and the number of selected genes. Higher accuracy and a smaller number 

of selected genes are needed to obtain an excellent performance. 

 

Table 4.1. Parameter settings for C-GASVM. 

      Data set 
    Parameters Leukemia Colon SRBCT Lung MLL 

No. populations 50 50 50 50 50 
No. generations 100 100 100 100 100 
Replacement rate (Roulette 
wheel selection) 0.8 0.8 0.8 0.8 0.8 

Crossover rate (Two-point) 0.7 0.7 0.7 0.7 0.7 
Mutation rate (Gaussian) 0.01 0.01 0.01 0.01 0.01 

1w  0.8 0.7 0.8 0.7 0.7 

2w  0.2 0.3 0.2 0.3 0.3 

div_gene 1.33 1.25 1.33 1.33 1.33 
Cost for generalization of SVMs 100 100 100 0.7 100 
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Experimental results presented in this chapter pursue four objectives. The first objective 

is to show that a gene selection using C-GASVM is needed to produce a small (near-optimal) 

subset of informative genes for better classification accuracy.  The second objective is to 

display a scatter gene graph and a list of informative genes in the best subsets produced by C-

GASVM for biological usage. The third objective is to show that C-GASVM is better than 

other experimental methods such as GASVM (single-objective), MOGASVM, GASVM 

version 2 (GASVM-II), and SVM. The last objective is to compare C-GASVM with other 

previous works that only used GASVM-based methods. To achieve the four objectives, 

several experiments are conducted 10 times on each data set using C-GASVM and other 

experimental methods. Next, an average result of the 10 independent runs is obtained. A 

near-optimal subset that produces the highest classification accuracies with the possible least 

number of genes is selected as the best subset. 

 

 

4.4.3 LOOCV and test accuracies of selected genes with C-GASVM 
 

Table 4.2 shows the classification accuracy for each run using C-GASVM on all data sets. 

Interestingly, almost all runs have achieved 100% LOOCV accuracy on all data sets. This has 

proven that C-GASVM has efficiently selected and produced the near-optimal solution in a 

solution space. This is due to the fact of its ability to automatically reduce the dimensionality 

and complexity of the solution space on a cycle by cycle basis. C-GASVM also removes 

irrelevant and noisy genes in order to yield the high accuracy. The small gene subsets that are 

produced by the proposed C-GASVM result in the high classification accuracy.  

Generally, near-optimal subsets that obtained from almost all run on the data sets 

contain less than 10 genes. This is inline with the diagnostic goal of developed medical 

procedures that needs the least number of possible informative genes to detect diseases. The 

conservativeness of the results in Table 4.2 is controlled and maintained by the cyclic 

approach and the fitness function of C-GASVM that maximizes the classification accuracy 

and meanwhile, minimizes the number of selected genes. 
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Table 4.2. Classification accuracies for each run using C-GASVM. 

Data set Run# 
Evaluation 1 2 3 4 5 6 7 8 9 10 Average ± 

S.D. 

LOOCV (%) 100 100 100 100 100 100 100 100 100 100 100 ± 0 

Test (%) 88.24 88.24 88.24 88.24 88.24 91.18 91.18 94.12 82.35 88.24 88.82 ± 3.04 Leukemia 

#Genes 5 2 2 2 2 2 3 2 7 2 2.9 ± 1.73 

LOOCV (%) 100 100 100 100 100 100 100 100 100 100 100 ± 0 

Test (%) 90 85 80 85 80 85 85 85 85 85 84.5 ± 2.84 SRBCT 

#Genes 20 7 6 7 7 7 7 7 7 8 8.3 ± 4.14 

LOOCV (%) 100 98.39 100 100 100 98.39 98.39 96.77 100 98.39 99.03 ± 1.13 
Colon  

#Genes 30 20 30 20 10 20 30 40 20 20 24 ± 8.43 

LOOCV (%) 100 100 100 100 100 100 100 100 100 100 100 ± 0 

Test (%) 94.63 93.96 94.63 90.60 93.96 98.66 94.63 94.63 90.60 90.60 93.69 ± 2.52 Lung 

#Genes 2 5 2 2 5 4 2 2 2 2 2.80 ± 1.32 

LOOCV (%) 100 100 100 100 100 100 100 100 100 100 100 ± 0 

Test (%) 100 93.33 93.33 86.67 80.00 86.67 93.33 93.33 93.33 93.33 91.33 ± 5.49 MLL  

#Genes 20 8 20 20 10 10 8 8 8 8 12.0 ± 5.58 
Note: The results of the best subsets of each data set are shown in the shaded cells. S.D. denotes the standard deviation, whereas 
Run# and #Genes represent a run number and a number of selected genes, respectively. The colon data set only has LOOCV 
accuracy since it only has the training set. 
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 Practically, the best subset of a data set is firstly chosen and the genes in it are then 

listed for biological usage. These informative genes among the thousand of genes may be the 

excellent candidates for clinical and medical investigations. Biologists can save much time 

since they can directly refer to the genes that have high possibility to be useful for cancer 

diagnosis and drug target in the future. The best subset is chosen based on the highest 

classification accuracy with the smallest number of selected genes. The highest accuracy 

gives confidence to us for the most accurate classification of cancer types. Moreover, the 

smallest number of selected genes for cancer classification can reduce the cost in clinical 

settings. 

 

 

4.4.4 A list of informative genes for biological usage 
 

Informative genes in the best gene subsets as produced by the proposed C-GASVM and 

reported in Table 4.2 are listed in Table 4.3. A gene accession number or probe-set name is 

used for searching the biological information of genes in the public database of genes. Some 

of these genes are already identified to be highly possible clinical markers for cancer 

diagnosis by biological research. For example, the patent of the United States entitled 

“Methods and Compositions for the Identification, Assessment, and Therapy of Human 

Cancers” (Patent number: 7338758; Publication date: March 4, 2008) has found the gene 

D50930 as highly expressed and sensitive genes. Furthermore, the gene Y00638 was 

identified by another patent in the United States (Patent number: 7011947; Publication date: 

March 14, 2006) as an over-expressed gene in MLL compared to ALL. Some of the 

remaining genes may be the excellent candidates for further clinical investigation. 

Since only two genes were found in the best subset of the leukemia data set, it became 

possible to visualize the gene expression profiles with respect to the distinct leukemia 

subtypes (ALL and AML). Only samples in the training set of the best subset were picked to 

generate a graph because they have achieved 100% LOOCV accuracy with the smallest 

number of selected genes. Figure 4.5 shows the scatter graph of combinations of two-genes 

(Gene X59417 versus Gene X95735). In this graph, the clusters of ALL and AML are clear 

and the boundary can be easily drawn. Finally, the following simple prediction rules are 
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obtained, which helps biologists to make an accurate diagnosis of the two subtypes of 

leukemia samples: 

• A sample has ALL if and only if the expression level of the Gene X95735 is less than 

-0.53. 

• A sample has AML if and only if the expression level of the Gene X95735 is higher 

than -0.50. 

 

 

Fig.4.5. The scatter graph of the two-genes in the best subset of the leukemia data set. The 

vertical axis represents the value of expression levels of Gene the X95735, whereas the 

horizontal denotes the value of expression levels of the Gene X59417. 

 

 

 

 

 

 

 

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1

Gene X59417

G
en

e 
X

95
73

5

ALL AML



 41

Table 4.3. The list of informative genes in the best gene subsets. 

Data set Run 
no. 

Probe-set name /  
Image ID 

Gene accession number /  
Gene card identifier 

36122_at X59417 Leukemia 8 36958_at X95735 
884867 GC14P102870 
868304 GC10M090684 
1323448 GC14P105024 
450152 GC09P000263 
298963 GC14P104957 
725188 GC02P063727 
823696 GC10P091142 
295985 GC07M092072 
139705 GC13M072181 

SRBCT 1 

244652 GC09P130485 
NA T95318 
NA M64445 
NA H69872 

1291_s_at L03840 
NA J03210 

32135_at U00968 
NA T96873 

38119_at X12496 
NA R81170 

Colon 5 

NA K03474 
32551_at U03877 
33634_at AF038007 
35708_at W27414 Lung  6 

36938_at U70063 
33636_at U87459 
34129_at AB023223 
34583_at U02687 
34441_at AF052090 
37832_at AL080062 
38601_at AF073500 
39212_at AF038179 
35659_at U00672 
40143_at D50930 

40520_g_at Y00638 
41750_at D49489 
33863_at U65785 
35804_at AB022785 
41594_at M64174 

MLL 1 

326_i_at HG1800 
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4.4.5 C-GASVM versus other experimental methods 
 

The benchmark of C-GASVM in comparison with other experimental methods that have been 

experimented in this work is summarized in Table 4.4. GASVM (single-objective) is 

developed to implement a single-objective approach in its fitness function, while 

MOGASVM is developed for multi-objective approach. Binary chromosome representation 

has been used in these hybrid methods. GASVM-II and C-GASVM are almost the same in 

terms of chromosome representations, algorithms, etc. The difference is that GASVM-II not 

implement the cyclic process in its mechanism. It is developed to prove that an over-fitting 

problem is happen when the selection using a small number of selected genes, and compare 

its experimental results with C-GASVM. 

Overall, the LOOCV and test accuracies of C-GASVM for all the data sets were higher 

than MOGASVM, GASVM (single-objective), GASVM-II, and SVM. Moreover, the number 

of selected genes by using C-GASVM was also lower. Based on the standard deviations of 

LOOCV accuracy, test accuracy, and the number of selected genes, C-GASVM was also 

more consistent than the other experimental methods except for SVM. SVM achieved 0 for 

the standard deviations in all experiments since it did not implement any gene selection 

approach. The gap between LOOCV accuracy and test accuracy that resulted by C-GASVM 

was also lower. This small gap shows that the risk of the over-fitting problem can be reduced. 

On the other hand, the results of LOOCV accuracy of the others were much higher than their 

test accuracy because they were unable to avoid or reduce the risk of over-fitting problems. 

Over-fitting is a major problem of hybrid methods in classification of gene expression data 

when the classification accuracy on training samples, e.g., LOOCV accuracy is much higher 

than the test accuracy. This problem occurred in gene expression data because the number of 

genes greatly exceeds the number of samples, and many patterns of the test samples may be 

different from those of the training samples. 
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Table 4.4. The benchmark of C-GASVM with other experimental methods. 

Data set 
Experiment

Evaluation 
C-GASVM GASVM-II 

 [23] 
MOGASVM 

 [25] 
GASVM 

 [23] 
SVM 
 [25] 

LOOCV 
(%)  

(100 ±  
0; 100) 

(100 ±  
0; 100) 

(95.53 ±  
1.27; 97.37) 

(94.74 ±  
0; 94.74) 

(94.74 ± 
0; 94.74) 

Test (%)    (88.82 ±  
3.04; 94.12)

(81.18 ±  
10.21; 94.12) 

(84.41 ±  
2.42; 88.24) 

(83.53 ±  
2.48; 88.24) 

(85.29 ± 
0; 85.29) 

Leukemia 
(Average 

± S.D; The 
best) 

No. selected 
genes  

(2.9 ±  
1.73; 2) 

(10 ±  
0; 10) 

(2,212.6 ±  
26.63; 2,252) 

(3,574.9 ±  
40.05; 
3,531) 

(7,129 ± 
0; 7,129) 

LOOCV 
(%)  

(99.03 ±  
1.13; 100) 

(99.03 ±  
0.83; 100) 

(93.23 ±  
1.02; 95.16) 

(91.77 ±  
0.51; 91.94) 

(85.48 ± 
0; 85.48) 

Colon 
(Average 

± S.D; The 
best) 

No. selected 
genes  

(24 ±  
8.43; 10) 

(30 ±  
0; 30) 

(446.3 ±  
18.90; 446) 

(979.8 ±  
35.80; 940) 

(2,000 ± 
0; 2,000) 

LOOCV 
(%)  

(100 ±  
0; 100) 

(99.84 ±  
0.50; 100) 

(100 ±  
0; 100) 

(98.41 ±  
0; 98.41) 

(98.41 ± 
0; 98.41) 

Test (%)   (84.5 ±  
2.84; 90) 

(68 ±  
9.49; 85) 

(81.5 ±  
7.47; 85) 

(78.5 ±  
3.38; 85) 

(80 ±  
0; 80) 

SRBCT 
(Average 

± S.D; The 
best) 

No. selected 
genes  

(8.3 ±  
4.14; 20) 

(10 ±  
0; 10) 

(444.7 ±  
19.09; 429) 

(1146 ±  
10.33; 
1134 ) 

(2,308 ± 
0; 2,308) 

LOOCV 
(%)  

(100 ±  
0; 100) 

(100 ±  
0; 100) 

(75.31 ±  
0.99; 78.13) 

(75 ±  
0; 75) 

(65.63 ± 
0; 65.63) 

Test (%)   (93.69 ±  
2.52; 98.66)

(59.33 ±  
29.32; 97.32) 

(85.84 ±  
3.97; 93.29) 

(84.77 ±  
2.53; 87.92) 

(85.91 ± 
0; 85.91) 

Lung 
(Average 

± S.D; The 
best) 

No. selected 
genes  

(2.80 ±  
1.32; 4) 

(10 ±  
0; 10) 

(4,418.5 ±  
50.19; 4,433) 

(6,267.8 ±  
56.34; 
6,342) 

(12,533 ± 
0; 

12,533) 
LOOCV 

(%)  
(100 ±  
0; 100) 

(100 ±  
0; 100) 

(94.74 ±  
0; 94.74) 

(94.74 ±  
0; 94.74) 

(92.98 ± 
0; 92.98) 

Test (%)   (91.33 ±  
5.49; 100) 

(84.67 ±  
6.33; 93.33) 

(90 ± 
3.51; 93.33) 

(87.33 ±  
2.11; 86.67) 

(86.67 ± 
0; 86.67) 

MLL 
(Average 

± S.D; The 
best) 

No. selected 
genes  

(12.0 ±  
5.58; 20) 

(30 ±  
0; 30) 

(4,465.2 ±  
18.34; 4,437) 

(6,298.8 ±  
51.51; 
6,224) 

(12,582 ± 
0; 

12,582) 
Note: The best results of each data set are shown in the shaded cells.  S.D. denotes the standard 
deviation. The colon data set only has LOOCV accuracy since it only has the training set. 
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GASVM (single-objective) and MOGASVM cannot produce a near-optimal subset of 

informative genes because they perform poorly in high-dimensional data due to their 

chromosome representation drawback. The LOOCV accuracy of GASVM-II is much higher 

than its test accuracy. These findings prove that GASVM-II causes the over-fitting problem 

even if it uses a small numbers of selected genes. This problem happens since the small 

selections not involve many relations among genes. This method would also be difficult for 

the usage because it needs to manually select the number of genes. 

On the contrary, C-GASVM selects a large number of genes automatically in each cycle 

of the cyclic process to finally produce a small (near-optimal) subset of informative genes. 

The gap between LOOCV accuracy and test accuracy was also lower. Therefore, C-GASVM 

is more efficient than other experimental methods since it has produced the higher 

classification accuracies, smaller numbers of selected genes, smaller standard deviations, and 

smaller gap between LOOCV accuracy and test accuracy. However, due to the cyclic process, 

C-GASVM is computationally more extensive than other methods. 

 

 

4.4.6 C-GASVM versus previous related works 
 

For an objective comparison, the present work only compares C-GASVM with related 

previous works that used GASVM-based methods in their works [13],[20],[23],[25],[29]. The 

previous works also produced the average of classification accuracy results since they used 

hybrid approaches. The present work makes the comparison using the averages of LOOCV 

accuracy and the number of selected genes. This is due to the most previous works only 

evaluated the performance of their approaches using the LOOCV procedure or k-fold cross-

validation and the number of selected genes on averages. At the moment, they used high-

dimensional data such as the leukemia, SRBCT, and colon data sets for experimental usage. 

Additionally, the present work has used very high-dimensional data (more than 12,000 genes) 

such as the lung and MLL data sets to test the effectiveness of C-GASVM. The experimental 

result of the very high-dimensional data is only shown in Tables 4.2, 4.3, and 4.4. 

Table 4.5 displays the benchmark of this work and previous related works. For the 

leukemia data set, the averages of LOOCV accuracy and the number of selected genes of the 
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present work were 100% and 2.9 genes, respectively. The latest previous works such as 

Huang and Chang [13], Li et al. [28], and Peng et al. [29] also came up with the similar 

LOOCV result to the present results, but they used slightly more genes to obtain the same 

result. The LOOCV accuracy and test accuracy that produced in Mohamad et al. [23] and 

Mohamad et al. [25] were also less than the present work. 

In the present work, there was increase in the average of LOOCV accuracy (100%) for 

the SRBCT data set as compared to Huang and Chang [13]. However, the average of the 

number of selected genes (8.3 genes) was slightly higher than the previous work. The work of 

Huang and Chang [13] only achieved 98.75% LOOCV accuracy on average using 6.2 

average genes. For the colon data set, it was noted that the best result (99.03% LOOCV 

accuracy on average) of this work was higher than the best result from the latest previous 

work [28]. This work needed 24 genes on average to achieve the best result, whereas only 15 

average genes have been used in the work of Li et al. [28]. The work of Peng et al. [29] 

achieved 93.55% LOOCV accuracy on average, but they used 12 average genes. The 

LOOCV accuracy and test accuracy genes of the SRBCT and colon data sets that produced in 

Mohamad et al. [23] and Mohamad et al. [23] were also less than the present work. Overall, 

this work has outperformed the related previous works on the data sets in terms of LOOCV 

accuracy and the number of selected genes. The previous works are intractable to efficiently 

produce a near-optimal subset of genes in high-dimensional data due to their binary 

chromosome representation drawback [13],[28],[25],[29]. Although the works of Li et al. [28] 

and Peng et al. [29] have implemented a preprocessing step to decrease the dimensionality of 

data, but they can only reduce a small number of genes, and many genes are still available in 

the data. 
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Table 4.5. The comparison between C-GASVM and other previous GASVM-based methods. 

 

 

 

 

 

 

 

 

 

 

Data set 
Experiment

Evaluation 

The present 
work [13] [28] [23] [25] [29] 

LOOCV 
(%)  

(100 ±  
0; 100) 

(100 using 10-
CV ± NA; 

NA) 

(100 ± 
NA; 
NA) 

(100 ±  
0; 100) 

(95.53 ±  
1.27; 97.37)

(100 ±  
NA; 
NA) 

Test (%)    
(88.82 ±  

3.04; 
94.12) 

NA NA 
(81.18 ±  
10.21; 
94.12) 

(84.41 ±  
2.42; 88.24) NA 

Leukemia 
(Average 

± S.D; 
The best) 

No. selected 
genes  

(2.9 ±  
1.73; 2) 

(3.4 ±  
NA; NA) 

(4 ± NA; 
NA) 

(10 ±  
0; 10) 

(2,212.6 ±  
26.63; 
2,252) 

(6 ±  
NA; 
NA) 

LOOCV 
(%)  

(99.03 ±  
1.13; 100) NA 

(93.55 ± 
NA; 
NA) 

(99.03 ±  
0.83; 100) 

(93.23 ±  
1.02; 95.16)

(93.55 ± 
NA; 
NA) 

Colon 
(Average 

± S.D; 
The best) No. selected 

genes  
(24 ±  

8.43; 10) NA 15 ± 
NA; NA 

(30 ± 
0; 30) 

(446.3 ±  
18.90; 446) 

(12 ±  
NA; 
NA) 

LOOCV 
(%)  

(100 ±  
0; 100) 

(98.75 using 
10-CV ± NA; 

NA) 
NA (99.84 ±  

0.50; 100) NA NA 

Test (%)   (84.5 ±  
2.84; 90) NA NA (68 ±  

9.49; 85) NA NA 

SRBCT 
(Average 

± S.D; 
The best) 

No. selected 
genes  

(8.3 ±  
4.14; 20) 

(6.2 ±  
NA; NA) NA (10 ±  

0; 10) NA NA 

Note: The best results of each data set are shown in the shaded cells. ‘NA‘ means that the result is not 
reported in the related previous works. S.D. denotes the standard deviation, whereas 10-CV means 10-fold-
cross-validation. The colon data set only has LOOCV accuracy since it only has the training set.  
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4.5 Summary 
 

In this chapter, a cyclic GASVM-based method (C-GASVM) has been proposed and tested 

for gene selection on five real gene expression data that contain binary classes and multi-

classes of tumors samples. Based on the experimental results, the performance of C-GASVM 

was superior to the other experimental methods and previous related works. This is due to the 

fact that C-GASVM can automatically reduce the dimensionality of the data on a cycle by 

cycle basis. When the dimensionality was reduced, the combination of genes and the 

complexity of solution spaces can also be automatically decreased repeatedly. This cyclic 

process is done to produce potential gene subsets from high-dimensional data (gene 

expression data), and finally generate a near-optimal subset of informative genes. Hence, the 

gene selection using C-GASVM is needed to produce a small subset of informative genes for 

high cancer classification. Moreover, focusing the attention on the informative genes in the 

best subset may provide insights into the mechanisms responsible for the cancer itself. Even 

though C-GASVM has reduced the risk of the over-fitting problem, it is still not able to 

completely avoid the over-fitting problem. Thus, Chapter 5 will propose I-MOGASVM to 

reduce the risk of the over-fitting problem again and select a smaller subset of genes for 

cancer classification 
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Chapter 5 

An Iterative Approach 
 

 

5.1 Introduction 
 

The drawbacks of the hybrid methods (GASVM-based methods) in previous work 

[13],[20],[23],[25],[29] are an inability to efficiently produce a near-optimal subset of 

informative genes when the total number of genes is too large (high-dimensional data) due to 

the drawback of binary chromosome representation; and the high risk of over-fitting 

problems. The over-fitting problem that occurred in hybrid methods (e.g., GASVM-based 

methods) was also reported in a review paper by Saeys et al. [30]. In order to overcome the 

limitations of the previous work and solve the problems derived from gene expression data, 

the present work proposes an iterative approach based on MOGASVM. 

 

 

5.2 The Proposed Iterative Approach Based on GASVM 
 

This chapter proposes an interactive approach based on MOGASVM (I-MOGASVM) for 

gene selection. Details of MOGASVM can be found in Mohamad et al. [25]. I-MOGASVM 

in the present work differs from the methods in previous work in one major way 

[13],[20],[23],[25],[29]. This difference is that the present work proposed method involves an 

iterative approach, whereas the previous work did not use any iterative process for gene 

selection. The general procedure of I-MOGASVM is shown in Fig. 5.1.  
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Fig.5.1. The general flowchart of I-MOGASVM. 

 

Basically, I-MOGASVM repeats the process of MOGASVM to reduce the 

dimensionality of data iteratively. A description of each step is given below. 

Step 1: Starting the iterative process. This is repeated until the number of selected genes in 
the potential subset of the current cycle c is equal to or less than 1. The number of 
cycles is based on the satisfied condition of genes numbers. In each cycle of I-
MOGASVM, a number of selected genes are automatically selected by 
MOGASVM and the dimensionality is iteratively reduced. 

Step 2: Starting MOGASVM to find and produce a potential subset of genes. 
Step 3: Producing and saving the potential subset of selected genes. This potential subset is 

used for the next cycle (cycle c+1) as an input set. The selection of genes in the next 
cycle (cycle c+1) only uses genes in the potential subset that are the result of the 
previous cycle (cycle c). Therefore, the dimensionality and complexity of solution 
spaces can be decreased on a cycle-by-cycle-basis. 

Step 4: A near-optimal subset is selected among the potential subsets based on the highest 
fitness value (the highest LOOCV accuracy with the smallest number of selected 
genes). 

Step 5: An iterative process (Steps 1-4) results a near-optimal subset of genes. This subset 
can be found due to the dimensionality of data has been iteratively reduced. The 
near-optimal subset is then used to construct SVM, and the constructed SVM are 
tested by using the test set.  

A near-optimal subset of genes      

MOGASVM 

The number of selected genes >1 
Yes 

Gene expression data (training set) 

A potential subset of genes 

Cancer classification by SVMs  

Compare and select a near-optimal subset among potential subsets 

Save the potential subset 
Cycle = Cycle + 1 

Cycle = 1 

Testing set 

I-MOGASVM
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5.3 Experiments 
 

5.3.1 Data sets 
 

Four real gene expression data sets are used to evaluate I-MOGASVM; leukemia cancer, 

colon cancer, lung cancer, and mixed-lineage leukemia (MLL) cancer data sets. Table 2.1 in 

Chapter 2 shows the summary of the four data sets. 

 

 

5.3.2 Experimental setup 
 

Three criteria following their importance were considered to evaluate the performances of I-

MOGASVM and other experimental methods; test accuracy, LOOCV accuracy, and the 

number of selected genes. Several experiments were conducted 10 times on each data set 

using I-MOGASVM and other experimental methods such as GASVM, MOGASVM, 

GASVM-II, and SVM. Next, the average result of the 10 independent runs was obtained. A 

near-optimal subset that produces the highest classification accuracies with the least possible 

number of genes is selected as the best subset. 

 

 

5.3.3 Experimental results 
 

Table 5.1 and Table 5.2 show the classification accuracy for each run using I-MOGASVM on 

all data sets. Interestingly, all runs have achieved 100% LOOCV accuracy on the data sets. 

This has proven that I-MOGASVM has efficiently selected and produced a near-optimal 

solution in a solution space. This is due to its ability to automatically reduce the 

dimensionality and complexity of the solution space on a cycle-by-cycle basis. Therefore, I-

MOGASVM yields the near-optimal gene subset (a small subset of informative genes with 

high classification accuracy) successfully. 
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Table 5.1. Results for each run using I-MOGASVM on the leukemia and lung data sets. 

Leukemia data set  Lung data set 
Run no. LOOCV 

(%) 
Test   
(%) 

No. selected  
genes 

LOOCV 
(%) 

Test  
(%) 

No. selected 
genes 

1 100 85.35 5 100 90.60 2 
2 100 91.18 5 100 95.30 2 
3 100 91.18 3 100 93.29 3 
4 100 85.29 5 100 95.30 4 
5 100 85.29 5 100 85.24 2 
6 100 82.35 5 100 83.22 3 
7 100 82.35 4 100 92.62 2 
8 100 100 5 100 97.32 2 
9 100 88.24 5 100 96.64 2 
10 100 85.29 4 100 95.30 3 

Average 
± S.D 

100 
± 0 

87.65 
± 5.33 

4.60 
± 0.70 

100 
± 0 

92.48 
± 4.80 

2.5  
± 0.71 

Note: The results of the best subsets are shown in the shaded cells. S.D. denotes the 
standard deviation. 

 

 

Table 5.2. Results for each run using I-MOGASVM on the MLL and colon data sets. 

MLL data set Colon data set 
Run no. LOOCV 

(%) 
Test   
(%) 

No. selected  
genes 

LOOCV  
(%) 

No. selected  
genes 

1 100 86.67 8 100 13 
2 100 100 6 100 13 
3 100 80 9 100 14 
4 100 73.33 9 95.16 5 
5 100 86.67 8 96.77 6 
6 100 80 6 100 7 
7 100 86.67 7 100 10 
8 100 93.33 8 98.39 9 
9 100 93.33 7 100 10 
10 100 80 6 100 10 

Average  
± S.D 

100  
± 0 

86  
± 7.98 

7.4  
± 1.17 

99.03  
± 1.73 

9.70 
 ± 3.06 

Note: The results of the best subsets are shown in the shaded cells. S.D. 
denotes the standard deviation. 
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Table 5.3. The list of informative genes in the best gene subsets. 

Data set Run no. Probe-set name 

L15388_at 
M95678_at 
X15357_at 
X55668_at 

Leukemia 8 

S76473_s_at 
33328_at Lung 8 
609_f_at 
35083_at 
36436_at 
36873_at 
40518_at 
35794_at 

MLL 2 

41827_f_at 
H80240 
T62220 
H22688 
T88902 
U00968 
T84082 

Colon 6 

T62947 
 

 

Generally, near-optimal subsets that obtained from almost all run on the data sets 

contain less than 10 genes. This is inline with the diagnostic goal of developed medical 

procedures that needs the least number of possible informative genes to detect diseases. The 

conservativeness of the results in Tables 5.1 and 5.2 is controlled and maintained by the 

iterative approach and the fitness function of I-MOGASVM that maximizes the classification 

accuracy and meanwhile, minimizes the number of selected genes. 

Practically, the best subset of a data set is firstly chosen and the genes in it are then 

listed for biological usage. The best subset is chosen based on the highest classification 

accuracy with the smallest number of selected genes. The highest accuracy gives confidence 

to us for the most accurate classification of cancer types. Moreover, the smallest number of 

selected genes for cancer classification can reduce the cost in clinical settings. 
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Table 5.4. The benchmark of the proposed I-MOGASVM with the other experimental 

methods and previous related works on the leukemia and lung cancer data sets. 

Leukemia data set  
(Average ± S.D; The best) 

Lung data set  
(Average ± S.D; The best) 

Accuracy (%) Accuracy (%) Method 
No. selected 

genes LOOCV Test 
No. selected 

genes LOOCV Test 
I-
MOGASVM 

(4.60 ±  
0.70; 5) 

(100 ±  
0; 100) 

(87.65 ±  
5.33; 100) 

(2.5 ±  
0.71; 2) 

(100 ±  
0; 100) 

(92.48 ±  
4.80; 97.32) 

GASVM-II 
[23] 

(10 ±  
0; 10) 

(100 ±  
0; 100) 

(81.18 ±  
10.21; 
94.12) 

(10 ±  
0; 10) 

(100 ±  
0; 100) 

(59.33 ±  
29.32; 
97.32) 

MOGASVM 
[25] 

(2,212.6 ±  
26.63; 
2,189) 

(95.53 ±  
1.27; 

97.37) 

(84.41 ±  
2.42; 88.24) 

(4,418.5 ± 
50.19; 
4,433) 

(75.31 ± 
0.99; 

78.13) 

(85.84 ±  
3.97; 93.29) 

GASVM [23] 
(3,574.9 ±  

40.05; 
3,531) 

(94.74 ±  
0; 94.74) 

(83.53 ±  
2.48; 88.24) 

(6,267.8 ± 
56.34; 
6,342) 

(75 ±  
0; 75) 

(84.77 ±  
2.53; 87.92) 

SVM [23] (7,129 ±  
0; 7,129) 

(94.74 ±  
0; 94.74) 

(85.29 ±  
0; 85.29) 

(12,533 ±  
0; 12,533) 

(65.63 ±  
0; 65.63) 

(85.91 ±  
0; 85.91) 

Li et al. [20] (4 ±  
NA; NA) 

(100 ±  
NA; NA) NA NA NA NA 

Peng et al. 
[29] 

(6 ±  
NA; NA) 

(100 ±  
NA; NA) NA NA NA NA 

Huang and 
Chang [13] 

(3.4 ±  
NA; NA) 

(100 using 
10-CV ± 
NA; NA) 

NA NA NA NA 

Note: The best results are shown in the shaded cells. S.D. denotes the standard deviation, whereas 
10-CV represents 10-fold-cross-validation. ‘NA’ means that a result is not reported in the related 
previous works. Methods in italic style are experimented in this research.  

 

Informative genes in the best gene subsets, as produced by the proposed I-MOGASVM 

and reported in Tables 5.1 and 5.2, are listed in Table 5.3. These informative genes among 

thousands of other genes may be excellent candidates for clinical and medical investigations. 

Biologists can save much time, since they can refer directly to the genes that have the greatest 

possibility of being useful for cancer diagnosis and drug targeting in the future. A probe-set 

name is used for searching the biological information of genes in the public database of genes. 
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Table 5.5. The benchmark of the proposed I-MOGASVM with the other experimental 

methods and previous related works on the MLL and colon cancer data sets. 

MLL data set  
(Average ± S.D; The best) 

Colon data set  
(Average ± S.D; The best) 

Accuracy (%) 
Method 

No. selected 
genes LOOCV Test 

No. selected 
genes 

LOOCV 
Accuracy (%)

I-MOGASVM (7.4 ±  
1.17; 6) 

(100 ±  
0; 100) 

(86 ±  
7.98; 100) 

(9.7 ±  
3.06; 7) 

(99.03 ±  
1.73; 100) 

GASVM-II [23] (30 ±  
0; 30) 

(100 ±  
0; 100) 

(84.67 ±  
6.33; 93.33) 

(30 ±  
0; 30) 

(99.03 ±  
0.83; 100) 

MOGASVM [25] (4,465.2 ± 
18.34; 437) 

(94.74 ±  
0; 94.74) 

(90 ±  
3.51; 93.33) 

(446.3 ±  
8.90; 446) 

(93.23 ±  
1.02; 95.16) 

GASVM [23] (6,298.8 ± 
51.51; 224) 

(94.74 ±  
0; 94.74) 

(87.33 ±  
2.11; 86.67) 

(979.8 ±  
5.80; 940) 

(91.77 ±  
0.51; 91.94) 

SVM [23] (12,582 ±  
0; 12,582) 

(92.98 ±  
0; 92.98) 

(86.67 ±  
0; 86.67) 

(2,000 ±  
0; 2,000) 

(85.48 ±  
0; 85.48) 

Li et al. [20] NA NA NA 15 ±  
NA; NA 

(93.55 ±  
NA; NA) 

Peng et al. [29] NA NA NA (12 ±  
NA; NA) 

(93.55 ±  
NA; NA) 

Note: The best results are shown in the shaded cells. S.D. denotes the standard deviation. 
‘NA’ means that a result is not reported in the related previous works. Methods in italic 
style are experimented in this research. 

 

For an objective comparison, the present work only compares I-MOGASVM with 

related previous works that used GASVM-based methods in their work 

[13],[20],[23],[25],[29]. Moreover, the previous works also produced the average of 

classification accuracy results since they used hybrid approaches. The present work makes 

the comparison using the averages of LOOCV accuracy and the number of selected genes. 

This is due to the most previous works only evaluated the performance of their approaches 

using the LOOCV procedure or k-fold-cross-validation and the number of selected genes on 

averages.  

According to Tables 5.4 and 5.5, I-MOGASVM has outperformed the other 

experimental methods and previous work in terms of LOOCV accuracy, test accuracy, and 

the number of selected genes. The gap between LOOCV accuracy and test accuracy that 
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resulted from using I-MOGASVM was also lower. This small gap shows that the risk of the 

over-fitting problem can be reduced. Therefore, I-MOGASVM is more efficient than other 

experimental methods since it has produced higher classification accuracies, smaller numbers 

of selected genes, smaller standard deviations, and smaller gaps between LOOCV accuracy 

and test accuracy.  

 

 

5.4 Summary 
 

In this chapter, I-MOGASVM has been proposed and tested for gene selection on four sets of 

real gene expression data. Based on the experimental results, the performance of I-

MOGASVM was superior to the other experimental methods and previous related work. This 

is due to the fact that I-MOGASVM can automatically reduce the dimensionality of the data 

on a cycle-by-cycle basis. When the dimensionality was reduced, the combination of genes 

and the complexity of solution spaces can also be automatically decreased iteratively. This 

iterative process is done to generate potential gene subsets from high-dimensional data (gene 

expression data), and finally produce a near-optimal subset of informative genes. Hence, gene 

selection using I-MOGASVM is needed to produce a near-optimal (small) subset of 

informative genes for cancer classification. Moreover, focusing attention on the informative 

genes in the best subset may provide insights into the mechanisms responsible for the cancer 

itself. Even though I-MOGASVM has achieved excellent performances, it is still not able to 

completely solve the over-fitting problem. Therefore, Chapter 6 will propose a two-stage 

method to solve the over-fitting problem. 
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Chapter 6 

A Two-Stage Method 
 

 

6.1 Introduction 
 

This chapter introduces and proposes a two-stage gene selection method. The proposed 

method is to perform well in high-dimensional data and reduce a risk of over-fitting problems 

since it has two stages as follows: Stage 1 to decrease the dimensionality of data; stage 2 to 

produce a small (near-optimal) genes subset. The diagnostic goal is to develop a medical 

procedure based on the least number of possible genes that needed to detect diseases. Thus, 

the ultimate goal of this chapter is to select a small subset of informative genes (minimize the 

number of selected genes) for yielding high cancer classification accuracy (maximize the 

classification accuracy). To achieve the goal, the present work adopts the proposed two-stage 

method. 

 

 

6.2 The Proposed Two-Stage Method (Filter+MOGASVM) 
 

The proposed two-stage method is called Filter+MOGASVM because it uses a filter and 

MOGASVM in its stages. Filter+MOGASVM in the present work differs from the methods 

in the previous works in one major part [13],[23],[25],[26],[27],[29]. The major difference is 

that the proposed method involves two stages (using a filter method and a hybrid method), 

whereas the previous works usually used only one stage (using a hybrid method) for gene 

selection. The difference is necessary in order to produce a small (near-optimal) gene subset 

from high-dimensional data and reduce the high risk of over-fitting problems. For more 

understanding, the general flowcharts of the present work and the previous works are shown 

in Fig. 6.1 (a) and Fig. 6.1 (b), respectively. The detailed stages of Filter+MOGASVM are 

described as follows in the next two subsections.  
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Fig.6.1. General flowcharts of (a) previous works (GASVM-based methods); (b) the present 

work (Filter+MOGASVM).  

 

 

6.2.1 Stage 1: Preselecting genes using a filter method 
 

In the first stage, the present work applies a filter method such as gain ratio (GR) or 

information gain (IG) on the training set to preselect genes and finally produce a subset of 

genes. After the preselection process, the dimensionality of data is also decreased. The filter 
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method calculates and ranks a score for each gene. Genes with the highest scores are selected 

and put into the gene subset. This subset is used as an input to the second stage.  

Since GASVM-based methods in previous works performs poorly in high-dimensional 

data, and meanwhile, the present work uses a GASVM-based method (MOGASVM) in the 

second stage of Filter+MOGASVM, a filter method (GR or IG) in this first stage is used to 

reduce the high-dimensional in order to overcome the drawback of GASVM-based methods. 

If the subset that is produced by the filter method is small-dimension, the combination of 

genes is not complex, and then MOGASVM in the next stage can possible to produce a small 

(near-optimal) subset of informative genes. 

 

 

6.2.2 Stage 2: Optimizing a gene subset using MOGASVM 
 

In this stage, the present work develops and uses MOGASVM to automatically 

optimize the gene subset that is produced by the first stage, and finally yield a small (near-

optimal) subset of informative genes. This small subset is identified by an evaluation function 

in MOGASVM that uses two criteria; maximization of the leave-one-out-cross-validation 

(LOOCV) accuracy and minimizations of the number of selected genes. MOGASVM selects 

and optimizes genes by considering relations among them in order to remove irrelevant and 

noisy genes. The small subset is possible to be found due to the dimensionality and 

complexity of data has been firstly reduced by the first stage. The high risk of over-fitting 

problems can be also decreased because of the reduction. The detail of MOGASVM can be 

found in Mohamad et al. [25]. 

Finally, the small subset of the training set is used to construct SVM for cancer 

classification, and the constructed SVM is then tested by using the test set (independent set). 

This chapter has produced two methods of Filter+MOGASVM that are obtained from 

combinations of two different filter methods (GR and IG) and MOGASVM. These methods 

are GR+MOGASVM and IG+MOGASVM. 
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6.3 Experiments 

 

6.3.1 Data sets 
 

Three benchmark gene expression data sets that contain binary classes and multi-classes are 

used to evaluate Filter+MOGASVM. These data sets are the lung cancer, mixed-lineage 

leukemia (MLL) cancer, and leukemia cancer data sets. They are summarized in Table 2.1 in 

Chapter 2.  

 

 

6.3.2 Experimental setup 
 

Since the number of training samples in gene expression data is small, the cross-validation 

(CV) accuracy on the training set is calculated through the LOOCV procedure. For the test 

accuracy, SVM is built using all the training samples, and the classes of test samples from the 

test set are predicted one by one using the built SVM. The test accuracy is estimated by the 

number of the correctly classified samples, divided by the number of samples in the test set. 

Table 6.1 contains parameter values for Filter+MOGASVM. These values are chosen 

based on the results of preliminary runs. Three criteria following their importance are 

considered to evaluate and compare the performance of Filter+MOGASVM with existing 

methods [13],[23],[25],[26],[27],[29] from viewpoints of the test accuracy, CV accuracy, and 

the number of selected genes. High accuracies and a small number of selected genes are 

needed to obtain an excellent performance. The top 200 genes are preselected by using GR 

and IG in the first stage of the proposed method, and are then used for the second stage. 

Several experiments are conducted 10 times on each data set using Filter+MOGASVM and 

other experimental methods such as GASVM (single-objective), MOGASVM, GASVM-II, 

and SVM. Filter+GASVM methods (IG+GASVM and GR+GASVM) are also experimented 

for the comparison. Next, an average result of the 10 independent runs is obtained. 
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Table 6.1. Parameter settings for Filter+MOGASVM. 

Parameters Lung data set  MLL data set  Leukemia data set 

No. populations 100 100 100 

No. generations 300 300 300 
Crossover rate (Two-point) 0.7 0.7 0.7 
Replacement rate (Roulette 
wheel selection) 0.8 0.8 0.8 

Mutation rate (Flip) 0.01 0.01 0.01 

1w  0.7 0.7 0.8 

2w  0.3 0.3 0.2 
Cost for SVMs 0.7 100 100 

 

 

6.3.3 LOOCV and test accuracies of selected genes with 

Filter+MOGASVM 
 

Tables 6.2, 6.3, and 6.4 show the results for each run on the lung, MLL, and leukemia data 

sets, respectively. The results of the best subsets are shown in the shaded cells, whereas the 

results in boldface display the best results of averages. S.D. denotes the standard deviation. 

Almost all runs have achieved 100% LOOCV accuracy on all the data sets. This has proved 

that Filter+MOGASVM has efficiently selected and produced a near-optimal gene subset 

from a solution space. 
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Table 6.2. Classification accuracies using Filter+MOGASVM on the lung data set. 

GR+MOGASVM  
(Filter+MOGASVM) 

IG+MOGASVM  
(Filter+MOGASVM) 

Run no. LOOCV 
(%) 

Test 
(%) 

No. 
selected 
genes 

LOOCV 
(%) 

Test 
(%) 

No. 
selected 
genes 

1 100 98.66 2 100 97.99 2 
2 100 94.63 2 100 96.64 2 
3 100 95.30 2 100 97.32 2 
4 100 97.32 2 100 97.32 2 
5 100 95.97 2 100 94.63 2 
6 100 97.99 2 100 95.30 2 
7 100 95.97 2 100 95.30 2 
8 100 95.97 2 100 95.97 2 
9 100 95.97 2 100 99.33 2 
10 100 93.96 2 100 93.29 2 

Average  
± S.D.  

100  
± 0 

96.18  
± 1.45 

2  
± 0 

100  
± 0 

96.31  
± 1.77 

2  
± 0 

 

 

Table 6.3. Classification accuracies using Filter+MOGASVM on the MLL data set. 

GR+MOGASVM  
(Filter+MOGASVM) 

IG+MOGASVM  
(Filter+MOGASVM) 

Run no. LOOCV 
(%) 

Test 
(%) 

No. 
selected 
genes 

LOOCV 
(%) 

Test 
(%) 

No. 
selected 
genes 

1 100 93.33 6 100 93.33 7 
2 100 93.33 6 100 93.33 6 
3 100 100 5 100 100 7 
4 100 93.33 7 98.25 100 6 
5 100 100 5 100 93.33 7 
6 100 93.33 6 100 93.33 5 
7 100 100 5 100 100 7 
8 100 100 7 100 100 6 
9 100 100 5 100 100 5 

10 100 93.33 4 100 86.67 7 
Average  
± S.D.  

100  
± 0 

96.67  
± 3.51 

5.60  
± 0.97 

99.83  
± 0.56 

96.00  
± 4.66 

6.30  
± 0.82 
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Table 6.4. Classification accuracies using Filter+MOGASVM on the leukemia data set. 

GR+MOGASVM  
(Filter+MOGASVM) 

IG+MOGASVM  
(Filter+MOGASVM) 

Run no. LOOCV 
(%) 

Test 
(%) 

No. 
selected 
genes 

LOOCV 
(%) 

Test 
(%) 

No. 
selected 
genes 

1 100 91.18 3 100 91.18 3 
2 100 88.24 3 100 91.18 3 
3 100 94.12 3 100 94.12 3 
4 100 91.18 2 100 91.18 2 
5 100 91.18 3 100 91.18 3 
6 100 94.12 3 100 88.24 2 
7 100 91.18 2 100 94.12 2 
8 100 91.18 3 100 88.24 3 
9 100 94.12 3 100 85.30 3 
10 100 91.18 3 100 91.18 3 

Average  
± S.D.  

100  
± 0 

91.77  
± 1.86 

2.70  
± 0.48 

100  
± 0 

90.59  
± 2.70 

2.70  
± 0.48 

 

 

6.3.4 Filter+MOGASVM versus other experimental methods 
 

The benchmark of Filter+MOGASVM in comparison with other experimental methods that 

have been experimented in this work is summarized in Tables 6.5 and 6.6. Overall, the 

LOOCV and test accuracies of Filter+MOGASVM for all the data sets were higher than 

Filter+GASVM, MOGASVM, GASVM-II, GASVM, and SVM. Moreover, the number of 

selected genes by using Filter+MOGASVM was also lower. 

Based on the standard deviations of LOOCV accuracy, test accuracy, and the number of 

selected genes, Filter+MOGASVM was also more consistent than the other experimental 

methods except for SVM. This SVM achieved 0 for the standard deviations in all 

experiments since it did not implement any gene selection approach. The gap between 

LOOCV accuracy and test accuracy that are obtained by Filter+MOGASVM was also lower. 

This small gap shows that the risk of the over-fitting problem can be reduced. On the other 

hand, the results of LOOCV accuracy of the others were much higher than their test accuracy 

because they were unable to avoid or reduce the risk of over-fitting problems. Over-fitting is 
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a major problem of hybrid methods in gene selection and classification of gene expression 

data when the classification accuracy on training samples, e.g., LOOCV accuracy is much 

higher than the test accuracy. 

 

 

Table 6.5. The benchmark of Filter+MOGASVM with Filter+GASVM and the previous 

methods on the leukemia data set. 

Leukemia data set (Average ± S.D.; The best) 
Accuracy (%) Method 

No. selected genes 
LOOCV Test 

GR+MOGASVM 
(Filter+MOGASVM)  2.70 ± 0.48; 3 100 ± 0; 100 91.77 ± 1.86; 94.12 

IG+MOGASVM 
(Filter+MOGASVM) 2.70 ± 0.48; 2 100 ± 0; 100 90.59 ± 2.70; 94.12 

GR+GASVM 
(Filter+GASVM) 97.40 ± 4.43; 91 100 ± 0; 100 86.18 ± 1.99; 88.24 

IG+GASVM 
(Filter+GASVM) 99.30 ± 6.29; 96 100 ± 0; 100 88.53 ± 2.93; 91.18 

A cyclic hybrid 
method [27] 2.9 ± 1.73; 2 100 ± 0; 100 88.82 ± 3.04; 94.12 

GASVM-II+GASVM 
[26] 3.4 ± 1.35; 2 100 ± 0; 100 85.88 ± 8.86; 97.06 

GASVM-II [23] 10 ± 0; 10 100 ± 0; 100 81.18 ± 0.21; 94.12 

MOGASVM [25] 2,212.6 ± 26.63; 2,189 95.53 ± 1.27; 97.37 84.41 ± 2.42; 88.24 

GASVM [23] 3,574.9 ± 40.05; 3,531 94.74 ± 0; 94.74 83.53 ± 2.48; 88.24 

SVM [25] 7,129 ± 0; 7,129 94.74 ± 0; 94.74 85.29 ± 0; 85.29 

Note: The best results of each data set are shown in the shaded cells. S.D. denotes the 
standard deviation. 
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Table 6.6. The benchmark of Filter+MOGASVM with Filter+GASVM and the previous 

methods on the lung and MLL data sets. 

Lung data set  
(Average ± S.D.; The best) 

MLL data set  
(Average ± S.D.; The best) 

Accuracy (%) Accuracy (%) Method No. 
selected 
genes LOOCV Test 

No. 
selected 
genes LOOCV Test 

GR+MOGASVM 
(Filter+MOGASVM)  

2 ±  
0; 2 

100 ±  
0; 100 

96.18 ±  
1.45; 
98.66 

5.60 ±  
0.97; 5 

100 ±  
0; 100 

96.67 ±  
3.51; 
100 

IG+MOGASVM 
(Filter+MOGASVM) 

2 ±  
0; 2 

100 ±  
0; 100 

96.31 ±  
1.77; 
99.33 

6.30 ±  
0.82; 5 

99.83 ±  
0.56; 
100 

96.00 ±  
4.66; 
100 

GR+GASVM 
(Filter+GASVM) 

101 ±  
8.50; 105 

100 ±  
0; 100 

86.04 ±  
3.66; 
90.60 

100.40 ±  
6.42; 98 

100 ±  
0; 100 

90.67 ±  
5.62; 
100 

IG+GASVM 
(Filter+GASVM) 

100.3 ±  
8.02; 87 

100 ±  
0; 100 

84.30 ±  
7.86; 
88.59 

100.20 ±  
7.63; 99 

100 ±  
0; 100 

88.67 ±  
3.22; 
93.33 

A cyclic hybrid 
method [6] 

2.80 ±  
1.32; 4 

100 ± 
0; 100 

93.69 ± 
2.52; 
98.66 

12.0 ± 
5.58; 20 

100 ± 
0; 100 

91.33 ± 
5.49; 
100 

GASVM-
II+GASVM [26] 

2.1 ±  
0.32; 2 

100 ±  
0; 100 

94.16 ±  
6.85; 
98.66 

6.5 ±  
0.71; 6 

100 ±  
0; 100 

92 ±  
8.20; 
100 

GASVM-II [23] 10 ±  
0; 10 

100 ±  
0; 100 

59.33 ±  
29.32; 
97.32 

30 ±  
0; 30 

100 ±  
0; 100 

84.67 ±  
6.33; 
93.33 

MOGASVM [25] 
4,418.5 ± 

50.19; 
4,433 

75.31 ±  
0.99; 
78.13 

85.84 ±  
3.97; 
93.29 

4,465.2 ±  
18.34; 
4,437 

94.74 ±  
0; 94.74 

90 ±  
3.51; 
93.33 

GASVM [23] 
6,267.8 ± 

56.34; 
6,342 

75 ±  
0; 75 

84.77 ±  
2.53; 
87.92 

6,298.8 ±  
51.51; 
6,224 

94.74 ±  
0; 94.74 

87.33 ±  
2.11; 
86.67 

SVM [25] 12,533 ±  
0; 12,533 

65.63 ±  
0; 65.63 

85.91 ±  
0; 85.91 

12,582 ±  
0; 12,582 

92.98 ±  
0; 92.98 

86.67 ±  
0; 86.67 

Note: The best results of each data set are shown in the shaded cells. S.D. denotes the 
standard deviation. 

 

GASVM and MOGASVM cannot produce a near-optimal subset of informative genes 

because they perform poorly in high-dimensional data due to their chromosome 
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representation drawback. GASVM-II method is impractical to be used in real applications 

because a variety number of selected genes should be tested in order to obtain the near-

optimal one. On the contrary, the proposed Filter+MOGASVM that preselects a number of 

genes in the first stage can automatically optimize the selected genes by the second stage in 

order to remove irrelevant genes and produce a small (near-optimal) subset of informative 

genes. 

 

 

6.3.5 Filter+MOGASVM versus previous related works 
 

For an objective comparison, the present work only compares Filter+MOGASVM with 

related previous works that used GASVM-based methods in their works [13],[29]. This is due 

to the present work also uses a GASVM-based method (MOGASVM) in Filter+MOGASVM. 

The previous works also produced the averages of LOOCV accuracy or k-fold-cross-

validation, and the number of selected genes since they used hybrid approaches in their works. 

 

 

Table 6.7. The comparison between the proposed method (Filter+MOGASVM) and other 

previous GASVM-based methods. 

 

At the moment, only the leukemia data set is experimented as a comparison between the 

present work and other previous works [13],[29]. This is due to the previous works have used 

Data  Experiment
Evaluation 

The present work 
(Filter+MOGASVM)

Huang and 
Chang, [13] Peng et al., [29] 

CV Accuracy (%) 100 ± 0; 100 (using 
LOOCV) 

100 ± NA; NA 
(using 10-CV) 

100 ± NA; NA 
(using LOOCV)

Test Accuracy 
(%)    91.77 ± 1.86; 94.12 NA NA 

Leukemia 
(Average ± 
S.D; The 

best) No. selected 
genes  2.70 ± 0.48; 3 3.4 ± NA; NA 6 ± NA; NA 

Note: The best result is shown in the shaded cells. ‘NA‘ means that results are not reported in 
the related previous works. S.D. denotes the standard deviation, whereas 10-CV means 10-
fold-cross-validation.  
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the leukemia in their experiments. Table 6.7 displays the benchmark of this work and 

previous related works on the leukemia data set. The averages of LOOCV accuracy and the 

number of selected genes of the present work were 100% and 2.7 genes, respectively. The 

latest previous work [13] also came up with the similar LOOCV result to the present ones, 

but the number of selected genes is slightly higher in order to obtain the same result. The 

work of Peng et al., [29] analyzed this data set and finally yielded 100% average LOOCV 

accuracy with six average selected genes. Overall, this work has outperformed the related 

previous works on the data set in terms of classification accuracy and the number of selected 

genes. Filter+MOGASVM in the present work has produced a near-optimal (small) gene 

subset from high-dimensional data and reduced the high risk of over-fitting problems. This is 

due to the fact that a filter method in the first stage of Filter+MOGASVM reduces the 

dimensionality of the solution space in order to produce a gene subset. Next, MOGASVM in 

the second stage of Filter+MOGASVM optimizes the subset automatically to yield a small 

subset of informative genes with high classification accuracy. This small subset is obtained 

since Filter+MOGASVM considers and optimizes a relation among genes. 

Unfortunately, the previous works [13],[29] did not provide any test accuracy result on 

the test set (independent data set) and did not show any standard deviation result for 

comparative comparison with the present work. GASVM-based methods in the previous 

works may almost possible face with a high risk of over-fitting problems and the difficulty to 

obtain a near-optimal solution in high-dimensional data since they used binary chromosome 

representation for gene selection mechanisms. This was also supported by a review paper in 

[30] which reported that hybrid methods (e.g., GASVM-based methods) confront with the 

risk of over-fitting problems because of the high-dimensional data. 

 

 

 

 

 

 

 

 



 67

6.4 Summary 
 

In this chapter, Filter+MOGASVM has been proposed and tested for gene selection on three 

real gene expression data sets that contain binary classes and multi-classes of tumor samples. 

The performance of Filter+MOGASVM was superior to the other experimental methods and 

related previous works. This is due to the fact that the filter method in the first stage of the 

proposed method can preselect genes and reduce dimensionality of data in order to produce a 

subset of genes. When the dimensionality was reduced, the combination of genes and 

complexity of solution spaces were automatically decreased. The second stage of 

Filter+MOGASVM can automatically optimize the subset that is yielded by the first stage. 

This optimization process is done to remove irrelevant and noisy genes, and finally produce a 

small (near-optimal) subset of informative genes. Hence, the gene selection using 

Filter+MOGASVM is needed to produce a small subset of informative genes for excellent 

cancer classification of gene expression data. Based on the experimental results, a two-stage 

method (Filter+MOGASVM) could solve the over-fitting problem. Filter+MOGASVM has 

achieved excellent performance in terms of classification accuracy and the number of 

selected genes, but it is still not very high accuracy. Therefore, Chapter 7 will propose a 

three-stage method to highly increase classification accuracy. 
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Chapter 7 

A Three-Stage Method 
 

 

7.1 Introduction 
 

There are two main drawbacks of the hybrid methods (GASVM-based methods) in the 

previous works [13],[23],[25],[26],[29],[31] are intractable to efficiently produce a small 

subset of informative genes when the total number of genes is too large (high-dimensional 

data); 2) the high risk of over-fitting problems. In order to solve the problems derived from 

gene expression data and overcome the limitations of the hybrid methods in the previous 

works, this chapter describes and proposes a three-stage method (3-SGS) for gene selection. 

 

 

7.2 The Proposed Three-Stage Method (3-SGS) 
 

A three-stage method (3-SGS) contains three stages for gene selection. 3-SGS in the present 

work differs from the methods in the previous works in one major part. The major difference 

is that the proposed method involves three stages (using a filter method, a hybrid method, and 

frequency analysis), whereas the previous works usually used only one stage (using a hybrid 

method) [13],[23],[25],[26],[31] or two stages (using a filter method and a hybrid method) 

[29]. The difference is necessary in order to produce near-optimal gene subsets from high-

dimensional data, reduce the high risk of over-fitting problems, and finally yield a small 

subset of informative genes. The computational flow of 3-SGS for gene selection is shown in 

Fig. 7.1. 
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Fig.7.1. The proposed three-stage method (3-SGS). 

 

 

7.2.1 Stage 1: Preselecting genes using a filter method 
 

A filter method such as gain ratio (GR) or information gain (IG) is used in this stage (stage 1) 

to preselect genes and produce a subset of genes. After the preselect process, the 

dimensionality of data is also decreased. The filter method calculates and ranks a score for 

each gene. Genes with the highest scores are selected and put into a gene subset. This subset 

is then used as an input to the second stage. A GASVM-based method, i.e., MOGASVM that 

performs poorly in high-dimensional data is implemented in the second stage of 3-SGS. 

Therefore, the filter method (GR or IG) is firstly used to reduce the high-dimension in order 

to overcome the drawback of the GASVM-based method. If the subset that produced by the 

filter method is in small-dimension, the combination of genes is not complex, and then 

MOGASVM is possible to produce near-optimal genes subsets. 

 

 

 

 

 

A three-stage method 

Gene expression data 
(training set; e.g., total 

number of genes = 
dimension size = 2,000) 

A subset of genes (e.g., 
dimension size = 200) 

A small (final) subset of 
informative genes 

Stage 1: Preselecting genes 

Stage 2: Optimizing the gene subset 

Cancer classification by 
using SVMs 

Test 
set 

Preprocessing Cycle = 1

Stage 3: Analyzing the 
frequency of each gene in 
near-optimal subsets 

Cycle = Cycle +1 Yes 

No 

Cycle <  
Maximum cycle 

A near-optimal subset 
(e.g., dimension size < 

10) 

Save near-optimal subsets of genes 
For example: 
Cycle 1 => near-optimal subset 1= {Gene2} 
Cycle 2 => near-optimal subset 2= {Gene1,Gene2,Gene3,Gene5} 
Cycle 3 => near-optimal subset 3= {Gene1,Gene2} 
Cycle 4 => near-optimal subset 4= {Gene1,Gene2} 
Cycle 5 => near-optimal subset 5= {Gene1,Gene2,Gene3} 
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7.2.2 Stage 2: Optimizing a gene subset using MOGASVM 
 

In this stage, MOGASVM optimizes gene subsets that are produced by the first stage, and 

finally yields near-optimal subsets of genes. This stage is cycled until the maximum number 

of cycles is satisfied. The near-optimal subsets are identified by an evaluation function in 

MOGASVM that uses two criteria: maximization of LOOCV accuracy and minimization of 

the number of selected genes. MOGASVM selects and optimizes genes by considering 

relations among them in order to remove irrelevant and noisy genes. The near-optimal subsets 

can be obtained since the dimensionality and complexity of data has been firstly reduced by 

the first stage. The high risk of over-fitting problems can be also decreased because of the 

reduction in the first stage. The detail of MOGASVM can be found in the previous work [25]. 

  

 

7.2.3 Stage 3: Analyzing the frequency of each gene in near-optimal 

subsets 
 

In this stage, frequency analysis is implemented to identify the most frequently selected genes 

in near-optimal gene subsets. The frequency of appearance of each gene in each near-optimal 

gene subset is examined and analyzed to assess the relative importance of genes for cancer 

classification. The most frequently selected genes in near-optimal gene subsets are presumed 

to be the most relevant for the classification. Finally, a small (final) subset of informative 

genes (K genes, K is a number of genes) is produced and used to construct SVM. This subset 

contains a small number of informative genes with high classification accuracy. Table 7.1 

shows an example on how to obtain the frequency of each gene and the final subset of 

informative genes. This chapter has produced two methods of 3-SGS obtained from 

combinations of two different filter methods (GR and IG) and MOGASVM. These methods 

are 3-SGS-GR and 3-SGS-IG. 
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Table 7.1. An example to obtain the frequency of each genes (assume that the maximum 

number of cycles is five). 

Near-optimal gene subset Cycle 
Gene 1 Gene 2 Gene 3 Gene 4 

1 N Y N N 
2 Y Y Y N 
3 Y Y N N 
4 Y Y N N 
5 Y Y Y N 

Frequency 4 5 2 0 

A final subset of informative genes (following 
the most frequently selected genes) Gene 2; Gene 1; Gene 3;  

Note: ‘Y’ means that the corresponding gene is included in a near-optimal gene subset. Otherwise, ‘N’ means 
that the corresponding gene is not included. 

 

 

7.3 Experiments 
 

7.3.1 Data sets and experimental setup 
 

Five benchmark gene expression data sets that contain binary classes and multi-classes of 

cancer samples are used to evaluate 3-SGS. These data sets are the leukemia cancer, colon 

cancer, lung cancer, and mixed-lineage leukemia (MLL) cancer, and small round blue cell 

tumors (SRBCT) data sets. The first four data sets have been summarized on Table 2.1 in 

Chapter 2. The SRBCT data set is a multi-classes data set. It has four classes; ewing family of 

tumors (EWS), rhabdomyosarcoma (RMS), neuroblastoma (NB), and burkitt lymphomas 

(BL). The training set contains 63 samples (22 EWS, 20 RMS, 12 NB, and 8 BL), whereas 

the test set contains 20 samples (6 EWS, 5 RMS, 6 NB, and 3 BL). There are 2,308 genes in 

each sample. It can be downloaded at http://research.nhgri.nih.gov/microarray/Supplement/. 

Table 7.2 contains parameter values for 3-SGS. These values are chosen based on the 

results of preliminary runs. Three criteria following their importance are considered to 

evaluate the performance of 3-SGS; test accuracy on the test set, LOOCV accuracy on the 
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training set, and the number of selected genes. High accuracies and a small number of 

selected genes are needed to obtain an excellent performance. The top 200 genes are 

preselected by using GR and IG in the first stage of the 3-SGS, and are then used for the 

second stage. 

 

 

Table 7.2. Parameter settings for 3-SGS. 

Data set 
Parameters Leukemia Lung MLL SRBCT Colon 

No. populations 100 100 100 100 100 
No. generations 300 300 300 300 300 
Crossover rate (Two-point) 0.7 0.7 0.7 0.7 0.7 
Mutation rate (Flip) 0.01 0.01 0.01 0.01 0.01 
The  maximum number of cycles 10 10 10 10 10 

Cost for SVMs 100 0.7 100 100 100 
 

 

7.3.2 Classification accuracies of the final subset of informative genes 
 

As shown in Fig. 7.2, the best results of the leukemia (100% LOOCV and 97.06% test 

accuracies), the lung (100% LOOCV and 99.33% test accuracies), the MLL (100% LOOCV 

and 100% test accuracies), the SRBCT (100% LOOCV and 100 % test accuracies), and the 

Colon data sets (96.77% LOOCV accuracy) are obtained by using the only three (using 3-

SGS-IG), nine (using 3-SGS-GR), six (using 3-SGS-GR), nine (using 3-SGS-IG), and 20 

(using 3-SGS-GR) final selected informative genes (K genes), respectively. Many runs have 

achieved 100% LOOCV accuracy on all the data sets. These results have proved that 3-SGS 

has efficiently selected and produced a small subset of informative genes from high-

dimensional data. 
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Fig.7.2. A relation between classification accuracies and the number of final selected 

informative genes (K genes) using 3-SGS. 

 

 

7.3.3 A list of informative genes for biological usage 
 

The informative genes and their rank scores (frequency) of the final subsets as produced by 

the proposed 3-SGS and reported in Fig. 7.2 are listed in Table 7.3. These informative genes 

among the thousand of genes may be the excellent candidates for clinical and medical 

investigations. Biologists can save much time since they can directly refer to the genes that 

have high possibility to be useful for cancer diagnosis and drug target in the future. A gene 
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ID or gene card ID is used for searching the biological information of genes in the public 

database of genes.  

 

 

Table 7.3. The list of informative genes in the final gene subsets. 

Data set Rank score Gene ID / Gene card ID 
5 M23197 
2 X95735 Leukemia 
2 X85116 
5 W28612 
3 AL050224 
2 AB020647 
1 X05323 
1 AI201108 
1 AL049381 
1 S71043 
1 AJ012737 

Lung 

1 Y00318 
9 M11722 
7 M13143 
3 U41843 
3 Z83844 
2 L08895 

MLL 

2 U59878 
5 GC16M088332 
4 GC01P149298 
4 GC02M091189 
3 GC02P191818 
3 GC08M042151 
3 GC13M046243 
2 GC07P115952 
2 GC18M023784 

SRBCT 

2 GC11M002110 
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7.3.4 3-SGS versus other previous methods 
 

Tables 7.4, 7.5, 7.6, and 7.7 show the benchmark of this work and previous related works. 

Both 3-SGS and the two-stage method had 100% LOOCV accuracy on the leukemia data set, 

but the increase for 3-SGS was 3.22% in the colon data set. Comparing 3-SGS with the best 

results of one-stage categories on all the data sets except the Colon data set, 3-SGS showed 

improvements between 0.67% and 18.5% on test accuracy. 3-SGS not obtain excellent results 

on the colon data set because this data set has smaller total number of genes (only 2,000 

genes) compared to other data sets. This prove that 3-SGS is suitable only for very high-

dimensional data (more than 2,000 genes).  

 

Table 7.4. The benchmark of 3-SGS with previous methods on the leukemia and colon data 

sets. 

Leukemia data set Colon data set 
Accuracy (%) Categ

ory 
Gene selection 

method  
No. 

selected 
genes CV Test 

Time  
taken  

(Hour) 

No. 
selected 
genes 

CV  
accuracy 

(%) 

Time  
taken  

(Hour) 
Three
-stage 3-SGS  3 100 97.07 (0.17) 20 96.77 (3.23) 

Two-
stage GASVM [29] 6 100 - - 12 93.55 - 

GASVM [13] (3.4) (100) - - - - - 
Signal-to-
noise-ratio 
[10] 

50 94.74 85.29 - - - - 

t-test [11] - - - - - - - 
GASVM-
II+GASVM 
[26] 

(4.5) (100) (85.88) (2.22) (11.6) (99.52) (11.87) 

GASVM-II 
[23] (10) (100) (81.18) (1.37) (30) (99.03) (10.24) 

MOGASVM 
[25] (2,212.6) (95.53) (84.41) (94.65) (446.3) (93.23) (76.46) 

One-
stage 

GASVM [23] (3,574.9) (94.74) (83.53) (101.23) (979.8) (91.77) (98.23) 
Note: The results of the best subsets are shown in the shaded cells. ‘-‘ means that the results are not 
reported in the related previous work. A result in ‘( )’ denotes an average result. CV represents cross-
validation. Methods in italics style are experimented in this work. 
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Overall, the proposed 3-SGS has outperformed the previous works (one-stage and two-

stage methods) on all the data sets except the colon data set in terms of test accuracy, 

LOOCV accuracy, and the number of selected genes. This is due to the fact that a filter 

method in the first stage of 3-SGS reduces the dimensionality of the solution space in order to 

produce a gene subset. Next, MOGASVM in the second stage of 3-SGS optimizes the subset 

automatically to yield near-optimal subsets of genes. These subsets are obtained since 

MOGASVM in 3-SGS considers and optimizes a relation among genes. Finally, the first K 

genes appearing most frequently are selected as the final selected informative genes for 

cancer classification. 

 

 

Table 7.5. The benchmark of 3-SGS with previous methods on the MLL data set. 

MLL data set 
Accuracy (%) Category Gene selection 

method No. selected 
genes CV Test 

Time taken 
(Hour) 

Three-stage 3-SGS  6 100 100 (9.23) 
GASVM [13] (3.5) (100) - - 
Principal component 
analysis [3] 100 95 - - 

GASVM-II+GASVM 
[26] (6.5) (100) (92) (46.48) 

GASVM-II [23] (30) (100) (84.67) (22.64) 

MOGASVM [25] (4,465.2) (94.74) (90) (260.54) 

One-stage 

GASVM [23] (6,298.8) (94.74) (87.33) (534.08) 
Note: The results of the best subsets are shown in the shaded cells. ‘-‘ means that the 
results are not reported in the related previous work. A result in ‘( )’ denotes an average 
result. CV represents cross-validation. Methods in italics style are experimented in this 
work. 
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Table 7.6. The benchmark of 3-SGS with previous methods on the SRBCT data set. 

SRBCT data set 
Accuracy (%) Category Gene selection 

method No. selected 
genes CV Test 

Time taken  
(Hour) 

Three-stage 3-SGS 9 100 100 (3.51) 
GASVM [13] (6.2) (98.75) - - 
Principal component 
analysis [16] 78 100 - - 

GASVM-II [23] (10) (99.84) (68) (12.86) 
MOGASVM [25] (444.7) (100) (81.5) (86.56) 

One-stage 

GASVM [23] (1146) (98.41) (78.5) (157.69) 
Note: The results of the best subsets are shown in the shaded cells. ‘-‘ means that the 
results are not reported in the related previous work. A result in ‘( )’ denotes an average 
result. CV represents cross-validation. Methods in italics style are experimented in this 
work. 

 

 

Table 7.7. The benchmark of 3-SGS with previous methods on the lung data set. 

Lung data set 

Accuracy (%) Category Gene selection method No. selected 
genes CV Test 

Time taken 
(Hour) 

Three-stage 3-SGS 9 100 99.33 (1.24) 

GASVM [31] 8 100 98.66 - 

t-test [11] 4 - 97.32 - 
GASVM-II+GASVM [26] (2.1) (100) (94.16) (7.57) 
GASVM-II [23] (10) (100) (59.33) (7.10) 
MOGASVM [25] (4,418.5) (75.31) (85.84) (110.23) 

One-stage 

GASVM [23] (6,267.8) (75) (84.77) (113.57) 
Note: The results of the best subsets are shown in the shaded cells. ‘-‘ means that the  
results are not reported in the related previous work. A result in ‘( )’ denotes an average 
result. CV represents cross-validation. Methods in italics style are experimented in this 
work. 
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Generally, filter methods in previous works [3],[10],[11],[16] achieved poor 

performances since they may result in inclusion of irrelevant and noisy genes in a gene subset 

for the cancer classification. These bad performances occurred because the methods 

evaluated a gene based on its discriminative power for the target classes without considering 

its relations with other genes. 

GASVM-based methods [13],[23],[25],[26],[29],[31] may be unable to produce a small 

subset of informative genes because they perform poorly in high-dimensional data due to 

their chromosome representation drawback. GASVM-II [23] method is impractical to be used 

in real applications because a variety number of selected genes should be tested in order to 

obtain the near-optimal one. On the contrary, the proposed 3-SGS that preselects a number of 

genes at the first stage can reduce the data dimensionality and produce a gene subset. This 

subset is then optimized by MOGASVM in the second stage of 3-SGS to yield near-optimal 

subsets. Finally, the first K genes appearing most frequently are selected as the final selected 

informative genes (a small subset) for cancer classification. 

The gap between LOOCV accuracy and test accuracy that resulted by 3-SGS was also 

lower. This small gap shows that the risk of the over-fitting problem can be reduced. On the 

other hand, the results of LOOCV accuracy of the related previous works [23],[25],[26],[31] 

were much higher than their test accuracy because they were unable to avoid or reduce the 

risk of over-fitting problems. Other previous works by GASVM-based methods [13],[29] did 

not provide any test accuracy results and thus, the over-fitting problem could not be 

investigated in their works. Over-fitting is a major problem on hybrid methods in gene 

selection and classification of gene expression data when the classification accuracy on 

training samples, e.g., LOOCV accuracy is much higher than the test accuracy. This was also 

supported by a review paper in Saeys et al. [31] which reported that hybrid methods (e.g., 

GASVM-based methods) confront with the high risk of over-fitting problems because of the 

high-dimensional data. 
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7.4 Summary 
 

In this chapter, 3-SGS has been proposed and tested for gene selection on five gene 

expression data sets that contain binary classes and multi-classes of tumor samples. Based on 

the experimental results, the performance of 3-SGS was superior to other methods in related 

previous works. This is due to the fact that the filter method in the first stage of the 3-SGS 

can preselect genes and reduce dimensionality of data in order to produce a subset of genes. 

When the dimensionality was reduced, the combination of genes and complexity of solution 

spaces were automatically decreased. The second stage of 3-SGS can automatically optimize 

the subset that is yielded by the first stage in order to produce near-optimal gene subsets. 

Finally, the first K genes appearing most frequently are selected as the final selected 

informative genes (a small subset) for cancer classification. Generally, 3-SGS in this chapter 

also obtains short running time because of the large number of genes are removed by a filter 

technique in the first stage. As a conclusion, 3-SGS has obtained high classification accuracy 

with a few numbers of selected genes. However, due to the application of a filter method in 

the first stage of 3-SGS, the number of preselected genes is difficult since it is manually done. 

Moreover, 3-SGS is difficult to select the best number of K genes in implementation because 

there are many K genes in the third stage. Therefore, Chapter 8 will introduce particle swarm 

optimization because it is easy to implement, has few parameters to adjust, and has been 

successfully applied in many area.  
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Chapter 8 

Modified Binary Particle Swarm Optimization 

Based on Introduced Particle's Speed and a 

Novel Rule 
 

 

8.1 Introduction 
 

Recently, several gene selection methods based on particle swarm optimization (PSO) have 

been proposed to select informative genes from gene expression data [1],[8],[21],[33]. PSO is 

a new population based stochastic optimization technique proposed by Kennedy and Eberhart 

[14]. It is motivated from the simulation of social behavior of organisms such as bird flocking 

and fish schooling. Alba et al. [1] have firstly evaluated a new version of PSO, called 

geometric PSO for gene selection. Unfortunately, the experimental results are less significant 

because the geometric PSO is more about generalizing optimizers based on a notion of 

distance where different distance metrics give a rise to different operators with regards to the 

predefined geometric operators. Shen et al. [33] have proposed a hybrid of PSO and tabu 

search approaches for gene selection. However, the results obtained by using the hybrid 

method are less meaningful since the application of tabu approaches in PSO is unable to 

search a near-optimal solution in search spaces. Next, an improved binary PSO have been 

proposed by Chuang et al. [8]. This approach produced 100% classification accuracy in many 

data sets, but it used a high number of selected genes (large gene subset) to achieve the high 

accuracy. It uses the high number because of the global best particle is reset to zero position 

when its fitness values do not change after three consecutive iterations. After that, Li et al. 

[21] have introduced a hybrid of PSO and GAs for the same purpose. Unfortunately, the 

accuracy result is still not high and many genes are selected for cancer classification since 

there are no direct probability relations between PSO and GAs.  
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Generally, the PSO-based methods [1],[8],[21],[33] are intractable to efficiently 

produce a small (near-optimal) subset of informative genes for high classification accuracy. 

This is mainly because the total number of genes in gene expression data is too large (high-

dimensional data). Thus, in order to solve the problem, the present works proposes an 

improved (modified) binary PSO (IPSO) to select a small (near-optimal) subset of 

informative genes that is most relevant for the cancer classification. The small subset means 

that it contains the small number of selected genes. 

 

 

8.2 The Conventional Version of Binary PSO (BPSO) 
 

BPSO is initialized with a population of particles. At each iteration, all particles move in a 

problem space to find the optimal solution. A particle represents a potential solution in an n-

dimensional space. Each particle has position and velocity vectors for directing its movement. 

The position vector and velocity vector of the ith particle in the n-dimension can be 

represented as 1 2( , ,..., )n
i i i iX x x x=  and 1 2( , ,..., )n

i i i iV v v v= , respectively, where {0,1};d
ix ∈  

1, 2, ,i m= …  (m is the total number of particles); and 1,2, ,d n= …  (n is the dimension of data) 

[15]. d
iv  is a real number for the d-th dimension of the particle i,  where the maximum d

iv , 

max (1/ 3) .V n= ×  

 In gene selection, the vector of particle positions is represented by a binary bit string of 

length n, where n is the total number of genes. Each position vector ( )iX  denotes a gene 

subset. If the value of the bit is 1, it means that the corresponding gene is selected. Otherwise, 

the value of 0 means that the corresponding gene is not selected. Each particle in the t-th 

iteration updates its own position and velocity according to the following equations: 

 

1 1 2 2( 1) ( ) ( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))d d d d d d d d
i i i i iv t w t v t c r t pbest t x t c r t gbest t x t+ = × + × − + × −  (8.1)

( 1)

1( ( 1))
1

d
i

d
i v t

Sig v t
e− +

+ =
+

 (8.2)

if 3( ( 1)) ( ),d d
iSig v t r t+ >  then ( 1) 1;d

ix t + =  else ( 1) 0d
ix t + =  (8.3)
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where 1c  and 2c  are the acceleration constants in the interval [0,2]. 1 2 3( ), ( ), ( ) ~ (0,1)d d dr t r t r t U  

are random values in the range [0,1] that sampled from a uniform distribution. 
1 2( ) ( ( ), ( ),..., ( ))n

i i i iPbest t pbest t pbest t pbest t=  represents the best previous position of the ith 

particle, whereas 1 2( ) ( ( ), ( ),..., ( ))nGbest t gbest t gbest t gbest t=  denotes the global best 

position of the swarm (all particles), respectively. They are assessed base on a fitness 

function. ( ( 1))d
iSig v t +  is a sigmoid function where  ( ( 1)) [0,1].d

iSig v t + ∈  ( )w t  is an inertia 

weight and initialized with 1.4. It is updated as follows: 

 

( ( ) 0.4) ( ( ))( 1)
( 0.4)

w t MAXITER Iter tw t
MAXITER

− × −
+ =

+
 (8.4)

 

where MAXITER  is the maximum iteration (generation) and ( )Iter t  is the current iteration. 

Figure 8.1 shows the flowchart of BPSO. 

 

 

8.2.1 Investigating the drawbacks of BPSO and previous PSO-based 

methods 
 

Before attempting to propose IPSO, it would be prudent to find the limitations of BPSO and 

previous PSO-based methods [1],[8],[21],[33]. This subsection investigates theoretically the 

limitations by analyzing Eq.(8.2) and Eq.(8.3). These equations are analyzed because they are 

most important equations for genes selection in binary spaces. Both the equations are also 

implemented in BPSO and the PSO-based methods. 

The sigmoid function (Eq.(8.2)) represents a probability for ( )d
ix t  to be 0 or 1 

( ( ( ) 0)d
iP x t =  or ( ( ) 1)d

iP x t = ). For example, 

if ( ) 0,d
iv t =  then ( ( ) 0) 0.5d

iSig v t = =  and ( ( ) 0) 0.5.d
iP x t = =   

if ( ) 0,d
iv t <  then ( ( ) 0) 0.5d

iSig v t < <  and ( ( ) 0) 0.5.d
iP x t = >  

if ( ) 0,d
iv t >  then ( ( ) 0) 0.5d

iSig v t > >  and ( ( ) 0) 0.5.d
iP x t = <  
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Fig. 8.1. The flowchart of BPSO. 

 

 Also note that ( ( ) 0) 1 ( ( ) 1).d d
i iP x t P x t= = − =  From the analysis, it concludes that 

( ( ) 0) ( ( ) 1) 0.5d d
i iP x t P x t= = = =  because Eq.(8.2) is a standard sigmoid function without any 

constraint and no modification. Hence, by using this standard sigmoid function in high-

dimensional spaces (gene expression data), it only reduces the number of genes to about half 

of the total number of genes. This is reported and proved in the section of experimental 

results. Therefore, Eq.(8.2) and Eq.(8.3) are potentially being the drawbacks of BPSO and the 

previous PSO-based methods in selecting a small number of genes for producing a near-

optimal (small) subset of genes from gene expression data. 

 

 

Particle m 
…… 

Particle 1 

Generate and initialize particles with 
position (X) and velocity (V) randomly 

Evaluate position (fitness) 

if fitness(X) > fitness(Pbest) 
Pbest = X 

if fitness(X) > fitness(Gbest) 
Gbest = X 

Update velocity 

Update position 

Termination criterion is met? (e.g., 
Gbest = sufficient good fitness or 

maximum iterations) 

Near-optimal solution 

No 

Yes
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8.3 A Modification of Binary PSO with Introduced Particle's Speed and 

a Novel Rule (IPSO) 
 

Almost all previous works of gene expression data researches have selected a subset of genes 

to obtain excellent cancer classification. Therefore, this chapter proposes IPSO for selecting a 

near-optimal (small) subset of genes. It is proposed to overcome the limitations of BPSO and 

previous PSO-based methods [1],[8],[21],[33]. IPSO in the present work differs from BPSO 

and the PSO-based methods on two parts; 1) introduce a scalar quantity that called particle’s 

speed ( )s ; and 2) propose a rule for updating ( 1)d
ix t + , whereas BPSO and the PSO-based 

methods have used the original rule (Eq.(8.3)) and no particle’s speed implementation. The 

particle’s speed and rule are introduced in order to 

• increase the probability of ( 1) 0d
ix t + =  ( ( ( 1) 0))d

iP x t + =  and 

• reduce the probability of ( 1) 1d
ix t + =  ( ( ( 1) 1))d

iP x t + = . 

 

The increased and decreased probability values cause a small number of genes are 

selected and grouped into a gene subset. ( 1) 1d
ix t + =  means that the corresponding gene is 

selected. Otherwise, ( 1) 0d
ix t + =  represents that the corresponding gene is not selected. 

 

Definition 1. is  is a speed or length or magnitude of iV  for the particle i. In a real Euclidean 

space nℜ , where ℜ  denotes the field of real numbers, and n is the dimension of ℜ ,  is  can 

be derived by the Euclidean norm as follows: 

 

( ) ( ) ( )2 2 21 2 ... n
i i i i is V v v v= = + + + . (8.5)

 

Therefore, the following properties of is  are crucial; 

• non-negativity: 0,is ≥  

• definiteness: 0is =  if and only if 0,iV =  
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• homogeneity: i i iV V sα α α= =  where 0α ≥  and 

• the triangle inequality: 1 1i i i iV V V V+ ++ ≤ +  where i iV s=  and 1 1i iV s+ += . 

 

The particle’s speed and the rule for IPSO in binary spaces are proposed as follows: 

1 1 2 2( 1) ( ) ( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))i i i i is t w t s t c r t dist Pbest t X t c r t dist Gbest t X t+ = × + × − + × −  (8.6)

( 1)
1( ( 1))

1 ii s tSig s t
e− ++ =

+
 

subject to ( 1) 0is t + ≥  
(8.7)

if 3( ( 1)) ( ),d
iSig s t r t+ >  then ( 1) 0;d

ix t + =  else ( 1) 1d
ix t + =  (8.8)

 

where ( 1)is t +  represents the speed of the particle i for the t+1 iteration, whereas in BPSO 

and previous PSO-based methods (Eqs.(8.1), (8.2), and (8.3)), ( 1)d
iv t +  represents a single 

element of a particle velocity vector for the particle i. In IPSO, Eqs.(8.6), (8.7), and (8.8) are 

used to replace Eqs.(8.1), (8.2), and (8.3), respectively. ( 1)is t +  is the rate at which the 

particle i changes its position. Based on Definition 1, the most important property of ( 1)is t +  

is ( 1) 0.is t + ≥  Hence, ( 1)is t +  is used instead of ( 1)d
iv t +  so that its positive value can 

increase ( ( 1) 0).d
iP x t + =  

 In Eq.(6), the calculation for updating ( 1)is t +  is mainly based on the distance between 

( )iPbest t  and ( )iX t  ( ( ( ) ( ))),i idist Pbest t X t−  and the distance between ( )Gbest t  and ( )iX t  

( ( ( ) ( ))),idist Gbest t X t−  whereas the original formula (Eq.(8.1)) is used to calculate ( 1)d
iv t +  

and it is essentially based on the difference between ( )d
iPbest t  and ( ),d

ix t  and the difference 

between ( )dGbest t  and ( ).d
ix t  The distances are used in the calculation for updating ( 1)is t +  

in order to always satisfy the property of ( 1),is t +  namely ( ( 1) 0)is t + ≥  and finally increase 

( ( 1) 0).d
iP x t + =  Subsection 8.3.1 explains how to calculate the distance between two 

positions of two particles, e.g., ( ( ) ( )).idist Gbest t X t−  
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Equations (8.6), (8.7), and (8.8) and ( ) 0is t ≥  increase ( ( ) 0)d
iP x t =  because the 

minimum value for ( ( ) 0)d
iP x t =  is 0.5 when ( ) 0is t =  (min ( ( ) 0) 0.5).d

iP x t = ≥ Meanwhile, 

they decrease the maximum value for  ( ( ) 1)d
iP x t =  to 0.5 (max ( ( ) 1) 0.5).d

iP x t = ≤  Therefore, 

if ( ) 0,is t >  then ( ( ) 0) 0.5d
iP x t = >>  and ( ( ) 1) 0.5.d

iP x t = <<  

Figure 8.2(a) shows that Eqs.(8.6), (8.7), and (8.8) and ( ) 0is t ≥  in IPSO increase 

( ( ) 0);d
iP x t =  whereas Fig. 8.2(b) denotes that Eqs.(8.1), (8.2), and (8.3) in BPSO yield 

( ( ) 0) ( ( ) 1) 0.5.d d
i iP x t P x t= = = =  For example, the calculations for ( ( ) 0)d

iP x t =  and 

( ( ) 1)d
iP x t =  in Fig. 8.2(a) are shown as follows: 

if ( ) 1,is t =  then ( ( ) 0) 0.73d
iP x t = =  and ( ( ) 1) 1 ( ( ) 0) 0.27,d d

i iP x t P x t= = − = =  

and 

if ( ) 2,is t =  then ( ( ) 0) 0.88d
iP x t = =  and ( ( ) 1) 1 ( ( ) 0) 0.12.d d

i iP x t P x t= = − = =  

 

This high probability of ( ) 0d
ix t = ( ( ( ) 0))d

iP x t =  causes a small number of genes are 

selected in order to produce a near-optimal (small) gene subset from high-dimensional data 

(gene expression data). Hence, IPSO is proposed to overcome the limitations of BPSO and 

the previous PSO-based methods, and finally produce a small subset of informative genes. 

 

 

8.3.1 The calculation of the distance of two particles’ positions 
 

The number of different bits between two particles relates to the difference between their 

positions. For example, ( ) [0011101000]Gbest t =  and ( ) [1110110100].iX t =  The difference 

between ( )Gbest t  and ( )iX t  is [ 1 1010 11 100].− − − −  The value of 1 indicates that compared 

with the best position, this bit (gene) should be selected, but it is not selected, which may 

decrease classification quality and lead to a lower fitness value. In contrast, a value of -1 

indicates that, compared with the best position, this bit should not be selected, but it is 

selected. The selection of irrelevant genes makes the length of the subset longer and leads to 

a lower fitness value. Assume that the number of 1 is ,a  whereas the number of -1 is .b  The 
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present work uses the absolute value of a b−  (| |)a b−  to express the distance between two 

positions. In this example, the distance between ( )Gbest t  and ( )iX t  is 

( ( ) ( )) | | | 2 4 | 2.idist Gbest t X t a b− = − = − =  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.2. The areas of  ( ( ) 0)d
iP x t =  and  ( ( ) 1)d

iP x t =  based on sigmoid functions in (a) IPSO; 

(b) BPSO. 

 

 

8.3.2 Fitness functions 
 

The fitness value of particles (gene subsets) is calculated as follows: 

 

1 2( ) ( ) ( ( ( )) / )i i ifitness X w A X w n R X n= × + × −  (8.9)

 

where [ ]( ) 0,1iA X ∈  is LOOCV classification accuracy that uses the only genes in a gene 

subset ( ).iX  This accuracy is provided by SVM. ( )iR X  is the number of selected genes in 

.iX n  is the total number of genes for each sample. 1w  and 2w  are two priority weights 

Legends: 
 The area of unsatisfied ( ) 0.is t ≥  
 The area of ( ( ) 0).d

iP x t =  
 The area of ( ( ) 1).d

iP x t =  

( )

1( ( ))
1

d
i

d
i v t

Sig v t
e−

=
+

0

1

0.5

0

( ( ) 1)d
iP x t =

( ( ) 0)d
iP x t =  

( )d
iv t

( ( ))d
iSig v t  

2 -2

b)

( )
1( ( ))

1 i
i s tSig s t

e−
=

+

0 

1 

0.5 

0 

( ( ) 0)d
iP x t =  

( ( ) 1)d
iP x t =

( )is t

The area of  
unsatisfied  ( ) 0is t ≥  

a) ( ( ))iSig s t  

-2 2 
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corresponding to the importance of accuracy and the number of selected genes, respectively, 

where 1 [0.1,0.9]w ∈  and 2 11w w= − . 

 

 

8.4 Experiments 
 

8.4.1 Data sets and experimental setup 
 

There are 12 gene expression data used in this chapter for evaluating IPSO and BPSO. The 

10 data sets are summarized in Table 8.1. They included binary-classes and multi-classes data 

sets and were downloaded from http://www.gems-system.org. The other two data sets such as 

the colon and lung data sets have been described on Table 2.1 in Chapter 2.  

 

 

Table 8.1. The description of 10 gene expression data sets. 

Data sets No. samples No. genes No. classes 

11_Tumors 174 12,533 11 

9_Tumors 60 5,726 9 

Brain_Tumor1 90 5,920 5 

Brain_Tumor2 50 10,367 4 

Leukemia1 72 5,327 3 

Leukemia2 72 11,225 3 

Lung_Cancer 203 12,600 5 

SRBCT 83 2,308 4 

Prostate_Tumor 102 10,509 2 

DLBCL 77 5,469 2 
Note: 
SRBCT = small round blue cell tumor. 
DLBCL = diffuse large B-cell lymphomas. 
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All experimental results reported in this chapter are experimented in Rocks Linux 

version 4.2.1 (Cydonia) on the IBM xSeries 335 (cluster node) that contains 13 compute-

nodes. Each compute-node has four high performances 3.0GHz Intel Xeon CPUs with 

512MB of memories. Thus, the total number of CPUs for the 13 compute-nodes is 52. In 

order to make sure the running time of every run using the same capacity of CPUs usages, 

each run has been independently experimented on only one CPU. This situation is important 

because the comparison of running times between IPSO and BPSO is conducted for 

evaluation of their performances. 

 

 

Table 8.2. Parameter settings for IPSO and BPSO. 

Parameters Values 

No. particles 100 

No. iterations 300 

1w  0.8 

2w  0.2 

1c  2 

2c  2 
 

Experimental results that produced by IPSO are compared with an experimental method 

(BPSO) and other previous PSO-based methods for objective comparisons [1],[8],[21],[33]. 

Firstly, the present work applied the gain ratio technique for preprocessing in order to 

preselect 500-top-ranked genes. These genes are then used by IPSO and BPSO. Next, SVM is 

used to measure LOOCV accuracy on gene subsets that produced by IPSO and BPSO. In 

order to avoid selection bias, the implementation of LOOCV is in exactly the same way as 

Chuang et al. [8] where the only one cross-validation cycle (outer loop), namely LOOCV is 

used. Moreover, the present work uses LOOCV accuracy for comparisons because the 

previous related works also applied it to measure classification accuracy on the same data sets. 

Several experiments are independently conducted 10 times on each data set using IPSO and 

BPSO. Next, an average result of the 10 independent runs is obtained. Two criteria following 

their importance are considered to evaluate the performances of IPSO and BPSO such as 
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LOOCV accuracy and the number of selected genes. Additionally, running times are also 

measured for the comparison between IPSO and BPSO. High accuracy, the small number of 

selected genes, and low running time are needed to obtain an excellent performance. Table 

8.2 contains parameter values for IPSO and BPSO. These values are chosen based on the 

results of preliminary runs. 

 

 

Table 8.3. Experimental results for each run using IPSO on the 11_Tumors, 9_Tumors, 

Brain_Tumor1, and Brain_Tumor2 data sets. 

11_Tumors 9_Tumors Brain_Tumor1 Brain_Tumor2 

Run no. #Acc 
(%) 

No. 
selected 
genes 

#Acc 
 (%) 

No. 
selected 
genes 

#Acc 
 (%) 

No. 
selected 
genes 

#Acc 
 (%) 

No. 
selected 
genes 

1 95.40 239 73.33 226 92.22 9 92 11 
2 94.83 254 73.33 238 92.22 21 92 27 
3 94.83 240 75 237 93.33 8 92 5 
4 95.40 245 75 240 92.22 6 92 5 
5 94.83 230 76.67 255 92.22 27 92 4 
6 94.83 232 78.33 248 92.22 10 92 16 
7 95.40 251 75 235 92.22 6 94 4 
8 94.83 237 76.67 247 93.33 5 90 5 
9 95.40 228 76.67 240 93.33 11 92 6 
10 94.83 253 75 240 92.33 9 92 7 

Average 
± S.D. 

95.06 
± 0.30 

240.90 
± 9.55 

75.50 
± 1.58 

240.60 
± 7.95 

92.56 
± 0.54 

11.20 
± 7.15 

91.00 
± .05 

6.40 
± 1.90 

Note: The results of the best subsets are shown in the shaded cells. A near-optimal subset 
that produces the highest classification accuracy with the smallest number of genes is 
selected as the best subset. #Acc and S.D. denote the classification accuracy and the 
standard deviation, respectively. 

 

 

8.4.2 Experimental results and discussion 
 

Based on the standard deviations in Tables 8.3, 8.4, and 8.5, results that produced by IPSO 

were almost consistent on all data sets. Interestingly, all runs have achieved 100% LOOCV 

accuracy with less than 30 selected genes on the Leukemia1, Leukemia2, SRBCT, DLBCL, 
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and lung data sets. Moreover, over 92% classification accuracies have been obtained on other 

data sets, except for the 9_Tumors data set. This means that IPSO has efficiently selected and 

produced a near-optimal gene subset from high-dimensional data (gene expression data). 

Figure 8.3 shows that the averages of fitness values of IPSO increase dramatically after 

a few generations on all the data sets. A high fitness value is obtained by a combination 

between a high classification rate and a small number (subset) of selected genes. The 

condition of the proposed particle’s speed that should always be positive real numbers started 

in the initialization method, and the new rule for updating particle’s positions provoke the 

early convergence of IPSO. In contrast, the averages of fitness values of BPSO was no 

improvement until the last generation due to ( ( ) 0) ( ( ) 1) 0.5.d d
i iP x t P x t= = = =  

 

 

Table 8.4. Experimental results for each run using IPSO on the Leukemia1, Leukemia2, 

Lung_Cancer, and SRBCT data sets. 

Leukemia1 Leukemia2 Lung_Cancer SRBCT 

Run no. #Acc 
(%) 

No. 
selected 
genes 

#Acc 
(%) 

No. 
selected 
genes 

#Acc 
(%) 

No. 
selected 
genes 

#Acc 
(%) 

No. 
selected 
genes 

1 100 4 100 7 95.07 9 100 10 
2 100 2 100 6 95.57 27 100 22 
3 100 4 100 7 96.55 10 100 25 
4 100 4 100 6 95.57 5 100 8 
5 100 3 100 8 95.57 12 100 28 
6 100 4 100 4 96.06 6 100 12 
7 100 4 100 5 95.57 7 100 14 
8 100 3 100 7 96.55 28 100 26 
9 100 4 100 8 96.55 34 100 24 
10 100 3 100 9 95.57 11 100 6 

Average 
± S.D. 

100 
± 0 

3.50 
± 0.71 

100 
± 0 

6.70 
± 1.50 

95.86 
± 0.53 

14.90 
± 10.57 

100 
± 0 

17.50 
± 8.32 
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Table 8.5. Experimental results for each run using IPSO on the Prostate_Tumor, DLBCL, 

colon, and lung data sets. 

Prostate_Tumor DLBCL Colon Lung 

Run no. #Acc 
(%) 

No. 
selected 
genes 

#Acc 
(%) 

No. 
selected 
genes 

#Acc 
(%) 

No. 
selected 
genes 

#Acc 
(%) 

No. 
selected 
genes 

1 98.04 18 100 7 93.55 5 100 9 
2 97.06 6 100 8 93.55 5 100 6 
3 98.04 17 100 4 96.77 4 100 6 
4 98.04 26 100 6 93.55 5 100 5 
5 98.04 9 100 5 93.55 4 100 6 
6 98.04 11 100 5 95.16 5 100 8 
7 98.04 8 100 6 93.55 4 100 4 
8 98.04 7 100 7 95.16 4 100 5 
9 98.04 26 100 5 93.55 5 100 7 
10 98.04 8 100 7 93.55 4 100 6 

Average 
± S.D. 

97.94 
± 0.31 

13.60 
± 7.68 

100 
± 0 

6.00 
± 1.25 

94.19 
± 1.13 

4.5  
± 0.53 

100 
± 0 

6.20 
± 1.48 

 

According to the Table 8.6, overall, it is worthwhile to mention that the classification 

accuracy and the number of selected genes of IPSO are superior to BPSO in terms of the best, 

average, and standard deviation results on all the data sets except for the Lung_Cancer and 

Prostate_Tumor data sets. The classification accuracy of BPSO on both the data sets were 

slightly higher than IPSO. This is probably because both the data sets need many genes for 

more accurate classification of cancer classes. Meanwhile, IPSO produces a smaller number 

of genes compared to BPSO. The running times of IPSO are also lower than BPSO in all the 

data sets. IPSO can reduce its running times because of the following reasons: 

• IPSO selects the smaller number of genes compared to BPSO, 

• The computation of SVMs is fast because it uses the small number of features (genes) 

that selected by IPSO for classification process, and 

• IPSO only uses the speed of particles for comparing with 3 ( )dr t , whereas BPSO 

practices all elements of a particle’s velocity vectors for the comparison. 
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Fig. 8.3. A relation between the average of fitness values (10 runs on average) and the 

number of generations for IPSO and BPSO. 
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Table 8.6. Comparative experimental results of IPSO and BPSO. 

IPSO BPSO 
Data set 

Method  
 
Evaluation Best #Ave S.D Best #Ave S.D 

#Acc (%)  95.40 95.06 0.30 95.98 94.94 0.85 
#Genes 228 240.9 9.55 245 241.10 12.80 11_Tumors 
#Time  56.40 57.00 0.37 409.71 409.93 0.23 
#Acc (%)  78.33 75.50 1.58 78.33 73.33 1.92 
#Genes 248 240.6 7.95 244 236.00 12.38 9_Tumors 
#Time 3.02 3.34 0.17 31.36 31.57 0.12 
#Acc (%)  93.33 92.56 0.54 92.22 92.00 0.47 
#Genes 5 11.20 7.15 220 236.30 11.94 Brain_Tumor1 
#Time 10.63 12.08 0.88 46.65 46.77 0.10 
#Acc (%)  94.00 92.00 0.94 90 88.20 0.63 
#Genes 4 9.10 7.34 251 245.30 11.30 Brain_Tumor2 
#Time 0.62 0.66 0.03 10.58 10.60 0.02 
#Acc (%)  100 100 0 98.61 98.61 0 
#Genes 2 3.50 0.71 216 224.70 5.23 Leukemia1 
#Time 2.28 2.31 0.02 13.86 13.94 0.03 
#Acc (%)  100 100 0 97.22 97.22 0 
#Genes 4 6.70 1.50 218 228.11 4.86 Leukemia2 
#Time 2.24 2.72 0.25 19.37 19.90 0.35 
#Acc (%)  96.55 95.86 0.53 97.54 96.60 0.63 
#Genes 10 14.90 10.57 245 228.70 9.70 Lung_Cancer 
#Time 90.34 96.24 6.64 282.75 285.33 1.34 
#Acc (%)  100 100 0 100 100 0 
#Genes 6 17.50 8.32 206 221.30 7.35 SRBCT 
#Time 5.52 5.96 0.39 44.86 44.88 0.01 
#Acc (%)  98.04 97.94 0.31 98.04 98.04 0 
#Genes 7 13.60 7.68 217 231.50 8.40 Prostate_Tumor 
#Time 3.59 3.64 0.03 48.11 48.61 0.26 
#Acc (%)  100 100 0 100 100 0 
#Genes 4 6 1.25 215 230.10 10.09 DLBCL 
#Time 1.60 1.62 0.02 11.21 12.49 1.11 
#Acc (%)  96.77 94.19 1.13 87.10 86.94 0.51 
#Genes 4 4.50 0.53 214 231 10.19 Colon 
#Time 4.22 4.33 0.06 30.58 30.65 0.27 
#Acc (%)  100 100 0 99.45 99.39 0.18 
#Genes 4 6.20 1.48 219 223.33 4.24 Lung 
#Time 8.22 8.31 0.05 110.71 111.07 0.23 

Note: The best results of each data set are shown in the shaded cells. It is selected based on the 
following priority criteria: 1) the highest classification accuracy; 2) the smallest number of selected 
genes. #Acc and S.D. denote the classification accuracy and the standard deviation, respectively, 
whereas #Genes and #Ave represent the number of selected genes and an average, respectively. 
#Time stands for running time in the hour unit. 
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Table 8.7. A comparison between IPSO and previous PSO-based methods. 

Data set  
Method 

 
Evaluation  

IPSO IBPSO 
[8] 

PSOTS 
[31] 

PSOGA 
[21] 

GPSO 
[1] 

#Acc (%) (95.06) 93.10 - - - 
11_Tumors 

#Genes (240.9) 2948 - - - 
#Acc (%) (75.50) 78.33 - - - 

9_Tumors 
#Genes (240.6) 1280 - - - 
#Acc (%) (92.56) 94.44 - - - 

Brain_Tumor1 
#Genes (11.20) 754 - - - 
#Acc (%) (92.00) 94.00 - - - 

Brain_Tumor2 
#Genes (9.10) 1197 - - - 
#Acc (%) (100) 100 (98.61) (95.10) - 

Leukemia1 
#Genes (3.50) 1034 (7) (21) - 
#Acc (%) (100) 100 - - - 

Leukemia2 
#Genes (6.70) 1292 - - - 
#Acc (%) (95.86) 96.55 - - - 

Lung_Cancer 
#Genes (14.90) 1897 - - - 
#Acc (%) (100) 100 - - - 

SRBCT 
#Genes (17.50) 431 - - - 
#Acc (%) (97.94) 92.16 - - - 

Prostate_Tumor 
#Genes (13.60) 1294 - - - 
#Acc (%) (100) 100 - - - 

DLBCL 
#Genes (6) 1042 - - - 
#Acc (%) (94.19) - (93.55) (88.7) - 

Colon 
#Genes (4.50) - (8) (16.8) - 
#Acc (%) (100) - - - (99) 

Lung 
#Genes (6.20) - - - (4) 

Note: The results of the best subsets are shown in the shaded cells. It is selected based on 
the following priority criteria: 1) the highest classification accuracy; 2) the smallest 
number of selected genes. ‘-‘ means that a result is not reported in the related previous 
work. A result in ‘( )’ denotes an average result. #Genes and #Acc represent the number of 
selected genes and the classification accuracy, respectively.  
IBPSO = Improved binary PSO.   
PSOGA = A hybrid of PSO and GAs. 
PSOTS = A hybrid of PSO and tabu search. 
GPSO = Geometric PSO. 
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For an objective comparison, the present work compares IPSO with previous related 

works that used PSO-based methods in their proposed methods [1],[8],[21],[33]. It is shown 

in Table 8.7. For all the data sets, the averages of the number of selected genes of the present 

work were smaller than the previous works [1],[8],[21],[33]. The present work also have 

resulted the higher averages of classification accuracies on seven data sets (11_Tumors, 

Leukemia1, Leukemia2, SRBCT, Prostate_Tumor, DLBCL, and colon) compared to the 

previous works. However, the classification accuracies of Chuang et al. [8] were slightly 

higher than the present work on four data sets (9_Tumors, Brain_Tumor1, Brain_Tumor2, 

and Lung_Cancer). 

Even though the previous work [8] achieved better classification accuracies on the four 

data sets, but they used high numbers of selected genes (at least 750 selected genes) to obtain 

the results. Moreover, they could not have statistically meaningful conclusions because their 

experimental results were obtained by only one independent run on each data set, and not 

based on average results. The average results are important since their proposed method is a 

stochastic approach. Additionally, in their approach, the global best particle’s position is reset 

to zero position when its fitness values do not change after three successive iterations. 

Theoretically, their approach is almost impossible to result a near-optimal gene subset from 

high-dimensional spaces (high-dimension data) because the global best particle’s position 

should make a new exploration and exploitation for searching the near-optimal solution after 

its position reset to zero. Overall, the present work has outperformed the previous related 

works in terms of LOOCV accuracy and the number of selected genes. Running times 

between IPSO and the previous works cannot be compared because they were not reported in 

their articles. 

According to Fig. 8.3 and Tables 8.3, 8.4, 8.5, 8.6, and 8.7, IPSO is reliable for gene 

selection since it has produced the near-optimal solution from gene expression data. This is 

due to the proposed particle’s speed and the introduced rule increase the probability 

( 1) 0d
ix t + =  ( ( ( 1) 0))d

iP x t + = . The particle’s speed is introduced to provide the rate at which 

a particle changes its position, whereas the rule is proposed to update particle’s positions. The 

increased probability value for ( 1) 0d
ix t + = causes the selection of a small number of 

informative genes and finally produces a near-optimal subset (a small subset of informative 

genes with high classification accuracy) for cancer classification. 
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8.5 Summary  
 

In this chapter, IPSO has been proposed for gene selection on 12 gene expression data sets. 

Overall, based on the experimental results, the performance of IPSO was superior to BPSO 

and PSO-based methods that proposed by previous related works in terms of classification 

accuracy and the number of selected genes. IPSO was excellent because the probability 

( 1) 0d
ix t + =  has been increased by the proposed particle’s speed and the introduced rule. The 

particle’s speed and the introduced rule have been proposed in order to yield a near-optimal 

subset of genes for better cancer classification. IPSO also obtains lower running times 

because it selects the small number of genes compared to BPSO. The next chapter (Chapter 9) 

will propose a constraint approach in BPSO in order to increase the probability ( 1) 0.d
ix t + =  
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Chapter 9 

Enhanced Binary Particle Swarm Optimization 

with the Constraint of Particle’s Velocities 
 

 

9.1 Introduction 
 

Chapter 9 also focuses on how to solve the weaknesses of BPSO and the previous related 

works [1],[21],[33] as described in Subsection 8.2.1 in Chapter 8. Thus, this chapter proposes 

and discusses an enhancement of binary PSO with the proposed constraint of particle’s 

velocities (CPSO). The constraint is introduced in CPSO to increase the probability of genes 

to be unselected for the classification. It is evaluated by using five gene expression data sets.  

 

 

9.2 An Enhancement of Binary Particle Swarm Optimization Based on 

the Constraint of Particle’s Velocities (CPSO) 
 

This chapter introduces an enhancement of binary PSO with the proposed constraint of 

particle’s velocities (CPSO) to select a small (near-optimal) subset of informative genes that 

is most relevant for the cancer classification. It is also proposed to overcome the limitations 

of BPSO and the previous PSO-based methods [1], [21], [33]. CPSO in the present work 

differs from BPSO and the PSO-based methods on one part; it proposes the constraint of 

elements of particle velocity vectors; whereas BPSO and the previous PSO-based methods 

have not implemented any constraint for the elements of particle velocity vectors. CPSO also 

applies the proposed rule as described in Chapter 8 for updating particle’s velocities. The 

constraint and rule are sequentially implemented to 

• increase the probability of ( 1) 0d
ix t + =  ( ( ( 1) 0))d

iP x t + =  and 

• reduce the probability of ( 1) 1d
ix t + =  ( ( ( 1) 1))d

iP x t + = . 
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The increased and decreased probability values cause a small number of genes are 

selected and grouped into a gene subset. ( 1) 1d
ix t + =  means that the corresponding gene is 

selected. Otherwise, ( 1) 0d
ix t + =  represents that the corresponding gene is not selected. The 

constraint of elements of particle velocity vectors is proposed as follows: 

 

( 1)

1( ( 1))
1

d
i

d
i v t

Sig v t
e− +

+ =
+

 

subject to ( 1) 0d
iv t + ≥  

(9.1)

 

where d
iv  is a real number for the d-th dimension of the particle i in the t+1 iteration  with the 

maximum ,d
iv max (1/ 3) .V n= × ( ( 1))d

iSig v t + is a sigmoid function where  

( ( 1)) [0,1].d
iSig v t + ∈  

The constraint of elements of particle velocity vectors and the rule increase 

( ( ) 0)d
iP x t =  because the minimum value for ( ( ) 0)d

iP x t =  is 0.5 when ( ) 0d
iv t =  

(min ( ( ) 0) 0.5).d
iP x t = ≥  Meanwhile, they decrease the maximum value for  ( ( ) 1)d

iP x t =  to 

0.5 (max ( ( ) 1) 0.5).d
iP x t = ≤  Therefore, if ( ) 0,d

iv t >  then ( ( ) 0) 0.5d
iP x t = >>  and 

( ( ) 1) 0.5.d
iP x t = <<  

Figure 9.1(a) shows that the constraint of elements of particle velocity vectors and the 

rule in CPSO increase ( ( ) 0);d
iP x t =  whereas Fig.9.1(b) displays that Eqs.(8.1), (8.2), and 

(8.3) in BPSO as stated in Chapter 8 yield ( ( ) 0) ( ( ) 1) 0.5.d d
i iP x t P x t= = = =  For example, the 

calculations for ( ( ) 0)d
iP x t =  and ( ( ) 1)d

iP x t =  in Fig. 9.1(a) are shown as follows; 

if ( ) 1,d
iv t =  then ( ( ) 0) 0.73d

iP x t = =  and ( ( ) 1) 1 ( ( ) 0) 0.27,d d
i iP x t P x t= = − = =   

and 

if ( ) 2,d
iv t =  then ( ( ) 0) 0.88d

iP x t = =  and ( ( ) 1) 1 ( ( ) 0) 0.12.d d
i iP x t P x t= = − = =  
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Fig. 9.1. The areas of  ( ( ) 0)d
iP x t =  and  ( ( ) 1)d

iP x t =  based on sigmoid functions in (a) 

CPSO; (b) BPSO. 

 

The fitness value of particles (gene subsets) is calculated as follows: 

 

1 2( ) ( ) ( ( ( )) / )i i ifitness X w A X w n R X n= × + × −  (9.2)

 

where [ ]( ) 0,1iA X ∈  is the LOOCV classification accuracy that uses the only genes in a gene 

subset ( ).iX  This accuracy is provided by SVM. ( )iR X  is the number of selected genes in 

.iX n  is the total number of genes for each sample. 1w  and 2w  are two priority weights 

corresponding to the importance of accuracy and the number of selected genes, respectively, 

where 1 [0.1,0.9]w ∈  and 2 11w w= − . 

 

 

 

 

 

 

 

( )

1( ( ))
1

d
i

d
i v t

Sig v t
e−

=
+

0

1

0.5

0

( ( ) 1)d
iP x t =

( ( ) 0)d
iP x t =  

( )d
iv t

( ( ))d
iSig v t  

2 -2

b)

( )

1( ( ))
1

d
i

d
i v t

Sig v t
e−

=
+

0 

1 

0.5 

0 

( ( ) 0)d
iP x t =  

( ( ) 1)d
iP x t =

( )iv t

The area of  
unsatisfied  ( ) 0d

iv t ≥  

a) ( ( ))d
iSig v t  

-2 2 

Legends: 
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9.3 Experimental Results 
 

9.3.1 Data sets and experimental setup 
 

Five gene expression data sets are used in this chapter to test the effectiveness of CPSO 

compared to BPSO and PSO-based methods from the previous related works [1],[21],[33].  

These data sets are the leukemia, colon, lung, and mixed-lineage leukemia (MLL), and small 

round blue cell tumors (SRBCT) data sets. The first four data sets are summarized on Table 

2.1 in Chapter 2. The SRBCT data set is a multi-classes data set. It has four classes; ewing 

family of tumors (EWS), rhabdomyosarcoma (RMS), neuroblastoma (NB), and burkitt 

lymphomas (BL). The training set contains 63 samples (22 EWS, 20 RMS, 12 NB, and 8 BL), 

whereas the test set contains 20 samples (6 EWS, 5 RMS, 6 NB, and 3 BL). There are 2,308 

genes in each sample. It can be downloaded at  

http://research.nhgri.nih.gov/microarray/Supplement/. 

 

 

Table 9.1. Parameter settings for CPSO and BPSO. 

Parameters Values 

No. particles 100 

No. iterations 500 

1w  0.8 

2w  0.2 

1c  2 

2c  2 
 

Firstly, the present work applied the gain ratio technique for pre-processing in order to 

pre-select 500-top-ranked genes. These genes are then used by CPSO and BPSO. Next, SVM 

is used to measure LOOCV accuracy on gene subsets produced by CPSO and BPSO. Several 

experiments are independently conducted 10 times on each data set using CPSO and BPSO. 

Next, an average result of the 10 independent runs is obtained. High LOOCV accuracy, the 

small number of selected genes, and low running time are needed to obtain an excellent 
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performance. Table 9.1 contains parameter values for CPSO and BPSO. These values are 

chosen based on the results of preliminary runs. 

 

 

9.3.2 Result analysis and discussion 
 

Based on the standard deviation of classification accuracies in Tables 9.2 and 9.3, results that 

produced by CPSO were almost consistent on all data sets. Interestingly, all runs have 

achieved 100% LOOCV accuracy with less than 50 selected genes on the SRBCT data set. 

Moreover, over 97% classification accuracies have been obtained on other data sets, except 

for the colon data set. This means that CPSO has efficiently selected and produced a near-

optimal gene subset from high-dimensional data (gene expression data). 

 

Table 9.2. Experimental results for each run using CPSO on the leukemia, colon, and lung 

data sets. 

Leukemia data set Colon data set Lung data set 
Run no. #Acc 

(%) 
No. selected 

genes 
#Acc 
 (%) 

No. selected 
genes 

#Acc 
 (%) 

No. selected 
genes 

1 100 10 90.32 4 99.45 9 
2 100 5 90.32 6 99.45 9 
3 100 3 88.71 28 99.45 7 
4 98.61 9 91.94 10 99.45 30 
5 98.61 9 88.71 8 99.45 8 
6 100 31 88.71 8 99.45 9 
7 98.61 11 88.71 7 98.90 8 
8 98.61 10 88.71 7 99.45 5 
9 98.61 8 88.71 5 99.45 15 
10 98.61 9 88.71 130 99.45 13 

Average 
± S.D. 

99.17 
± 0.72 

10.50 
± 7.61 

89.36 
± 1.13 

21.30 
± 38.80 

99.39 
± 0.15 

11.30 
± 7.17 

Note: The results of the best subsets are shown in the shaded cells. A near-optimal 
subset that produces the highest classification accuracy with the smallest number of 
genes is selected as the best subset. #Acc and S.D. denote the classification accuracy 
and the standard deviation, respectively. 
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Table 9.3. Experimental results for each run using CPSO on the MLL and SRBCT data sets. 

MLL data set SRBCT data set 
Run no. 

#Acc (%) No. selected genes #Acc (%) No. selected genes 
1 97.22 32 100 20 
2 98.61 113 100 48 
3 97.22 38 100 42 
4 97.22 28 100 50 
5 97.22 6 100 21 
6 95.83 6 100 37 
7 97.22 11 100 32 
8 97.22 37 100 27 
9 97.22 88 100 21 
10 97.22 33 100 50 

Average ± S.D. 97.22 ± 0.66 39.20 ± 35.04 100 ± 0 34.80 ± 12.30 
Note: The result of the best subsets is shown in the shaded cells. A near-optimal subset 
that produces the highest classification accuracy with the smallest number of genes is 
selected as the best subset. #Acc and S.D. denote the classification accuracy and the 
standard deviation, respectively. 

 

Figure 9.2 shows that the averages of fitness values of CPSO increase dramatically after 

a few generations on all the data sets. A high fitness value is obtained by a combination 

between a high classification rate and a small number (subset) of selected genes. The 

condition of the proposed constraint of elements of particle velocity vectors that should 

always be positive real numbers started in the initialization method and the new rule for 

updating particle’s positions provoke the early convergence of CPSO. In contrast, the 

averages of fitness values of BPSO was no improvement until the last generation due to 

( ( ) 0) ( ( ) 1) 0.5.d d
i iP x t P x t= = = =  

For an objective comparison, CPSO is compared with BPSO. According to the Table 

9.4, overall, it is worthwhile to mention that the classification accuracy and the number of 

selected genes of CPSO are superior to BPSO in terms of the best, average, and standard 

deviation results on all the data sets. The classification accuracies of BPSO and CPSO were 

the same on the lung and SRBCT data sets. However, the number of selected genes of BPSO 

was higher than CPSO to achieve the same accuracy. CPSO also produces smaller numbers  
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Fig. 9.2. A relation between the average of fitness values (10 runs on average) and the 

number of generations for CPSO and BPSO. 
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Table 9.4. Comparative experimental results of CPSO and BPSO. 

CPSO BPSO 
Data set 

Method 
 
Evaluation Best #Ave S.D Best #Ave S.D 
#Acc (%)  100 99.17 0.72 98.61 98.61 0 
No. selected genes 3 10.50 7.16 216 224.70 5.23 Leukemia 
Running time (hour) 5.26 6.13 1.44 13.86 13.94 0.03 

#Acc (%)  91.94 89.36 1.13 87.10 86.94 0.51 
No. selected genes 10 21.30 38.80 214 231 10.19 Colon 
Running time (hour) 8.78 9.26 0.70 30.58 30.63 0.27 
#Acc (%)  99.45 99.39 0.18 99.45 99.39 0.18 
No. selected genes 5 11.30 7.17 219 223.33 4.24 Lung 
Running time (hour) 63.53 64.40 0.87 110.71 111.07 0.23 
#Acc (%)  98.61 97.22 0.66 97.22 97.22 0 
No. selected genes 113 39.20 35.04 218 228.11 4.86 MLL 
Running time (hour) 9.51 11.64 4.98 19.37 19.90 0.35 
#Acc (%)  100 100 0 100 100 0 
No. selected genes 20 34.80 12.30 206 221.30 7.35 SRBCT 
Running time (hour) 21.67 21.76 1.32 44.86 44.88 0.01 

Note: The best results of each data set are shown in the shaded cells. It is selected based on 
the following priority criteria: 1) the highest classification accuracy; 2) the smallest 
number of selected genes. #Acc and S.D. denote the classification accuracy and the 
standard deviation, respectively, whereas #Ave represents an average. 

 

of genes and lower running times compared to BPSO on all the data sets. CPSO can reduce 

its running times because of the following reasons;  

• CPSO selects the smaller number of genes compared to BPSO and 

• The computation of SVMs is fast because it uses the small number of features (genes) 

that selected by CPSO for classification process. 

The present work also compares CPSO with previous related works that used PSO-

based methods in their proposed methods [1],[21],[33]. It is shown in Table 9.5. For all the 

data sets, the averages of the number of selected genes of the present work were smaller than 

the previous works. The present work also have resulted the higher averages of classification 

accuracies on the leukemia data set compared to the previous works. However, experimental 

results produced by Shen et al. [31] were better than the present work on the colon data sets. 
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Running time between CPSO and the previous works cannot be compared because it was not 

reported in their articles. 

According to Fig. 9.2 and Tables 9.3, 9.4, and 9.5, CPSO is reliable for gene selection 

since it has produced the near-optimal solution from gene expression data. This is due to the 

proposed constraint of elements of particle velocity vectors and the introduced rule increase 

the probability ( 1) 0d
ix t + =  ( ( ( 1) 0))d

iP x t + = . The increased probability value for 

( 1) 0d
ix t + = causes the selection of a small number of informative genes and finally produces 

a near-optimal subset (a small subset of informative genes with high classification accuracy) 

for cancer classification. 

 

  

Table 9.5. A comparison between CPSO and previous PSO-based methods. 

Data set 
Method 

 
Evaluation  

CPSO PSOTS [31] PSOGA [21] GPSO [1] 

#Acc (%) (99.17) (98.61) (95.10) - 
Leukemia 

No. selected genes (10.50) (7) (21) - 
#Acc (%) (89.36) (93.55) (88.7) - 

Colon 
No. selected genes (21.30) (8) (16.8) - 

#Acc (%) (99.39) - - (99) 
Lung 

No. selected genes (11.30) - - (4) 
#Acc (%) (97.22) - - - 

MLL 
No. selected genes (39.20) - - - 
#Acc (%) (100) - - - 

SRBCT 
No. selected genes (34.80) - - - 

Note: The results of the best subsets are shown in the shaded cells. It is selected based on 
the following priority criteria: 1) the highest classification accuracy; 2) the smallest 
number of selected genes. ‘-‘ means that a result is not reported in the related previous 
work. A result in ‘( )’ denotes an average result. #Acc represents the classification 
accuracy.  
PSOGA = A hybrid of PSO and GAs. 
PSOTS = A hybrid of PSO and tabu search. 
GPSO = Geometric PSO. 
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9.4 Summary 
 

Overall, based on the experimental results, the performance of CPSO was superior to BPSO 

and previous PSO-based methods in terms of classification accuracy and the number of 

selected genes. CPSO was excellent because the probability ( 1) 0d
ix t + =  has been increased 

by the proposed constraint of elements of particle velocity vectors and the introduced rule. 

The constraint and rule have been proposed in order to yield a near-optimal subset of genes 

for better cancer classification. CPSO also obtains lower running times because it selects the 

small number of genes compared to BPSO. Chapter 10 will propose a modified sigmoid 

function to more increase the probability ( 1) 0.d
ix t + =  
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Chapter 10 

Improved Binary Particle Swarm Optimization 

Based on a Modified Sigmoid Function 
 

 

10.1 Introduction 
 

This chapter proposes an improvement of binary particle swarm optimization. It is introduced 

to surmount the limitations of BPSO and the previous related works [1],[8],[21],[33]. The 

limitations have been described in Subsection 8.2.1 in Chapter 8. A simple modified sigmoid 

function is proposed in the improved BPSO. In order to test the effectiveness of the proposed 

method, the present work applies it to five gene expression data sets, including binary-classes 

and multi-classes data sets. 

 

 

10.2 An Improvement of Binary Particle Swarm Optimization with a 

Modified Sigmoid Function (SPSO) 
 

In order to overcome the limitations of BPSO and previous PSO-based [1],[8],[21],[33] for 

selecting a small subset of genes, this chapter proposes an improvement of BPSO based on a 

modified sigmoid function (SPSO). SPSO in the present work differs from BPSO and the 

PSO-based methods on one major part; the present work modifies the existing sigmoid 

function, whereas BPSO and the PSO-based methods have used the standard sigmoid 

function as shown on Eq.(8.2) in Chapter 8. Moreover, SPSO also implements the proposed 

rule and particle’s speed as introduced in Chapter 8. The modified sigmoid function, rule, and 

particle’s speed are consecutive applied to; 

• increase the probability of ( 1) 0d
ix t + =  ( ( ( 1) 0))d

iP x t + =  and 

• reduce the probability of ( 1) 1d
ix t + =  ( ( ( 1) 1))d

iP x t + = . 
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The increased and decreased probability values cause a small number of genes are 

selected and grouped into a gene subset. ( 1) 1d
ix t + =  means that the corresponding gene is 

selected. Otherwise, ( 1) 0d
ix t + =  represents that the corresponding gene is not selected. The 

modified sigmoid function is proposed as follows: 

 

5 ( 1)
1( ( 1))

1 ii s tSig s t
e− ++ =

+
 

subject to ( 1) 0is t + ≥  
(10.1)

 

where ( 1)is t +  represents the speed of the particle i for the t+1 iteration, whereas in BPSO 

and previous PSO-based methods, ( 1)d
iv t +  represents a single element of a particle velocity 

vector for the particle i. ( 1)is t +  is the rate at which the particle i changes its position.  

Equations (10.1) and ( ) 0is t ≥  increase ( ( ) 0)d
iP x t =  because the minimum value for 

( ( ) 0)d
iP x t =  is 0.5 when ( ) 0is t =  (min ( ( ) 0) 0.5).d

iP x t = ≥ Meanwhile, they decrease the 

maximum value for  ( ( ) 1)d
iP x t =  to 0.5 (max ( ( ) 1) 0.5).d

iP x t = ≤  Therefore, if ( ) 0,is t >  then 

( ( ) 0) 0.5d
iP x t = >>  and ( ( ) 1) 0.5.d

iP x t = <<  

Figure 10.1(a) shows that Eq.(10.1) and ( ) 0is t ≥  in SPSO increase ( ( ) 0);d
iP x t =  

whereas Fig.10.1(b) denotes that Eqs. (8.1), (8.2), and (8.3) in BPSO as stated in Chapter 8 

yield ( ( ) 0) ( ( ) 1) 0.5.d d
i iP x t P x t= = = =  For example, the calculations for ( ( ) 0)d

iP x t =  and 

( ( ) 1)d
iP x t =  in Fig. 10.1(a) are shown as follows: 

if ( ) 1,is t =  then ( ( ) 0) 0.993307d
iP x t = =  and ( ( ) 1) 1 ( ( ) 0) 0.006693,d d

i iP x t P x t= = − = =  

and 

if ( ) 2,is t =  then ( ( ) 0) 0.999955d
iP x t = =  and ( ( ) 1) 1 ( ( ) 0) 0.000045.d d

i iP x t P x t= = − = =  
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Fig. 10.1. The areas of unsatisfied ( ) 0,is t ≥  ( ( ) 0)d
iP x t =  and  ( ( ) 1)d

iP x t =  in (a) SPSO; (b) 

BPSO. 

 

The high probability of ( ) 0d
ix t = ( ( ( ) 0))d

iP x t =  causes a small number of genes are 

selected in order to produce a near-optimal (small) gene subset from high-dimensional data 

(gene expression data). Hence, SPSO is proposed to overcome the limitations of BPSO and 

the previous PSO-based methods, and finally produce a small subset of informative genes. 

The fitness value of particles (gene subsets) is calculated as follows: 

 

1 2( ) ( ) ( ( ( )) / )i i ifitness X w A X w n R X n= × + × −  (10.2)

 

where [ ]( ) 0,1iA X ∈  is the LOOCV classification accuracy that uses the only genes in a gene 

subset ( ).iX  This accuracy is provided by SVM. ( )iR X  is the number of selected genes in 

.iX n  is the total number of genes for each sample. 1w  and 2w  are two priority weights 

corresponding to the importance of accuracy and the number of selected genes, respectively, 

where 1 [0.1,0.9]w ∈  and 2 11w w= − . 

 

Legends: 
 The area of unsatisfied ( ) 0.is t ≥  
 The area of ( ( ) 0).d

iP x t =  
 The area of ( ( ) 1).d

iP x t =  
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10.3 Experimental Results 
 

10.3.1  Data sets and experimental setup 
 

Five benchmark gene expression data sets used in this chapter. They included binary-classes 

and multi-classes data sets. These data sets are the leukemia, colon, lung, and mixed-lineage 

leukemia (MLL), and small round blue cell tumors (SRBCT) data sets. The first four data sets 

are summarized on Table 2.1 in Chapter 2. The SRBCT data set is a multi-classes data set. It 

has four classes; ewing family of tumors (EWS), rhabdomyosarcoma (RMS), neuroblastoma 

(NB), and burkitt lymphomas (BL). The training set contains 63 samples (22 EWS, 20 RMS, 

12 NB, and 8 BL), whereas the test set contains 20 samples (6 EWS, 5 RMS, 6 NB, and 3 

BL). There are 2,308 genes in each sample. It can be downloaded at 

http://research.nhgri.nih.gov/microarray/Supplement/. 

 

Table 10.1. Parameter settings for SPSO and BPSO. 

Parameters Values 

No. particles 100 

No. iterations (generation) 500 

1w  0.8 

2w  0.2 

1c  2 

2c  2 
 

 Experimental results produced by SPSO are compared with an experimental method 

(BPSO) and other previous PSO-based methods for objective comparisons [1],[8],[21],[33]. 

SVM is used to measure LOOCV accuracy on gene subsets that produced by SPSO and 

BPSO. In order to avoid selection bias, the implementation of LOOCV is in exactly the same 

way as did by Chuang et al. [8] where the only one cross-validation cycle (outer loop), 

namely LOOCV is used. Several experiments are independently conducted 10 times on each 

data set using SPSO and BPSO. Next, an average result of the 10 independent runs is 

obtained. Two criteria following their importance are considered to evaluate the 
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performances of SPSO and BPSO; LOOCV accuracy and the number of selected genes. 

Additionally, running times are also measured for the comparison between SPSO and BPSO. 

High accuracy and the small number of selected genes are needed to obtain an excellent 

performance. Table 10.1 contains parameter values for SPSO and BPSO. These values are 

chosen based on the results of preliminary runs. 

 

 

10.3.2  Result analysis and discussion 
 

Based on the standard deviation of classification accuracy in Table 10.2 and Table 10.3, 

results produced by SPSO were consistent on all data sets. Interestingly, all runs have 

achieved 100% LOOCV accuracy with less than 131 selected genes on the leukemia, SRBCT, 

and MLL the data sets. Moreover, over 91% classification accuracies have been obtained on 

the lung and colon data sets. This means that SPSO has efficiently selected and produced a 

near-optimal gene subset from high-dimensional data (gene expression data). 

Figure 10.2 shows that the averages of fitness values of SPSO increase dramatically 

after a few generations on all the data sets. A high fitness value is obtained by a combination 

between a high classification rate and a small number (subset) of selected genes. The 

condition of the proposed particle’s speed that should always be positive real numbers started 

in the initialization method, the new rule for updating particle’s positions, and the modified 

sigmoid function provokes the early convergence of SPSO. In contrast, the averages of 

fitness values of BPSO was no improvement until the last generation due to 

( ( ) 0) ( ( ) 1) 0.5.d d
i iP x t P x t= = = =  

According to the Table 10.4, overall, it is worthwhile to mentioning that the 

classification accuracy of SPSO are superior to BPSO in terms of the best, average, and 

standard deviation results on all the data sets. Moreover, SPSO also produces a smaller 

number of genes compared to BPSO. The running times of SPSO are lower than BPSO in all 

the data sets. SPSO can reduce its running times because SPSO selects the smaller number of 

genes compared to BPSO. 
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Fig 10.2. A relation between the average of fitness values (10 runs on average) and the 

number of generations for SPSO and BPSO. 
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Table 10.2. Experimental results for each run using SPSO on the leukemia, colon, and lung 

data sets. 

Leukemia data set Colon data set Lung data set 
Run no. #Acc 

(%) 
No. selected 

genes 
#Acc 
 (%) 

No. selected 
genes 

#Acc 
 (%) 

No. selected 
genes 

1 100 55 93.55 17 98.34 119 
2 100 65 93.55 11 97.79 115 
3 100 65 95.16 22 97.79 107 
4 100 70 96.77 22 98.34 125 
5 100 51 98.39 23 97.79 128 
6 100 62 95.16 15 98.34 130 
7 100 58 93.55 27 97.79 111 
8 100 61 95.16 29 98.34 106 
9 100 63 93.55 20 97.79 127 
10 100 67 91.94 16 98.34 129 

Average 
± S.D. 

100 
± 0 

61.70 
± 5.72 

94.68 
± 1.87 

20.20 
± 5.55 

98.07  
± 0.29 

119.70  
± 9.37 

Note: The results of the best subsets are shown in the shaded cells. It is selected based 
on the following priority criteria: 1) the highest classification accuracy; 2) the smallest 
number of selected genes. #Acc and S.D. denote the classification accuracy and the 
standard deviation, respectively. 

 

Table 10.3. Experimental results for each run using SPSO on the MLL and SRBCT data sets. 

MLL data set SRBCT data set 
Run no. #Acc 

(%) 
No. selected 

genes 
#Acc 
 (%) 

No. selected 
genes 

1 100 131 100 33 
2 100 123 100 26 
3 100 117 100 25 
4 100 113 100 26 
5 100 116 100 31 
6 100 109 100 22 
7 100 116 100 26 
8 100 114 100 21 
9 100 111 100 29 
10 100 111 100 22 

Average 
± S.D. 

100 
± 0 

116.10  
± 6.56 

100 
± 0 

26.10 
± 3.96 
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Table 10.4. Comparative experimental results of SPSO and BPSO. 

SPSO BPSO 
Data set 

Method 
 
Evaluation Best #Ave S.D Best #Ave S.D 
#Acc (%)  100 100 0 98.61 98.61 0 
No. selected genes 51 61.70 5.72 3488 3528.75 26.83 Leukemia 
Running time (hour) 7.52 7.46 0.67 261.34 261.41 0.18 

#Acc (%)  98.39 94.68 1.87 90.32 88.55 0.92 
No. selected genes 23 20.20 5.55 982 985.00 25.22 Colon 
Running time (hour) 5.06 5.02 0.07 64.45 64.63 0.18 
#Acc (%)  98.34 98.07 0.29 88.40 88.12 0.32 
No. selected genes 106 119.70 9.37 6177 6193.25 26.99 Lung 
Running time (hour) 94.80 94.79 0.12 1040.55 1040.50 0.10 
#Acc (%)  100 100 0 95.83 95.83 0 
No. selected genes 109 116.10 6.56 6101 6153.1 31.62 MLL 
Running time (hour) 13.51 13.83 0.18 236.759 239.00 1.34 
#Acc (%)  100 100 0 100 100 0 
No. selected genes 21 26.10 3.96 1076 1098.33 12.46 SRBCT 
Running time (hour) 10.32 9.63 1.24 136.81 136.87 0.06 

Note: The best results of each data set are shown in the shaded cells. It is selected based on 
the following priority criteria: 1) the highest classification accuracy; 2) the smallest number 
of selected genes. #Acc and S.D. denote the classification accuracy and the standard 
deviation, respectively, whereas #Ave represents an average. 
 

For an objective comparison, the present work compares SPSO with the previous 

related works that used PSO-based methods in their proposed methods [1],[8],[21],[33]. It is 

shown in Table 10.5. For leukemia, lung, MLL, and SRBCT the data sets, the averages of 

classification accuracies of the present work were higher than the previous works. The 

present work also has resulted the smaller averages of the number of selected genes on the 

data sets compared to the previous works. The latest previous work also came up with the 

similar LOOCV results (100%) to the present work on the leukemia and SRBCT data sets, 

but they used many genes (more than 400 genes) to obtain the same results [8]. Moreover, 

they could not have statistically meaningful conclusions because their experimental results 

were obtained by only one independent run on each data set, and not based on average results. 

The average results are important since their proposed method is a stochastic approach. 
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Additionally, in their approach, the global best particle’s position is reset to zero position 

when its fitness values do not change after three successive iterations. Theoretically, their 

approach is almost impossible to result a near-optimal gene subset from high-dimensional 

spaces (high-dimension data) because the global best particle’s position should make a new 

exploration and exploitation for searching the near-optimal solution after its position reset to 

zero. Overall, the present work has outperformed the previous related works in terms of 

LOOCV accuracy and the number of selected genes.  

 

 

Table 10.5. A comparison between SPSO and previous PSO-based methods. 

Data set 
Method 

 
Evaluation 

SPSO IBPSO 
[8] 

PSOTS 
[33] 

PSOGA 
[21] 

GPSO 
[1] 

#Acc (%) (100) 100 (98.61) (95.10) - 
Leukemia 

#Genes (61.70) 1034 (7) (21) - 
#Acc (%) (94.68) - (93.55) (88.7) - 

Colon 
#Genes (20.20) - (8) (16.8) - 
#Acc (%) (98.07) - - - (99) 

Lung 
#Genes (119.70) - - - (4) 
#Acc (%) (100) 100 - - - 

MLL 
#Genes (116.10) 1292 - - - 
#Acc (%) (100) 100 - - - 

SRBCT 
#Genes (26.10) 431 - - - 

Note: The results of the best subsets are shown in the shaded cells. It is selected 
based on the following priority criteria: 1) the highest classification accuracy; 2) 
the smallest number of selected genes. ‘-‘ means that a result is not reported in the 
related previous work. A result in ‘( )’ denotes an average result. #Genes and 
#Acc represent the number of selected genes and the classification accuracy, 
respectively.  
IBPSO = Improved binary PSO.   
PSOGA = A hybrid of PSO and GAs. 
PSOTS = A hybrid of PSO and tabu search. 
GPSO = Geometric PSO. 
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According to Fig. 10.2 and Tables 10.2, 10.3, 10.4, and 10.5, SPSO is reliable for gene 

selection since it has produced the near-optimal solution from gene expression data. This is 

due to the fact that the proposed modified sigmoid function increases the probability 

( 1) 0d
ix t + =  ( ( ( 1) 0))d

iP x t + = . This high probability causes the selection of a small number 

of informative genes and finally produces a near-optimal subset (a small subset of 

informative genes with high classification accuracy) for cancer classification. The sigmoid 

function is modified for increasing the probability of bits in particle’s positions to be zero. 

 

                

10.4 Summary 
 

In this chapter, SPSO has been proposed for gene selection on five gene expression data sets. 

Overall, based on the experimental results, the performance of SPSO was superior to BPSO 

and PSO-based methods that proposed by the previous related works in terms of 

classification accuracy and the number of selected genes. SPSO was excellent because the 

probability ( 1) 0d
ix t + =  has been increased by the modified sigmoid function. The modified 

function has been proposed in order to yield a near-optimal subset of genes for better cancer 

classification. SPSO also obtains lower running times because it selects the small number of 

genes compared to BPSO. The next chapter will conclude this thesis.  
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Chapter 11 

Conclusions 
 

 

11.1 Introduction 
 

This research has proposed intelligent approaches to select informative genes from gene 

expression data for cancer classification. The proposed approaches have been introduced 

based on GAs and PSO. Twelve gene expression data sets were used to test the effectiveness 

of the approaches in terms of the number of selected genes and classification accuracy. This 

chapter draws general conclusions about the achieved results, and offers several potential 

ideas for future works. 

 

 

11.2 Conclusion Remarks 
 

There were three main problems encountered when investigating and analyzing the 

applicability of intelligent approaches to select a small subset of informative genes from gene 

expression data for cancer classification, namely, the small number of samples compared to 

the huge number of genes (high-dimension), irrelevant genes, and noisy genes. The work in 

this research has addressed all the three challenges with the promising approaches.  

 Six intelligent approaches based on GAs have been proposed to select a small subset of 

informative genes when dealing with the data. These approaches are a multi-objective 

strategy in GASVM, a combination of two hybrid methods, a cyclic hybrid method, an 

iterative approach, a two-stage method, and a three-stage method. The approaches use some 

ideas such as dimensionality reduction, filter out irrelevant genes, and remove noisy genes, to 

produce near-optimal gene subsets for cancer classification. The ideas work in stochastic 

environments in which GAs have been implemented to search and find the near-optimal 

subsets. More importantly, by performing experiments on five gene expression data sets, the 
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present work has found that the performances of the proposed approaches were superior to 

the other previous related works, as well as to several methods experimented in this research. 

The performances include classification accuracy and the number of selected genes. 

 The three remaining approaches were the extensions of binary PSO. These approaches 

are modified binary PSO, enhanced binary PSO, and improved binary PSO. Ideally, the three 

approaches were introduced to reduce the probability of genes to be selected. To decrease the 

probability, the following mechanisms have been proposed: particle’s speed, a new rule for 

updating particle’s velocities, the constraint of particle’s velocities, and a modified sigmoid 

function. The proposed approaches were evaluated on twelve benchmark gene expression 

data sets and obtained excellent results on those data sets as compared with other previous 

related works, including BPSO in terms of classification accuracy and the number of selected 

genes. The proposed approaches also produced lower running times compared to BPSO.  

 

 

11.3 Direction for Future Works 
 

Based on the findings in this research, several areas deserve further study. The proposed 

approaches can be extended for applications on other biological data such as protein 

structures, protein-protein interactions, etc. This can be implemented by combining the data 

into gene expression data for the same purposes such as gene selection and cancer 

classification. The data combination is important to improve the classification accuracy and 

provide useful biological information as the final product for biologists.   

Since the last phase for analyzing gene expression data is classification process, the 

modification of classifiers are also needed to increase classification accuracy. The classifiers 

can be improved by providing functions for gene selection in their structures and modules 

which would make them applicable to a wider range of solutions. According to the findings 

of extended approaches based on binary PSO in this research (Chapters 8, 9, and 10), the 

proposed approaches could reduce the probability of genes to be selected and finally yield 

high classification accuracy. Therefore, any idea or formula to decrease the probability can be 

expected to produce good results on gene selection and classification processes.  
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The glossary of structural genomic terms 
 

 

Word Meaning 
ab initio From the beginning  
amino acid One of 20 naturally occurring amino carboxylic acid molecules 
amino acid sequence Arrangement of the residues in a protein 
biopsy Examination of severed tissue for diagnostic  
C-terminal The residue in a peptide that has a free carboxyl group 
epidemiology Scientific discipline studying the incidence, distribution, and control 

of disease in a population. 
gene A specific location of genetic coding that possesses part of the 

building blocks of an organism. Each gene is tailor designed to have 
the information required for a particular function, and can be switched 
on and off on demand. Genetics a segment of DNA that is involved in 
producing a polypeptide chain; it can include regions preceding and 
following the coding DNA as well as introns between the exons; it is 
considered a unit of heredity; "genes were formerly called factors". 

gene expression Pertaining to a gene that is active in nature (not dormant). Conversion 
of the information encoded in a gene first into messenger RNA and 
then to a protein.  

gene expression level Approximate number of copies of RNA in a cell. 
gene induction Activation of an inactive gene. 
genome the genetic material of an organism; the complete DNA component of 

an organism 
in vivo in the living body of a plant or animal 
motif commonly observed structural components of proteins formed by 

simple combinations of adjacent secondary structures 
native state/structure the final conformation for proteins in the intact cell 
peptide derived from two or more amino carboxylic acid molecules by 

formation of a covalent bond from the carbonyl carbon of one to the 
nitrogen atom of another with formal loss of water 

polypeptide a peptide containing ten or more amino acids 
primary structure amino acid sequence; the order of amino acids as they occur in a 

polypeptide chain 
protein a naturally occurring and extremely complex substance that consists 

of amino acid residues joined by peptide bonds 
protein folding a rapid biochemical reaction involved in the formation of proteins; it 

begins before a protein has been completely synthesized and proceeds 
through discrete intermediates (primary, secondary, and tertiary 
structures) before the final structure (quaternary structure) is 
developed 

protein sequence amino acid sequence of a protein 
residue an amino acid unit in the polypeptide chain: when two or more amino 

acids combine to form a peptide, the elements of water are removed, 
and what remains of each amino acid is called an amino acid residue 

sequence homology the degree of similarity between sequences of amino acids 
target sequence amino acid sequence which is considered for prediction 
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