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Abstract

This paper is concerned with tests for the parallelism and flatness hypotheses in multi-group profile analysis for
high-dimensional data. We extend to elliptical distributions the procedures developed for normal populations by
Harrar and Kong [S.W. Harrar, X. Kong, High-dimensional multivariate repeated measures analysis with unequal
covariance matrices, J. Multivariate Anal. 145 (2016) 1–21]. Specifically, we prove that their statistics continue to
be asymptotically normal when the underlying population is elliptical, and we obtain new tests by improving their
estimator of the asymptotic variance. Using asymptotic normality, we show that the asymptotic size of the proposed
tests is equal to the nominal significance level, and we also derive the asymptotic power. Finally, we present simulation
results and find that the power of the new tests is superior to that of the original Harrar–Kong procedure.

AMS 2000 subject classification: Primary 62H15; secondary 62F05.
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1. Introduction

We consider a multi-sample testing problem for profile analysis for populations with elliptically contoured distri-
butions. For group g ∈ {1, . . . , a}, let µg = (µg1, . . . , µgp)⊤ be a p-dimensional real vector, Λg be a p × p nonnegative
definite matrix, and ξg be a nonnegative function. The p× 1 random vector Xg is said to have an elliptically contoured
distribution, denoted Xg ∼ Cp(ξg,µg,Λg), if the characteristic function of Xg can be written, for any t ∈ Rp, as

ϕg(t) = eit⊤µgξg(t⊤Λg t).

As a result, E(Xg) = µg and var(Xg) = −2ξ′g(0)Λg ≡ Σg, respectively. Well-known examples of elliptical distributions
include the multivariate normal, multivariate Student t, and contaminated normal distributions; see, e.g., Muirhead [9].

Let Xg1, . . . , Xgng be mutually independent copies of Xg. We consider a test of the parallelism hypothesis

H01 : ∀g∈{1,...,a−1} µg − µa = γg1p vs. A01 : ¬H01. (1)

Here, γg is an unknown real constant and 1p is a p × 1 vector of 1’s, i.e., 1p = (1, . . . , 1)⊤. We also consider tests of
the flatness hypothesis

H02 : ∀g∈{1,...,a} µg1 = · · · = µgp vs. A02 : ¬H02, (2)

and the level hypothesis
H03 : γ1 = · · · = γa−1 = 0 vs. A03 : ¬H03. (3)

Harrar and Kong [4] give expressions that are equivalent to hypotheses (1)–(3). Expression (1) is equivalent to

H̃01 : µ⊤K01µ = 0 vs. Ã01 : µ⊤K01µ > 0
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with K01 = Pa ⊗ Pp, where µ = (µ⊤1 , . . . ,µ
⊤
a )⊤ and Pk = Ik − k−11k1⊤k for k ∈ {a, p}. Setting K02 = (a−11a1⊤a ) ⊗ Pp and

K03 = Da ⊗ (p−11p1⊤p ), we can also express hypotheses H̃0x with x ∈ {2, 3} in the form

H̃0x : µ⊤K0xµ = 0 vs. Ã0x : µ⊤K0xµ > 0,

where Da = diag(n1, . . . , na) − n−1
(a)nn⊤. Here, n = (n1, . . . , na)⊤ and n(a) = n1 + · · · + na.

Srivastava [12] derived the likelihood ratio test for hypotheses (1)–(3) for two normal populations. However, the
likelihood ratio tests for (1) and (2) cannot be applied to situations where n(a) ≪ p, e.g., microarray data, even for
normal populations with covariance homogeneity.

In profile analysis, Takahashi and Shutoh [13] considered approximate tests for hypotheses (1) and (2) for two
normal populations with equal covariance matrices. Harrar and Kong [4] extended these tests to multi-group normal
populations without assuming equal covariance matrices. They also obtained the approximate test for hypothesis (3)
based on matching moments.

In parallel, the effect of non-normality in profile analysis has been investigated. Okamoto et al. [10] used a
perturbation method to obtain the asymptotic expansions of the distributions of test statistics for elliptical populations.
Maruyama [7] extended the results under more general conditions using a different method introduced by Kano [6].
Note that these results are derived as n(a) → ∞.

In this paper, we propose new approximate tests for hypotheses (1) and (2) for high-dimensional elliptical popula-
tions without assuming equal covariance matrices. We note that the rank of K03 is at most a − 1, i.e., it does not grow
with p; accordingly, (n(a), p) asymptotic considerations are not relevant in pursuing our primary interest, which is to
test (1) and (2). To this end, we show that the asymptotic normality of the test statistics proposed by Harrar and Kong
[4] holds when the underlying distribution is elliptical. An improved estimator of the asymptotic variance of these test
statistics also enables us to propose new approximate tests for (1) and (2) for high-dimensional elliptical populations.

The remainder of this paper is organized as follows. Preliminary asymptotic results for approximate tests are
presented in Section 2. Using these results, we construct approximate tests for (1) and (2) and derive the asymptotic
power and size of these tests for elliptical populations in Section 3. In Section 4, the numerical accuracy of the
proposed tests is investigated, and the results are illustrated with a short numerical example. Section 5 concludes the
paper. Technical proofs are given in the Appendix.

2. Preliminary asymptotic results

We define an a × a non-random matrix

(Ra)i j =

{
di if i = j,
ψδiδ j if i , j,

with di, δi, ψ ∈ R for i, j ∈ {1, . . . , a}. Then we consider the random variable

T = X
⊤

(Ra ⊗ Pp)X −
a∑

g=1

dgtr(PpS g)
ng

,

where X = (X
⊤
1 , . . . , X

⊤
a )⊤ and

S g =
1

ng − 1

ng∑
i=1

(Xgi − Xg)(Xgi − Xg)⊤

with Xg = (Xg1 + · · · + Xgng )/ng.

Remark 1. If ψ = −1, di = 1 − 1/a, and δi = 1/
√

a for all i ∈ {1, . . . , a}, then T is the test statistic for H01. If
ψ = di = a−1 and δi = 1 for all i ∈ {1, . . . , a}, then T is the test statistic forH02.

Here, T is an unbiased estimator of µ⊤(Ra ⊗ Pp)µ, i.e.,

E(T ) = µ⊤(Ra ⊗ Pp)µ. (4)
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In addition, the variance of T is given by

σ2 =

a∑
g=1

2d2
gtr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4ψ2δ2
gδ

2
htr(PpΣgPpΣh)

ngnh
+ 4µ⊤(Ra ⊗ Pp)


a∑

g=1

1
ng

(ege⊤g ) ⊗ Σg

 (Ra ⊗ Pp)µ, (5)

where ei denotes the ith basis vector.

Remark 2. If Ra is an idempotent matrix, then Ra ⊗ Pp is also an idempotent matrix, and µ⊤(Ra ⊗ Pp)µ = 0 is
equivalent to (Ra ⊗ Pp)µ = 0. Thus, if Ra is an idempotent matrix and µ⊤(Ra ⊗ Pp)µ = 0, then

E(T ) = 0, σ2 =

a∑
g=1

2d2
gtr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4ψ2δ2
gδ

2
htr(PpΣgPpΣh)

ngnh
.

We investigate the asymptotic distribution of T for elliptical populations. Our primary objective in this section is
to derive the asymptotic distribution of T under some assumptions.

For each g ∈ {1, . . . , a}, let ng be a function of p, i.e., ng = ng(p). For any g, h ∈ {1, . . . , a}, i ∈ {1, 2}, let
tr{(PpΣgPpΣh)i} be a function of p. We assume the following conditions:

(A1) For all g, h ∈ {1, . . . , a}, limp→∞ ng(p) = ∞, 0 < limp→∞ ng(p)/nh(p) < ∞.

(A2) For each g ∈ {1, . . . , a}, the kurtosis is finite, i.e., one has

κg =
E[{(Xg − µg)⊤Σ−1

g (Xg − µg)}2]

p(p + 2)
− 1 < ∞.

(A3) For all g, h ∈ {1, . . . , a}, tr{(PpΣgPpΣh)2}/{tr(PpΣgPpΣh)}2 = o(1).

Examples of multivariate distributions satisfying Assumptions (A2) and (A3) include the following three, whose
density is given here as a function of z = Σ−1/2

g (xg − µg) ∈ Rp:

(a) The multivariate normal distribution with density

f (z) =
1

(2π)p/2 exp(−z⊤ z/2).

(b) The ϵ-contaminated normal distribution with density given, for any ε ∈ [0, 1] and η ∈ (0,∞), by

f (z) = (1 − ϵ) × 1
(2π)p/2 exp(−z⊤ z/2) + ϵ × 1

(2πη2)p/2 exp{−z⊤ z/(2η2)}.

(c) The multivariate Student t distribution with k ∈ N degrees of freedom, with density

f (z) =
Γ{(k + p)/2}
Γ(k/2)(kπ)p/2 (1 + z⊤ z/k)−(k+p)/2,

where Γ denotes Euler’s gamma function.

These distributions satisfy Assumption (A2) with κg = 0 in case (a), κg = 1 + ϵ(η4 − 1)/{1 + ϵ(η2 − 1)}2 − 1 in
case (b), and κg = 2/(k − 4) in case (c) when k > 4. Examples of covariance matrices that satisfy (A3) are those
with compound symmetry. Thus if Σg = (1 − ρg)Ip + ρg(1p1⊤p ), for all g ∈ {1, . . . , a} and ρg ∈ (−1/(p − 1), 1), then
tr{(PpΣgPpΣh)2}/{tr(PpΣgPpΣh)}2 = 1/(p − 1).

The following lemma provides the asymptotic normality of T under Assumptions (A1)–(A3). The lemma assures
us that the asymptotic normality of the statistic T is maintained for an elliptical population.

Lemma 1. Under Assumptions (A1)–(A3), T − µ⊤(Ra ⊗ Pp)µ/σ⇝ N(0, 1) as p→ ∞.

Proof. See Appendix A.2.
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3. Main results

3.1. Proposed test
In this subsection, we propose approximate tests using a normal approximation based on Lemma 1. The test

statistics for hypotheses (1) and (2) are respectively given by

T01 = X
⊤

K01X −
a∑

g=1

(
1 − 1

a

)
tr(PpS g)

ng
, T02 = X

⊤
K02X −

a∑
g=1

tr(PpS g)
ang

.

These statistics are also used by Harrar and Kong [4]. From Eqs. (4), (5), and Remark 2, their expectation and variance
for elliptical populations are summarized by the following equations. For x ∈ {1, 2},

E(T0x) =

0 under H0x,

µ⊤K0xµ (> 0) under A0x.
var(T0x) =

σ2
H0x

under H0x,

σ2
A0x

under A0x,

where, for x ∈ {1, 2},

σ2
H01
=

a∑
g=1

(
1 − 1

a

)2 2tr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4tr(PpΣgPpΣh)
a2ngnh

, σ2
H02
=

a∑
g=1

2tr{(PpΣg)2}
a2ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4tr(PpΣgPpΣh)
a2ngnh

and

σ2
A0x
= σ2

H0x
+ 4µ⊤K0x


a∑

g=1

1
ng

(ege⊤g ) ⊗ Σg

 K0xµ.

In practice, it is necessary to estimate the asymptotic variance σ2
H0x

. Harrar and Kong [4] proposed to use

˜tr{(PpΣg)2} =
(ng − 1)2

(ng + 1)(ng − 2)

[
tr{(PpS g)2} −

{tr(PpS g)}2
ng − 1

]
, (6)

̂tr(PpΣgPpΣh) = tr(PpS gPpS h). (7)

Assuming that the underlying distribution is elliptical, these statistics have the following expectations:

E[ ˜tr{(PpΣg)2}] = tr{(PpΣg)2} +
κg(ng − 1)
ng(ng + 1)

[{tr(PpΣg)}2 + 2tr{(PpΣg)2}], E{ ̂tr(PpΣgPpΣh)} = tr(PpΣgPpΣh).

Thus, the estimator (6) has a bias for elliptical populations except when κg = 0.
We use the same estimator of tr(PpΣgPpΣh) as Harrar and Kong [4] but a different estimator of tr{(PpΣg)2}, which

is defined as follows:

̂tr{(PpΣg)2} =
ng − 1

ng(ng − 2)(ng − 3)

[
(ng − 1)(ng − 2)tr{(PpS g)2} + {tr(PpS g)}2 − ngMg

]
, (8)

where

Mg =
1

ng − 1

ng∑
i=1

{(Xgi − Xg)⊤Pp(Xgi − Xg)}2.

Some properties of the estimators (7) and (8) are summarized in the following lemma.

Lemma 2. The estimators ̂tr{(PpΣg)2} and ̂tr(PpΣgPpΣh) are unbiased, rate consistent estimator, i.e., under Assump-
tions (A1)–(A2),

̂tr{(PpΣg)2}
tr{(PpΣg)2} = 1 + op(1),

̂tr(PpΣgPpΣh)
tr(PpΣgPpΣh)

= 1 + op(1) as p→ ∞.
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Proof. See Appendix A.3.

Remark 3. If Pp is replaced by Ip, ̂tr{(PpΣg)2} is the same estimator as that of Himeno and Yamada [5].

Using Eqs. (7) and (8), one finds

σ̂2
H01
=

a∑
g=1

(
1 − 1

a

)2 2 ̂tr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4 ̂tr(PpΣgPpΣh)
a2ngnh

, σ̂2
H02
=

a∑
g=1

2 ̂tr{(PpΣg)2}
a2ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4 ̂tr(PpΣgPpΣh)
a2ngnh

,

as the unbiased estimators of σ2
H01

and σ2
H02

, respectively.
Since σ̂H0x/σH0x = 1 + op(1) as p→ ∞ under Assumptions (A1)–(A2), Lemma 1 and Slutsky’s theorem allow us

to conclude that the asymptotic null distribution is normal. In fact for x ∈ {1, 2}, under Assumptions (A1)–(A3), and
H0x, one has, as p→ ∞,

T0x/σ̂H0x ⇝ N(0, 1). (9)

Based on Eq. (9), we propose the following approximate tests:

RejectH01 ⇔ T01/σ̂H01 ≥ zα, (10)
RejectH02 ⇔ T02/σ̂H02 ≥ zα, (11)

where zα denotes the upper 100 × α% percentile of the standard normal distribution, N(0, 1).

3.2. Asymptotic size and power
Under Assumptions (A1)–(A3), one can first deduce from Eq. (9) that as p → ∞, the size of the tests (10) and

(11) is given, for x ∈ {1, 2}, by
Pr(T0x/σ̂H0x ≥ zα | H0x) = α + o(1).

Next, using Lemmas 1–2 can be used to prove the following theorem concerning the asymptotic power of tests (10)
and (11).

Theorem 1. For x ∈ {1, 2}, under Assumptions (A1)–(A3),

Pr
(
T0x/σ̂H0x ≥ zα | A0x

)
= Φ

(
µ⊤K0xµ

σA0x

− σH0x

σA0x

zα

)
+ o(1)

as p→ ∞, where Φ denotes the cumulative distribution function (CDF) of N(0, 1).

Proof. See Appendix A.4.

Thus if the difference between H0x and A0x is not too small, in that µ⊤K0xµ is of the same order as σA0x or of a
higher order, the test will be powerful. Conversely, if the difference between H0x and A0x is so small that µ⊤K0xµ is
of a lower order than σA0x , the test will not be powerful and cannot distinguishH0x fromA0x.

4. Simulation and real example

4.1. Simulation
In this section, we perform Monte Carlo simulations for some selected parameters in order to verify the superiority

of our test as compared to Harrar and Kong’s tests for (1) and (2) when the kurtosis parameter is not 0.
In our simulation, we compare the empirical size and power of the proposed tests and Harrar and Kong’s tests. We

generated data from the following model:

∀i∈{1,...,ng} Xgi = Σ
1/2
g Zgi + µg, (12)

where, for all g ∈ {1, . . . , a},
µg = (g − 1)1p, Σg = (1 − 0.1g)Ip + (0.1g)1p1⊤p .

We take a ∈ {2, 3, 4, 5}. Under this model, the null hypotheses H01 and H02 hold. For the distribution of Zg j in
(12), we consider the following options:
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(i) Multivariate normal distribution;

(ii) Contaminated normal distribution with ϵ = 0.1 and η = 5;

(iii) Multivariate Student t distribution with 5 degrees of freedom.

One then has κg = 0 in case (i), κg ≈ 4.48 in case (ii), and κg = 2 in case (iii). The sizes calculated with 10,000
replicates are listed in Tables 1 and 2. Here, the nominal significance level is α = 0.05.

Please insert Tables 1 and 2 approximately here.

The empirical sizes of our proposed test and Harrar and Kong’s test are presented in Tables 1 and 2, respectively.
As can be seen in Table 1, our approximate test is within 0.01 from the nominal significance level α = 0.05 regardless
of the population distribution setting when the dimension p is 200 or 400. From Table 2, we see that this is also true
of Harrar and Kong’s test but only when the population distribution is a multivariate normal distribution. Indeed, the
empirical size of Harrar and Kong’s test is significantly less than the nominal significance level when the distribution
of Zg j is (ii) or (iii).

For the alternative hypothesis, we choose µg in (12) as follows:

µg =

(g − 1)1p if g ∈ {1, . . . , a − 1},
(a − 1)(1⊤⌊0.99p⌋, 0.7 × 1⊤p−⌊0.99p⌋)

⊤ if g = a,

where ⌊·⌋ denotes the floor function. The settings of a, p, n, the covariance matrix and the distribution of Zg j are the
same as for the null hypothesis. Under these models,H01 andH02 do not hold. The estimated power based on 10,000
replicates is displayed in Tables 3 and 4. Here again, the nominal significance level is α = 0.05.

The empirical power of our test and Harrar and Kong’s original procedure are presented in Tables 3 and 4, respec-
tively. In Table 3, the asymptotic approximation of the power of our proposed test, viz.

approx = Φ
(
µ⊤K0xµ

σA0x

− σH0x

σA0x

zα

)
is also calculated in each setting. This approximation is based on the result of Theorem 1.

Please insert Tables 3 and 4 approximately here.

It can be seen that these asymptotic approximations are accurate. Therefore, the power of the proposed tests can
be roughly estimated as the value obtained by dividing the distance between the null hypothesis and the alternative
hypothesis by the variance of T0x under the alternative hypothesis. From Tables 3 and 4, we also see that the powers
of the two tests are almost the same when Zg j follows a multivariate normal distribution. In contrast, it can be seen
that the proposed test is more powerful than Harrar and Kong’s test when the distribution of Zg j is (b) or (c).

From these simulation results, we can see that our tests are more robust against the effects of non-normality as
compared to Harrar and Kong’s tests. The difference between Harrar and Kong’s tests and our test appears in the
estimator of tr{(PgΣg)2}. To illustrate this point, we compared the ratios

˜tr{(PpΣg)2}/tr{(PgΣg)2} and ̂tr{(PpΣg)2}/tr{(PgΣg)2} (13)

under model (12) with µg = 0 and Σg = (1 − 0.5)Ip + 0.5 1p1⊤p . The biases of these estimators are calculated using
10,000 replicates in each setting. The biases associated with the quantities in (13) are presented in Table 5. The
settings of p and ng can be checked in Table 5.

Please insert Table 5 approximately here.

From Table 5, we can see that ˜tr{(PpΣg)2} overestimates tr{(PpΣg)2} when the distribution of Zg j is (b) or (c). This
overestimation contributes to decreasing the value of the test statistic. Since decreasing the value of the test statistic
makes it more difficult to reject the null hypothesis, we expect that the size for Harrar and Kong’s test will be lower
than the nominal significance level. This observation is consistent with the results of Table 2.

In contrast, we can observe that ̂tr{(PpΣg)2} is almost unaffected by change in distribution. Therefore, changing
the estimator of tr{(PpΣg)2} is helpful in all cases considered.
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4.2. Concrete example

As an illustration of tests (10) and (11), we applied them to a dataset analyzed by Takahashi and Shutoh [13]. The
data consist of a = 2 groups, with a body weight of ng = 10 rats for each group. The weights of the 20 rats were
measured every week for p = 22 weeks.

We applied our tests to the parallelism hypothesisH01 and flatness hypothesisH02 at level α = 0.05. Given that

T01/σ̂H01 ≈ −0.657 < zα ≈ 1.6449 and T02/σ̂H02 ≈ 250.264 > zα ≈ 1.6449,

the parallelism hypothesisH01 cannot be rejected at the 5% level, but the flatness hypothesisH02 can.

5. Discussion and conclusion

In this paper, we proposed new approximate tests for the parallelism and flatness hypotheses in profile analysis
for high-dimensional elliptical populations with unequal covariance matrices, and we derived their asymptotic power
and size. We showed that the asymptotic size of the proposed tests is close to the nominal value. However, Harrar and
Kong’s approximate tests do not enjoy this property for all elliptical populations, because the unbiasedness of their
estimator of asymptotic variance depends on kurtosis. Furthermore, we found that the asymptotic power depends on
the value obtained by dividing the distance between the null and alternative hypotheses by the variance under the
alternative hypothesis.

We compared the proposed tests and Harrar and Kong’s tests numerically in simulation studies. We found that our
tests and Harrar and Kong’s tests had approximately the same accuracy when the population is multivariate normal,
and we showed that our tests are superior to those of Harrar and Kong for other elliptically contoured distributions.
We also confirmed that this superiority is attributable to the asymptotic variance estimator.

In our data illustration, and more generally, it would be desirable to check first whether it is legitimate to assume an
elliptical distribution. This could be accomplished, e.g., by extending the method proposed by Batsidis and Zografos
[1] to high-dimensional settings. Alternatively, one could try to extend our procedures to a wider class of distributions
than the elliptical family. To this end, it would first be necessary to investigate situations in which the symmetry of
the distribution is not assumed, such as when a skew elliptical distribution is used. This would make it more difficult
to estimate the asymptotic variance, however. This may be the object of future work.

A. Appendix

A.1. Some moments

Lemma A.1 Let be X ∼ Cp(ξ, 0,Λ), and let A and B be p× p symmetric real matrices. The following expressions are
then valid.

(i) E(X⊤AX) = tr(AΣ).

(ii) E(X⊤AXX⊤BX) = (κ + 1){tr(AΣ)tr(BΣ) + 2tr(AΣBΣ)}.

(iii) var(X⊤AX) = κ{tr(AΣ)}2 + 2(κ + 1)tr{(AΣ)2}.

(iv) cov(X⊤AX, X⊤BX) = κtr(AΣ)tr(BΣ) + 2(κ + 1)tr(AΣBΣ),

where

Σ ≡ −2ξ′(0)Λ, κ ≡ ξ′′(0)
{ξ′(0)}2 − 1

(
=

E{(X′Σ−1X)2}
p(p + 2)

− 1
)
.

Proof. See Mathai et al. [8].
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A.2. Proof of Lemma 1

We define Ygi = Xgi−µg for g ∈ {1, . . . , a} and i ∈ {1, . . . , ng}. Note that Ygi is distributed according to an elliptical
distribution with E(Ygi) = 0 and var(Ygi) = Σg. Then the statistic T can be rewritten as

T =
a∑

g=1

dg

ng(ng − 1)

ng∑
i=1
i, j

Y⊤giPpYg j +

a∑
g,h

ψδgδhY
⊤
g PpYh + 2µ⊤(Ra ⊗ Pp)Y + µ⊤(Ra ⊗ Pp)µ,

where Y = (Y
⊤
1 , . . . ,Y

⊤
a )⊤. We note that µ⊤(Ra ⊗ Pp)Y = 0 and µ⊤(Ra ⊗ Pp)µ = 0 if (Ra ⊗ Pp)µ = 0. That is, the

distribution of T does not depend on µ so long as (Ra ⊗ Pp)µ = 0.
Let n(0) = 0, n(g) = n1 + · · · + ng for g ∈ {1, . . . , a}, and set i′ = i − n(g−1). We define

εi =
2

σng(ng − 1)
Y⊤gi′Ppagi′

for g ∈ {1, . . . , a} and i ∈ {n(g−1) + 1, . . . , n(g)}. Here,

agi′ = 1(i′ ≥ 2)dg

i′−1∑
j=1

Yg j + 1(g ≥ 2)(ng − 1)ψδg

g−1∑
h=1

δhYh + (ng − 1)ψδg

a∑
h=1

δhµh,

where 1 denotes an indicator function. Then,

1
σ
{T − µ⊤(Ra ⊗ Pp)µ} =

n(a)∑
i=1

εi.

Define F0 = {∅,Ω}, and let Fi for i ∈ N be the σ-algebra generated by the random variables (ε1, . . . , εi). Then we find
that F0 ⊆ · · · ⊆ F∞ and E(εi | Fi−1) = 0. Thus, (εi) is a martingale difference sequence.

We show the asymptotic normality of ε1 + · · · + εn(a) by adapting the martingale difference central limit theorem;
see, e.g., [3, 11]. It is necessary to check the following two conditions to apply this theorem:

(I) :
n(a)∑
i=1

E(ε2
i |Fi−1) = 1 + op(1) as p→ ∞; (II) :

n(a)∑
i=1

E(ε4
i ) = o(1) as p→ ∞.

First, we check condition (I). We rewrite

n(a)∑
i=1

E(ε2
i | Fi−1) = 1 +

7∑
j=1

A j,

where

A1 =

a∑
g=1

4d2
g

σ2n2
g(ng − 1)2

ng∑
i=1

(ng − i)[Y⊤giPpΣgPpYgi − tr{(PpΣg)2}],

A2 =

a∑
g=1

8d2
g

σ2n2
g(ng − 1)2

ng∑
i=2

i−1∑
j=1

(ng − i)Y⊤giPpΣgPpYg j,

A3 =

a∑
g=2

g−1∑
h=1

8dgψδgδh

σ2n2
g(ng − 1)

ng∑
i=1

(ng − i)Y⊤giPpΣgPpYh,
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A4 =

a∑
g=1

a∑
h=1

8dgψδgδh

σ2n2
g(ng − 1)

ng∑
i=1

(ng − i)Y⊤giPpΣgPpµh,

A5 =

a∑
g=2

g−1∑
h=1

4ψ2δ2
gδ

2
h

σ2ng

{
Y
⊤
h PpΣgPpYh −

tr(PpΣgPpΣh)
nh

}
,

A6 =

a∑
g=3

g−1∑
h=2

h−1∑
ℓ=1

8ψ2δ2
gδhδℓ

ng
Y
⊤
h PpΣgPpYℓ,

A7 =

a∑
g=2

g−1∑
h=1

a∑
ℓ=1

8ψ2δ2
gδhδℓ

σ2ng
Y
⊤
h PpΣgPpµℓ.

It is straightforward to show that E(A1 + · · · + A7) = 0. Hölder’s inequality yields

var


n(a)∑
i=1

E(ε2
i | Fi−1)

 = E


 7∑

i=1

Ai


2 ≤ 7

7∑
i=1

E(A2
i ). (14)

The expectations E(A2
1) through E(A2

7) are evaluated as follows:

E(A2
1) = O

 a∑
g=1

1
ng

 = o(1), (15)

E(A2
2) = O

 a∑
g=1

tr{(PpΣg)4}
[tr{(PpΣg)2}]2

 = o(1), (16)

E(A2
3) = O

 a∑
g=2

g−1∑
h=1

√
tr{(PpΣg)4}

[tr{(PpΣg)2}]2

√
tr{(PpΣgPpΣh)2}
{tr(PpΣgPpΣh)}2

 = o(1), (17)

E(A2
4) = O

 a∑
g=1

√
tr{(PpΣg)4}

[tr{(PpΣg)2}]2

 = o(1), (18)

E(A2
5) = O

 a∑
g=2

g−1∑
h=1

[
1
nh
+

tr{(PpΣgPpΣh)2}
{tr(PpΣgPpΣh)}2

] = o(1), (19)

E(A2
6) = O

 a∑
g=3

g−1∑
h=2

h−1∑
ℓ=1

√
tr{(PpΣgPpΣh)2}tr{(PpΣgPpΣℓ)2}

tr(PpΣgPpΣh)tr(PpΣgPpΣℓ)

 = o(1), (20)

E(A2
7) = O

 a∑
g=2

g−1∑
h=1

√
tr{(PpΣgPpΣh)2}
tr(PpΣgPpΣh)

 = o(1). (21)

Substituting (15)–(21) into (14) yields

var


n(a)∑
i=1

E(ε2
i | Fi−1)

 = o(1).

Condition (I) follows.
Next, we check Condition (II). Define

ε(1)
i =

21(i′ ≥ 2)dg

σng(ng − 1)
Y⊤gi′Pp

i′−1∑
j=1

Yg j, ε(2)
i =

2ψδg1(g ≥ 2)
σng

Y⊤gi′Pp

ℓ−1∑
h=1

δhYh, ε(3)
i =

2ψδg

σng
Y⊤gi′Pp

a∑
h=1

δhµh.
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Then, Hölder’s inequality yields

n(a)∑
i=1

E(ε4
i ) =

a∑
g=1

n(g)∑
i=n(g−1)+1

E


 3∑

j=1

ε
( j)
i


4 ≤

a∑
g=1

n(g)∑
i=n(g−1)+1

E

33
3∑

j=1

ε
( j)4

i

 = 33
a∑

g=1

n(g)∑
i=n(g−1)+1

3∑
j=1

E
(
ε

( j)4

i

)
.

Thus, it is sufficient to show that
∑n(g)

i=n(g−1)+1 E(ε( j)4

i ) = o(1) for j ∈ {1, 2, 3}. We have the following expectations:

n(g)∑
i=n(g−1)+1

E
(
ε(1)4

i

)
= O(n−1

g ),
n(g)∑

i=n(g−1)+1

E
(
ε(2)4

i

)
= O(n−1

g ),
n(g)∑

i=n(g−1)+1

E
(
ε(3)4

i

)
= O(n−1

g ).

The above results complete the proof of (II). □

A.3. Proof of Lemma 2
First, we show the unbiasedness and consistency of ̂tr(PpΣg)2. From Lemma A.1, it follows that

E[tr{(PpS g)2}] =
κg + 1

ng

[
{tr(PpΣg)}2 + 2tr{(PpΣg)2}

]
+

n2
g − 2ng + 2

ng(ng − 1)
tr{(PpΣg)2} + 1

ng(ng − 1)
{tr(PpΣg)}2,

E[{tr(PpS g)}2] =
κg + 1

ng

[
{tr(PpΣg)}2 + 2tr{(PpΣg)2}

]
+

2
ng(ng − 1)

tr{(PpΣg)2} +
ng − 1

ng
{tr(PpΣg)}2,

E(Mg) =
(κg + 1)(n2

g − 3ng + 3)

n2
g

[
{tr(PpΣg)}2 + 2tr{(PpΣg)2}

]
+

4ng − 6
n2

g
tr{(PpΣg)2} +

2ng − 3
n2

g
{tr(PpΣg)}2.

Then we solve simultaneously for tr{(PpΣg)2}, {tr(PpΣg)}2 and κg. The solutions of the simultaneous equations can be
obtained easily. We find

tr{(PpΣg)2} =
ng − 1

ng(ng − 2)(ng − 3)

{
(ng − 1)(ng − 2)E[tr{(PpS g)2}] + E[{tr(PpS g)}2] − ngE(Mg)

}
.

Thus, the unbiased estimator of tr{(PpΣg)2} is ̂tr{(PpΣg)2}. Furthermore, the variance of ̂tr{(PpΣg)2} is

var[ ̂tr{(PpΣg)2}] = O
(

1
ng

[
tr{(PpΣg)2}

]2
)
.

Thus under Assumptions (A1)–(A2), as p→ ∞,

̂tr{(PpΣg)2}/tr{(PpΣg)2} = 1 + op(1).

Next, we show the unbiasedness and consistency of ̂tr(PpΣgPpΣh). We can rewrite the estimator ̂tr(PpΣgPpΣh) as

̂tr(PpΣgPpΣh) =
1

ngnh

ng∑
i=1

nh∑
j=1

(Y⊤giPpYh j)2 − 1
ngnh(nh − 1)

ng∑
i=1

nh∑
j,k=1
j,k

Y⊤giPpYh jY⊤giPpYhk

− 1
ng(nh − 1)nh

ng∑
i, j=1
i, j

nh∑
k=1

Y⊤giPpYhkY⊤g jPpYhk +
1

ngnh(ng − 1)(nh − 1)

ng∑
i, j=1
i, j

nh∑
k,ℓ=1
k,ℓ

Y⊤giPpYhkY⊤g jPpYhℓ.

Using Lemma A.1, we get E{ ̂tr(PpΣgPpΣh)} = tr(PpΣgPpΣh). Furthermore, the variance of ̂tr(PpΣgPpΣh) is

var[{ ̂tr(PpΣgPpΣh)}2] = O
(

ng + nh

ngnh
{tr(PpΣgPpΣh)}2

)
.

Thus under Assumptions (A1)–(A2), as p→ ∞,

̂tr(PpΣgPpΣh)
tr(PpΣgPpΣh)

= 1 + op(1).

This completes the proof of Lemma 2. □
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A.4. Proof of Theorem 1

We assumeA0x. From Lemma 3.1 and σ2
H0x
/σ2
A0x

< 1, under Assumptions (A1)–(A2), σ̂2
H0x
/σ2
A0x
= σ2

H0x
/σ2
A0x
+

op(1) as p→ ∞. Thus, under (A1) and (A2),

Pr(T0x/σ̂H0x ≥ zα) = Pr
(

T0x − µ⊤K0xµ

σA0x

≥ σH0x

σA0x

zα −
µ⊤K0xµ

σA0x

)
+ o(1)

as p→ ∞. Furthermore, from Lemma 1, under Assumptions (A1)–(A3),

Pr
(

T0x − µ⊤K0xµ

σA0x

≥ σH0x

σA0x

zα −
µ⊤K0xµ

σA0x

)
= Φ

(
µ⊤K0xµ

σA0x

− σH0x

σA0x

zα

)
+ o(1)

as p→ ∞. Combining these two equations yields the theorem. □
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Table 1: The empirical size of proposed test

Parallelism Flatness
p n> (i) (ii) (iii) (i) (ii) (iii)

(25, 25) 0.056 0.059 0.053 0.054 0.062 0.056
100 (10, 20, 20) 0.075 0.062 0.068 0.060 0.062 0.062

(10, 10, 10, 20) 0.076 0.072 0.069 0.062 0.060 0.054
(10, 10, 10, 10, 10) 0.064 0.065 0.064 0.053 0.055 0.074

(50, 50) 0.057 0.058 0.057 0.053 0.058 0.058
200 (20, 40, 40) 0.057 0.055 0.059 0.057 0.060 0.056

(20, 20, 20, 40) 0.057 0.059 0.056 0.058 0.059 0.055
(40, 40, 40, 40, 40) 0.058 0.053 0.059 0.056 0.057 0.054

(100, 100) 0.053 0.051 0.057 0.052 0.052 0.057
400 (40, 80, 80) 0.056 0.053 0.052 0.055 0.056 0.054

(40, 40, 40, 80) 0.054 0.054 0.057 0.054 0.053 0.054
(40, 40, 40, 40, 40) 0.052 0.056 0.053 0.056 0.057 0.055

Table 2: The empirical size of Harrar and Kong’s test

Parallelism Flatness
p n> (i) (ii) (iii) (i) (ii) (iii)

(25, 25) 0.057 0.000 0.006 0.054 0.000 0.017
100 (10, 20, 20) 0.071 0.000 0.005 0.062 0.000 0.010

(10, 10, 10, 20) 0.075 0.000 0.003 0.056 0.000 0.007
(10, 10, 10, 10, 10) 0.064 0.000 0.001 0.055 0.000 0.011

(50, 50) 0.057 0.000 0.005 0.053 0.000 0.008
200 (20, 40, 40) 0.057 0.000 0.001 0.057 0.000 0.005

(20, 20, 20, 40) 0.057 0.000 0.000 0.058 0.000 0.005
(40, 40, 40, 40, 40) 0.058 0.000 0.000 0.056 0.000 0.006

(100, 100) 0.053 0.000 0.004 0.052 0.000 0.005
400 (40, 80, 80) 0.056 0.000 0.007 0.055 0.000 0.002

(40, 40, 40, 80) 0.054 0.000 0.000 0.054 0.000 0.002
(40, 40, 40, 40, 40) 0.052 0.000 0.000 0.057 0.000 0.005



Table 3: The empirical power of proposed test

Parallelism Flatness
p n> (i) (ii) (iii) approx (i) (ii) (iii) approx

(25, 25) 0.069 0.076 0.073 0.063 0.071 0.076 0.072 0.063
100 (10, 20, 20) 0.093 0.104 0.094 0.078 0.079 0.087 0.084 0.072

(10, 10, 10, 20) 0.117 0.140 0.126 0.102 0.093 0.103 0.097 0.082
(10, 10, 10, 10, 10) 0.166 0.201 0.167 0.149 0.107 0.111 0.107 0.096

(50, 50) 0.095 0.104 0.094 0.089 0.098 0.097 0.088 0.089
200 (20, 40, 40) 0.153 0.191 0.161 0.152 0.131 0.145 0.138 0.123

(20, 20, 20, 40) 0.266 0.320 0.275 0.265 0.162 0.187 0.170 0.161
(40, 40, 40, 40, 40) 0.482 0.532 0.500 0.486 0.212 0.244 0.222 0.221

(100, 100) 0.200 0.204 0.192 0.195 0.197 0.208 0.198 0.195
400 (40, 80, 80) 0.491 0.535 0.507 0.501 0.348 0.379 0.345 0.349

(40, 40, 40, 80) 0.858 0.861 0.863 0.862 0.505 0.523 0.513 0.513
(40, 40, 40, 40, 40) 0.995 0.991 0.994 0.995 0.713 0.727 0.716 0.717

Table 4: The empirical power of Harrar and Kong’s method

Parallelism Flatness
p n> (i) (ii) (iii) (i) (ii) (iii)

(25, 25) 0.069 0.001 0.014 0.071 0.001 0.014
100 (10, 20, 20) 0.093 0.001 0.007 0.079 0.001 0.016

(10, 10, 10, 20) 0.117 0.001 0.006 0.093 0.002 0.018
(10, 10, 10, 10, 10) 0.167 0.003 0.005 0.107 0.001 0.029

(50, 50) 0.095 0.000 0.014 0.098 0.000 0.011
200 (20, 40, 40) 0.152 0.000 0.007 0.131 0.000 0.018

(20, 20, 20, 40) 0.266 0.000 0.007 0.162 0.001 0.028
(40, 40, 40, 40, 40) 0.482 0.000 0.016 0.212 0.000 0.049

(100, 100) 0.200 0.000 0.027 0.197 0.000 0.028
400 (40, 80, 80) 0.491 0.000 0.034 0.344 0.000 0.054

(40, 40, 40, 80) 0.858 0.000 0.098 0.505 0.001 0.124
(40, 40, 40, 40, 40) 0.995 0.000 0.394 0.713 0.011 0.307



Table 5: Bias of ˜tr{(PpΣ1)2}/tr{(PpΣ1)2} and of ̂tr{(PpΣ1)2}/tr{(PpΣ1)2}

˜tr{(PpΣ1)2}/tr{(PpΣ1)2} ̂tr{(PpΣ1)2}/tr{(PpΣ1)2}
p n1 (i) (ii) (iii) (i) (ii) (iii)

100 10 0.00 37.80 14.92 0.00 0.05 0.00
25 0.00 16.91 7.67 0.00 0.00 0.00

200 20 0.00 40.57 14.76 0.00 −0.01 −0.01
50 0.00 17.33 8.12 0.00 0.00 0.00

400 40 0.00 43.03 16.31 0.00 0.02 −0.01
100 0.00 17.54 6.75 0.00 −0.01 0.00


