

学術情報リポジトリ

Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity

メタデータ	言語: eng
	出版者:
	公開日: 2018-02-20
	キーワード (Ja):
	キーワード (En):
	作成者: Yuba, Eiji, Yamaguchi, Ayaka, Yoshizaki, Yuta,
	Harada, Atsushi, Kono, Kenji
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/15728

1	Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of
2	antigen and activation of antigen-specific immunity
3	
4	Eiji Yuba*, Ayaka Yamaguchi, Yuta Yoshizaki, Atsushi Harada, and Kenji Kono
5	
6	Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture
7	University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
8	
9	*Corresponding author: Eiji Yuba
10	Department of Applied Chemistry, Graduate School of Engineering,
11	Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
12	Tel: +81-722-54-9913; Fax: +81-722-54-9913; yuba@chem.osakafu-u.ac.jp
13	
14	<i>Keywords</i> : pH-sensitive liposome / curdlan / β-glucan / mannan / cancer
15	immunotherapy / dendritic cell
16	

17 Abstract

For establishment of cancer immunotherapy, antigen carriers are needed which have 18 functions not only to deliver antigen into cytosol of dendritic cells (DCs), which induces 19 20antigen-specific cellular immune responses, but also to activate DCs. We previously reported cytoplasmic delivery of antigen using liposomes modified with pH-sensitive 21polymers such as carboxylated poly(glycidol)s or dextran. Modification using these 2223polymers provides stable liposomes with pH-sensitive fusogenic/membrane-disruptive ability. For this study, bioactive polysaccharide-based pH-sensitive polymers were $\mathbf{24}$ 25constructed to achieve not only cytoplasmic delivery of antigen but also activation of 26DCs. Curdlan and mannan were used as bioactive polysaccharides because they are known to activate DCs via their respective interactions with Dectin-1 and Dectin-2. 2728Carboxylated curdlan and mannan promoted Th1 cytokine production from DCs, indicating the activation of DCs by these polysaccharide derivatives. These 29polymer-modified liposomes released their contents at weakly acidic pH and delivered 30 model antigenic proteins into cytosol of DCs. Subcutaneous administration of curdlan 31 derivative-modified or mannan derivative-modified liposomes induced strong 3233 antigen-specific immune responses and stronger antitumor effects than those of liposomes modified with dextran derivative. Therefore, bioactive 34

 $\mathbf{2}$

- 35 polysaccharide-modified liposomes that achieve both cytoplasmic delivery of antigen
- 36 and activation of DCs are promising for cancer immunotherapy.
- 37

38 **1. Introduction**

Induction of cancer-specific immunity is crucially important to achieve 39 immunotherapy. Especially, cell-mediated immune response (cellular immunity) is 40 regarded as the most effective immune response to eliminate tumor cells directly [1-3]. 41 For the induction of cellular immunity, the delivery of antigen to cytosol of antigen 42presenting cells (APCs) such as macrophages and dendritic cells (DCs), and antigen 43presentation mediated by major histocompatibility complex (MHC) class I molecules 44 are necessary [4–7]. Efficient cytoplasmic delivery carriers of antigen are necessary for 4546 the induction of cellular immunity and the establishment of cancer immunotherapy. To date, various antigen cytoplasmic delivery systems have been developed 47such as polymeric nanoparticles, polymeric micelles, nanogels, and liposomes [8–14]. 48 Among them, liposomes are useful as antigen carriers because of their biocompatibility 49and their ease of introducing functionality such as cellular targeting ability and 50pH-responsive content release properties [13, 14]. In fact, pH-sensitive liposomes have 51been prepared using a mixture of non-bilayer forming lipids and amphiphiles having 52carboxylic acid or by the modification of virus-derived fusogenic proteins, pH-sensitive 5354peptide, and pH-sensitive polymers [14–17]. These pH-sensitive liposomes induce destabilization of the endosomal membrane or membrane fusion with endosomal 55

membranes in intracellular acidic environments (endosomes or lysosomes), which 56achieve the cytoplasmic delivery of contents [14–17]. 57We previously reported cytoplasmic delivery of antigen using liposomes 58modified with carboxylated poly(glycidol)s, which have a backbone resembling 59biocompatible poly(ethylene glycol) [18–21]. 3-Methyl glutarylated 60 poly(glycidol)-modified liposomes delivered model antigenic protein, ovalbumin 61 62 (OVA) into cytosol of DCs by membrane fusion with endosomal membrane responding 63 to acidic pH, and induced MHC class I-mediated antigen presentation [22]. 64 Subcutaneous administration of these liposomes induced OVA-specific cellular 65 immunity and therapeutic effects on tumor-bearing mice [23]. As a biodegradable pH-sensitive polymer, 3-methyl glutarylated dextran (MGlu-Dex), which has a 66 polysaccharide backbone and pH-responsive MGlu side chain, was synthesized [24]. 67 MGlu-Dex-modified liposomes also achieved the cytoplasmic delivery of OVA and the 68 69 induction of cellular immunity [24]. To induce stronger cellular immunity, antigen delivery systems require 70 functions not only for delivery of antigen into DC cytosol but also to activate DCs, 7172which is designated as an adjuvant function. Typically, toll like receptor (TLR) ligands such as CpG-DNA, poly(I:C), and monophosphoryl lipid A (MPLA), which activate 73

74	APCs via interaction with TLRs expressing in these cells, were introduced to antigen
75	carriers as adjuvant molecules [25–29]. We have also combined immune-activating
76	molecules or systems such as MPLA mentioned above, cationic lipids, and
77	IFN-γ-encoding gene delivery systems with pH-sensitive polymer-modified liposomes
78	to enhance the cellular immune responses [30, 31]. Actually, inclusion of these
79	molecules or systems improved their ability to induce cellular immunity and antitumor
80	effects [26, 29–31]. However, these antigen delivery systems have complicated
81	compositions because antigen delivery and activation of immune response are achieved
82	by each functional molecule. Therefore, antigen carriers that can achieve both antigen
83	delivery and activation by a single functional molecule are sought.
84	In this study, the inclusion of both antigen delivery function and adjuvant
85	function to antigen carriers was attempted using intrinsically bioactive
86	polysaccharide-based pH-sensitive polymers. For this purpose, curdlan and mannan
87	were chosen as base polymers for the preparation of pH-sensitive polymers with DC
88	activation ability (Fig. 1). Curdlan and mannan are microorganism-derived bioactive
89	polysaccharides that are recognized, respectively, by surface receptors of macrophages
90	or DCs such as Dectin-1 and Dectin-2 [32–34]. Recognition by these lectins leads to the
91	activation of APCs and to the promotion of secretion of various cytokines, thereby

92	activating immune response (Fig. 1). pH-Sensitive moieties (MGlu units) were
93	introduced to these polysaccharides. Their abilities to deliver antigen to DCs, to activate
94	DCs, and to induce antigen-specific immune responses were investigated and compared
95	with those of conventional pH-sensitive polysaccharide (MGlu-Dex).
96	
97	2. Materials and Methods
98	2.1. Materials
99	Egg yolk phosphatidylcholine (EYPC) was kindly donated by NOF Co. (Tokyo,
100	Japan) for preparation of liposome. Lissamine rhodamine B-sulfonyl
101	phosphatidylethanolamine (Rh-PE) was purchased from Avanti Polar Lipids
102	(Birmingham, AL, USA) for fluorescence labeling of liposomal membrane.
103	3-Methylglutaric anhydride, curdlan from Alcaligenes faecalis, mannan from
104	Saccharomyces cerevisiae for synthesis of pH-sensitive polymers, OVA, MPLA,
105	fluorescein isothiocyanate (FITC), p-Xylene-bis-pyridinium bromide (DPX) for
106	preparation of liposomes, and dextran sulfate sodium salt from Leuconostoc spp. for the
107	evaluation of cellular association of liposomes, were purchased from Sigma (St. Louis,
108	MO.). 1-Aminodecane for synthesis of pH-sensitive polymers, pyranine and Triton
109	X-100 for preparation of liposomes were obtained from Tokyo Chemical Industries Ltd.

 $\mathbf{7}$

110	(Tokyo, Japan). 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl morpholinium chloride
111	(DMT-MM) was from Wako Pure Chemical Industries Ltd. (Osaka, Japan) for synthesis
112	of pH-sensitive polymers. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine
113	perchlorate (DiI) was from Life Technologies for fluorescence labeling of liposomal
114	membrane. FITC-OVA was prepared by reacting OVA (10 mg) with FITC (11.8 mg) in
115	0.5 M NaHCO ₃ (4 mL, pH 9.0) at 4 °C for three days and subsequent dialysis [23].
116	pH-sensitive dextran derivatives (MGlu-Dex) were prepared as previously reported
117	[24].

2.2. Synthesis of Polysaccharide Derivatives

119	3-Methyl glutarylated curdlan (MGlu-Curd) was prepared by reaction of
120	curdlan with 3-methylglutaric anhydride. For MGlu ₆₅ -Curd, which refers to curdlan
121	derivatives having 65 mol% of MGlu groups, curdlan (1.0 g, 6.2 mmol of OH groups)
122	and LiCl (1.0 g) were dissolved in distilled N,N-dimethylformamide (20 mL) and 9.0
123	equiv. of 3-methylglutaric anhydride (7.27 g, 56.7 mmol) was added to the solution.
124	The mixed solution was kept at 100 °C for 24 h with stirring under argon atmosphere.
125	Then, the reaction mixture was evaporated and dialyzed against water for 3 days. The
126	product was recovered by freeze-drying. Other MGlu-Curd polymers and MGlu-Man
127	were also synthesized by reaction of curdlan or mannan with various amounts of

128 3-methylglutaric anhydride by the same procedure. ¹H NMR for MGlu-Curd (400

129 MHz, D₂O+NaOD): δ 0.9 (s, -CO-CH₂-CH(CH₃)-CH₂-), 1,9 – 2.3 (br,

130 -CO-CH₂-CH(CH₃)-CH₂-), 3.5 – 4.0 (br, glucose 2H, 3H, 4H, 5H, 6H), 5.0 (br, glucose

131 1*H*). ¹H NMR for MGlu-Man (400 MHz, $D_2O+NaOD$): $\delta 0.9$ (s,

132 -CO-CH₂-CH(CH₃)-CH₂-), 1,9 – 2.3 (br, -CO-CH₂-CH(CH₃)-CH₂-), 3.5 – 4.2 (br,

133 glucose 2*H*, 3*H*, 4*H*, 5*H*, 6*H*), 5.0 – 5.3 (br, glucose 1*H*).

134As anchor moieties for fixation of MGlu-Curd and MGlu-Man onto liposome

135 membranes, 1-aminodecane was combined with carboxylic acid groups of MGlu-Curd

136 or MGlu-Man. Each polymer was dissolved in water around pH 7.4, and 1-aminodecane

137 (0.1 equiv. to hydroxy group of polymer) was reacted to carboxylic acid groups of the

138 polymer using DMT-MM (0.1 equiv. to hydroxy group of polymer) at room

temperature for 6 h with stirring. The obtained polymers were purified by dialysis in

140 water. The ratios of MGlu units to decyl amide (C_{10}) units for polymers were estimated

141 using ¹H NMR. ¹H NMR for MGlu-Curd-C₁₀ (400 MHz, D₂O+NaOD) : δ 0.8 - 0.9 (br,

142 -CO-NH-CH₂-(CH₂)₈-CH₃), 0.9 (s, -CO-CH₂-CH(CH₃)-CH₂-), 1.2 - 1.4 (br,

143 -CO-NH-CH₂-(CH₂)₈-CH₃), 1.9 – 2.3 (br, -CO-CH₂-CH(CH₃)-CH₂-), 3.2 (br,

144 -CO-NH-CH₂-(CH₂)₈-CH₃), 3.5 – 4.0 (br, glucose 2H, 3H, 4H, 5H, 6H), 5.0 (br, glucose

145 1*H*). ¹H NMR for MGlu-Man-C₁₀ (400 MHz, D₂O+NaOD) : δ 0.8 - 0.9 (br,

147 -CO-NH-CH₂-(CH₂)₈-CH₃), 1.9 - 2.3 (br, -CO-CH₂-CH(CH₃)-CH₂-), 3.2 (br,

148 -CO-NH-CH₂-(CH₂)₈-CH₃),
$$3.5 - 4.2$$
 (br, glucose 2H, 3H, 4H, 5H, 6H), $5.0 - 5.3$ (br,

- 149 glucose 1*H*). According to the GPC analysis for polymers on a system equipped with a
- 150 column (Waters, Ultrahydrogel Linear) with differential refractive index detection
- 151 (Jasco RI-930) using acetate buffer (pH 6.6) as the eluent, there is no peak derived from
- 152 low-molecular weight impurities (data not shown).

153 **2.3. Titration**

- 154 To 10 mL of an aqueous solution of each polymer (carboxylate concentration:
- 3.0×10^{-4} M) was added an appropriate amount of 0.1 M NaOH solution to make pH
- 156 10.0. The titration was carried out by the stepwise addition of 1.0 M HCl and pH of the
- 157 resultant solution was measured using an automated titration instrument (AUT-701,
- 158 DKK-TOA Corporation, Tokyo, Japan).

159 **2.4. Precipitation pH**

Precipitation pH of polymer was determined by measuring the optical density of aqueous polymer solutions (0.05 mg/mL) at various pH. Polymers were dissolved in 1.0 mL of acetate buffer (30 mM sodium acetate, 120 mM NaCl) adjusted to various pH.

- 163 After 5 min-incubation at 25 °C, optical densities (OD) of the polymer solutions at 500

164	nm were measured by using a spectrophotometer (Jasco V-560). Precipitation pH was
165	determined by optical density-pH profile as the pH at which OD drastically rose.
166	2.5. Cell Culture
167	DC2.4 cell, which is an immature murine DC line, was provided from Dr. K. L.
168	Rock (Harvard Medical School, USA) and were grown in RPMI-1640 supplemented
169	with 10% FBS (MP Biomedical, Inc.), 2 mM L-glutamine, 100 mM nonessential amino
170	acid, 50 μ M 2-mercaptoethanol (2-ME, Gibco) and antibiotics at 37 °C [35].
171	E.G7-OVA, which is a chicken egg OVA gene-transfected clone of C57BL/6
172	mice-derived T lymphoma and which presents OVA with MHC class I molecules, was
173	obtained from the American Type Culture Collection (Manassas, VA) [36].
174	2.6. Preparation of Liposomes
175	To a dry, thin membrane of EYPC (10 mg) was added 1.0 mL of OVA/PBS
176	solution (pH 7.4, 4 mg/mL), and the mixture was vortexed at 4 °C. The liposome
177	suspension was further hydrated by freezing and thawing, and was extruded through a
178	polycarbonate membrane with a pore size of 100 nm. The liposome suspension was
179	centrifuged with the speed of 55,000 rpm for 2 h at 4 °C twice to remove free OVA
180	from the OVA-loaded liposomes. Polymer-modified liposomes were also prepared
181	according to the above procedure using dry membrane of a lipid mixture with polymers

182	(lipids/polymer = $7/3$, w/w). For induction of immune responses, MPLA (4 g/mol
183	lipids) was introduced into liposomal membrane. Loading efficiency of OVA to
184	liposomes was determined and summarized in Table S1.
185	2.7. Dynamic Light Scattering and Zeta Potential
186	Diameters of liposome in PBS and zeta potentials of the liposomes in 0.1 mM
187	phosphate buffer (0.1 mM of lipid concentration) were measured using a Zetasizer Nano
188	ZS ZEN3600 (Malvern Instruments Ltd, Worcestershire, UK). Data was obtained as an
189	average of more than three measurements on different samples.
190	2.8. Release of Pyranine from Liposome
191	Pyranine-loaded liposomes were prepared as described above except that
192	mixtures of polymers and EYPC were dispersed in aqueous 35 mM pyranine, 50 mM
193	DPX, and 25 mM phosphate solution (pH 7.4) and liposome suspension was purified
194	using a sepharose 4B column. Release of pyranine from liposome was measured as
195	previously reported [20, 24, 37]. Liposomes encapsulating pyranine (lipid
196	concentration: 2.0 \times 10 ⁻⁵ M) were added to PBS of varying pH at 37 °C and
197	fluorescence intensity (512 nm) of the mixed suspension was followed with excitation
198	at 416 nm using a spectrofluorometer (Jasco FP-6500, FP-6200). The percent release of
199	pyranine from liposomes was defined as

200 Release (%) = $(F_t - F_i) / (F_f - F_i) \times 100$

201	where F_i and F_t mean the initial and intermediary fluorescence intensities of the
202	liposome suspension, respectively. $F_{\rm f}$ is the fluorescent intensity of the liposome
203	suspension after the addition of TritonX-100 (final concentration: 0.1%).
204	2.9. Cellular Association of Liposomes and Inhibition Assay
205	Liposomes containing Rh-PE were prepared as described above except that a
206	mixture of polymer and lipid containing Rh-PE (0.6 mol%) was dispersed in PBS.
207	DC2.4 cells (1.5×10^5 cells) cultured for 2 days in 12-well plates were washed with
208	Hank's balanced salt solution (HBSS), and then incubated in serum-free RPMI medium
209	(0.5 mL). The Rh-PE-labeled liposomes (1 mM lipid concentration, 0.5 mL) were added
210	gently to the cells and incubated for 4 h at 37 °C. After the incubation, the cells were
211	washed with HBSS three times. Fluorescence intensity of these cells was determined by
212	a flow cytometric analysis (EPICS XL, Beckman Coulter, Inc). For inhibition assay,
213	free dextran sulfate, curdlan and mannan at various concentrations were pre-incubated
214	to cells for an hour before the incubation of Rh-PE-labeled liposomes for 4 h.
215	Rhodamine fluorescence of each liposome was measured and cellular fluorescence
216	shown in Figure 6 was corrected using liposomal fluorescence intensity.
217	2.10. Intracellular Behavior of Liposomes

218	The FITC-OVA-loaded liposomes containing Dil were prepared as described
219	above except that a mixture of polymer and lipid containing DiI (0.6 mol%) was
220	dispersed in PBS containing FITC-OVA (4 mg/mL). DC2.4 cells (3×10^5 cells) cultured
221	for 2 days in 35-mm glass-bottom dishes were washed with HBSS, and then incubated
222	in serum-free RPMI medium (1 mL). The FITC-OVA-loaded liposomes (1 mM lipid
223	concentration, 1 mL) were added gently to the cells and incubated for 4 h at 37 °C. After
224	the incubation, the cells were washed with HBSS three times. Confocal laser scanning
225	microscopic (CLSM) analysis of these cells was performed using LSM 5 EXCITER
226	(Carl Zeiss Co. Ltd.). Each liposome showed almost same fluorescence intensity for DiI
227	and FITC. All CLSM images in Figure 8 were taken at same sensitivity setting.
228	2.11. Cytokine Production from Cells Treated with Polymers or Liposomes
229	The DC2.4 cells (1.5×10^5 cells) cultured for 2 days in 12-well plates were
230	washed with HBSS, and then incubated in serum-free RPMI medium (0.5 mL).
231	Polysaccharide derivatives (2 mg/mL, 0.5 mL) or liposomes with/without MPLA (4
232	g/mol lipid) (1 mM lipid concentration, 0.5 mL) were added gently to the cells and
233	incubated for 24 h at 37 °C. After the incubation, supernatants of cultured cells were
234	collected for measurements of TNF- α , IL-10 and/or IL-12 using an enzyme-linked
235	immunosorbent assay kit (ELISA Development Kit, PeproTech EC Ltd.) according to

the manufacture's instruction.

237	2.12. In Vitro Cytokine Release Measured by ELISA and CTL Assay
238	Female C57BL/6 mice (H-2 ^b , 7 weeks old) were purchased from Oriental
239	Yeast Co., Ltd. (Tokyo, Japan). The experiments were carried out in accordance with
240	the guidelines for animal experimentation in Osaka Prefecture University. On days 7
241	and 14, 100 μ g of OVA-loaded liposomes were subcutaneously injected into the right
242	backs of the mice under anesthesia with isoflurane. On day 21, mice were sacrificed and
243	splenocytes were suspended in RPMI1640 medium supplemented with 10% FBS, 100
244	U/mL penicillin, 100 $\mu\text{g}/\text{mL}$ streptomycin, 50 μM 2-ME, and 20 U/mL recombinant
245	murine IL-2 (Peprotech, London, UK). Splenocytes (2×10^6 in 2 mL) were incubated
246	with various concentrations of OVA solution (0, 25, 50 μ g/mL) for 5 days. After the
247	incubation, the concentration of IFN- γ was measured using murine IFN- γ ELISA
248	development kit (Peprotech, London, UK) according to the manufacture's instruction.
249	Splenocytes were also stimulated with mitomycin C-treated E.G7-OVA cells at a ratio
250	of 10:1 for 5 days. The stimulated splenocytes were used as effector cells for the
251	cytotoxicity assay. The CTL activity was evaluated at effector cells to target cells
252	(E.G7-OVA) ratio of 25, which was defined as E/T ratio, using a lactate dehydrogenase
253	(LDH) cytotoxicity detection assay (Takara Biomedicals, Tokyo, Japan).

2.13. Treatment of Tumor-Bearing Mice with Liposomes

255	E.G7-OVA cells (1 \times 10 ⁶ cells) were subcutaneously inoculated into the left
256	backs of C57BL/6 mice under an esthesia with isoflurane. On days 5 and 15, 100 μg of
257	OVA-loaded liposomes with or without MPLA (4 g/mol lipid) were subcutaneously
258	injected into the right backs of the mice under anesthesia. Tumor sizes were monitored
259	from the day of inoculation. Mice immunized with PBS were used as controls to
260	confirm the development of cancer following the first inoculation with E.G7-OVA cells.
261	Mice were sacrificed when tumor volumes become over 2,500 mm ³ . All treated groups
262	contained 8 to 12 mice.
263	2.14. Statistical Analysis
264	Tukey-Kramer method was employed in the statistical evaluation of the results
265	in Figs. 6, 7, 9-12, S6 and S7. Survival analysis using Log-rank test was performed in
266	Fig. 12.
267	
268	3. Results and Discussion
269	3.1. Characterization of Polysaccharide Derivatives
270	Curdlan derivatives (MGlu-Curd) and mannan derivatives (MGlu-Man) with
271	different contents of MGlu groups as pH-sensitive moiety were synthesized by reacting

272	curdlan or mannan with various amounts of 3-methylglutaric anhydride (Fig. 2). Decyl
273	(C_{10}) groups were further introduced to MGlu-Curd or MGlu-Man by reaction of
274	decylamine with carboxylic acid groups of MGlu units for fixation of these polymers
275	onto liposome membrane (Fig. 2). The obtained curdlan derivatives and mannan
276	derivatives were characterized using ¹ H NMR. Figures 3A–3C respectively depict ¹ H
277	NMR spectra of curdlan, MGlu ₄₃ -Curd, and MGlu ₄₁ -Curd-C ₁₀ . In comparison of spectra
278	for curdlan (Fig. 3A) and for MGlu ₄₃ -Curd (Fig. 3B), introduction of MGlu groups to
279	curdlan was confirmed from the existence of new peaks corresponding to MGlu groups
280	(0.9 ppm, 2–2.3 ppm) in Fig. 3B. From the integration ratio of peaks of MGlu residues
281	to those of sugar backbone (3.5–4.0 ppm), 43% of hydroxy groups of curdlan were
282	estimated as combined with MGlu residues. Similarly, from the integration ratio
283	between sugar backbone, MGlu residues, and decyl groups (0.9-1.5 ppm),
284	decyl-amidated MGlu residues and MGlu residues were found to be combined to 4%
285	and 41% of hydroxy groups of curdlan, respectively, in products obtained using the
286	reaction of MGlu ₄₃ -Curd and decylamine, which is designated as MGlu ₄₁ -Curd-C ₁₀ .
287	Mannan derivatives were evaluated using the same procedure (Figs. 3D–3F).
288	Compositions of curdlan derivatives and mannan derivatives prepared for this study are
289	shown in Table 1.

290	In our earlier study, the contents of MGlu residues on dextran derivatives
291	affected their protonation state because of proximity effects between carboxylic acid
292	groups [24]. Therefore, acid-base titration of MGlu-Curd and MGlu-Man was
293	conducted (Fig. 4). MGlu-Curd and MGlu-Man changed their protonation states
294	depending on pH in neutral and weakly acidic regions. However, the protonation
295	profiles of MGlu-Curd having various MGlu contents were almost identical, different
296	from the results found for dextran derivatives [24]. Curdlan is known to form a triple
297	helix structure in the alkaline aqueous solution. The secondary hydroxy groups form
298	mutual hydrogen bonding inside of the helix. Other hydroxy groups exist outside of the
299	helix [38]. The effects of MGlu unit introduction on helix formation of curdlan were
300	evaluated by complexation with Congo red, as previously reported [39]. As shown in
301	Fig. S1A, the absorption spectra of Congo red changed in the presence of curdlan or
302	curdlan derivatives. The maximum absorption wavelength (λ_{max}) shifted from 487 nm
303	(free Congo red) to 515 nm in the presence of curdlan (Fig. S1B), which indicates that
304	Congo red forms the complex with curdlan, which takes a helical structure [38–40]. In
305	the cases of MGlu-Curd with Congo red, the extent of red shift decreased concomitantly
306	with increasing MGlu unit contents (Fig. S1B), suggesting that the helix structure of
307	curdlan was dissociated by the introduction of MGlu units to the OH groups of curdlan.

308	However, λ_{max} for MGlu ₇₇ -Curd with Congo red remained higher than that of free
309	Congo red, indicating that even MGlu-Curd having high MGlu unit contents partially
310	takes the helical structure that can form a complex with Congo red. Although the
311	detailed structure of MGlu-Curd in the aqueous solution is unclear at present, such a
312	unique conformation of curdlan derivatives might affect the density of carboxylic acid
313	groups, thereby producing the same protonation profiles and almost identical pKa
314	values irrespective of MGlu residue contents (Table 2). MGlu ₄₃ -Man and MGlu ₇₄ -Man
315	also exhibited almost identical protonation profiles (Fig. 4). Mannan has $\alpha(1, 6)$ -linked
316	backbone and $\alpha(1, 2)$ -linked and $\alpha(1, 3)$ -linked branches (Fig. 2B). MGlu ₄₃ -Man and
317	MGlu74-Man might have almost equal density of carboxylic acid groups in their
318	branches, resulting in almost equal pKa values. In the cases of MGlu-Curds, protonation
319	was promoted strongly at around pH 5.0, which might result from the formation of
320	aggregation [41]. To confirm the formation of aggregation, the optical density of
321	MGlu-Curd and MGlu-Man was measured. The solutions of MGlu-Curd and
322	MGlu-Man were transparent at neutral pH, indicating that these polymers were soluble
323	in water. In contrast, these solutions suddenly became turbid under a certain pH, which
324	is defined as the precipitation pH at which these polymers change their characteristics
325	from hydrophilic to hydrophobic and lose their water solubility. As shown in Table 2,

326	the respective values of precipitation pH of MGlu ₆₅ -Curd and MGlu ₈₁ -Curd are 4.8 and
327	5.0, which correspond to the region in which protonation was promoted in titration
328	curves (Fig. 4). In addition, degrees of protonation were 0.94–0.98 at around
329	precipitation pH, indicating that most of the carboxylic acid groups must be protonated
330	for aggregation of these polymers. Compared with MGlu-Curd, MGlu74-Man showed
331	lower precipitation pH. The solution of MGlu ₄₃ -Man was transparent under
332	experimental conditions. These results indicate that MGlu-Curd has more hydrophobic
333	properties than MGlu-Man does, probably because of their helical structures (Fig. S1).
334	3.2. Preparation of Polysaccharide Derivative-Modified Liposomes
335	Polysaccharide derivative-modified liposomes were prepared by dispersion of
336	mixed thin film composed of EYPC and polysaccharide derivatives having anchor
337	moieties in aqueous solution containing OVA. Then, the liposome suspension was
338	extruded through polycarbonate membranes with pore size of 100 nm and purified by
339	ultracentrifugation. The size and zeta potential of obtained liposomes were evaluated
340	(Table 3). Compared with diameters of unmodified liposomes (157 nm), polysaccharide
341	derivative-modified liposomes showed smaller diameters. After ultracentrifugation,
342	liposome pellet in centrifugation tube was re-dispersed in PBS. Liposome size might be
343	changed during this re-dispersion process depending on their surface properties.

344	Polysaccharide derivative-modified liposomes which have many carboxylates on the
345	liposome surface might be re-dispersed more efficiently than unmodified liposomes.
346	Zeta potentials were decreased by modification of polysaccharide derivatives, which
347	indicates that the liposome surfaces are covered with carboxylated polysaccharide
348	derivatives. The liposomes modified with MGlu-Curd- C_{10} or MGlu-Dex- C_{10} exhibited
349	highly negatively charged values of around -50 mV, whereas MGlu-Man- C_{10} -modified
350	liposomes showed low zeta potentials. This might result from insufficient exposure of
351	carboxylic acids on the liposomal surface because of steric hindrance derived from their
352	branched structures (Fig. 2B).
353	The pH-sensitivity of polysaccharide derivatives was evaluated using
353 354	The pH-sensitivity of polysaccharide derivatives was evaluated using polymer-modified liposomes. Fluorescence dye pyranine and quencher DPX were
353 354 355	The pH-sensitivity of polysaccharide derivatives was evaluated using polymer-modified liposomes. Fluorescence dye pyranine and quencher DPX were encapsulated into liposomes and pH-responsive release behaviors were examined (Fig.
353 354 355 356	The pH-sensitivity of polysaccharide derivatives was evaluated using polymer-modified liposomes. Fluorescence dye pyranine and quencher DPX were encapsulated into liposomes and pH-responsive release behaviors were examined (Fig. 5). At neutral pH, all liposomes retained their contents tightly. However, in the weakly
353 354 355 356 357	The pH-sensitivity of polysaccharide derivatives was evaluated using polymer-modified liposomes. Fluorescence dye pyranine and quencher DPX were encapsulated into liposomes and pH-responsive release behaviors were examined (Fig. 5). At neutral pH, all liposomes retained their contents tightly. However, in the weakly acidic pH region (pH 6.5-5.0, which corresponds to early or late endosomes), content
353 354 355 356 357 358	The pH-sensitivity of polysaccharide derivatives was evaluated using polymer-modified liposomes. Fluorescence dye pyranine and quencher DPX were encapsulated into liposomes and pH-responsive release behaviors were examined (Fig. 5). At neutral pH, all liposomes retained their contents tightly. However, in the weakly acidic pH region (pH 6.5-5.0, which corresponds to early or late endosomes), content release was observed in polysaccharide derivative-modified liposomes, indicating that
353 354 355 356 357 358 359	The pH-sensitivity of polysaccharide derivatives was evaluated using polymer-modified liposomes. Fluorescence dye pyranine and quencher DPX were encapsulated into liposomes and pH-responsive release behaviors were examined (Fig. 5). At neutral pH, all liposomes retained their contents tightly. However, in the weakly acidic pH region (pH 6.5-5.0, which corresponds to early or late endosomes), content release was observed in polysaccharide derivative-modified liposomes, indicating that polysaccharide derivatives became hydrophobic and destabilized the liposomal
353 354 355 356 357 358 359 360	The pH-sensitivity of polysaccharide derivatives was evaluated using polymer-modified liposomes. Fluorescence dye pyranine and quencher DPX were encapsulated into liposomes and pH-responsive release behaviors were examined (Fig. 5). At neutral pH, all liposomes retained their contents tightly. However, in the weakly acidic pH region (pH 6.5-5.0, which corresponds to early or late endosomes), content release was observed in polysaccharide derivative-modified liposomes, indicating that polysaccharide derivatives became hydrophobic and destabilized the liposomal membrane at these levels of pH. Compared with MGlu-Man-C ₁₀ -modified liposomes,

362	region, which might reflect the difference of hydrophobicity between MGlu-Curd and
363	MGlu-Man in a weak pH region (Table 2). Moreover, the protonation of MGlu-Curd
364	was promoted at around pH 5.0 (Fig. 4), which might rapidly change MGlu-Curd from
365	hydrophilic to hydrophobic and which destabilizes liposomal membrane efficiently by
366	hydrophobized MGlu-Curds. In our earlier study, MGlu-Dex with higher amounts of
367	MGlu unit induced content release at higher pH regions because of pKa increase [24].
368	However, MGlu-Curd-C ₁₀ -modified liposomes showed similar pH-sensitivity
369	irrespective of the difference of MGlu unit contents, except for $MGlu_{77}$ -Curd-C ₁₀ , which
370	reflects that these MGlu ₄₃ -Curd and MGlu ₆₅ -Curd showed almost equal pKa values
371	(Table 2). In addition, the hydrophobicity of MGlu-Curd- C_{10} was evaluated using
372	pyrene fluorescence (Fig. S2) [42]. MGlu-Curd- C_{10} formed hydrophobic domains at a
373	weakly acidic pH region, which causes the liposomal membrane disruption presented in
374	Fig. 5A. MGlu ₇₇ -Curd- C_{10} showed slightly higher hydrophobicity than
375	MGlu ₄₁ -Curd-C ₁₀ and MGlu ₅₉ -Curd-C ₁₀ at pH 7.0–6.0, which reflects the
376	pH-responsiveness of MGlu77-Curd-C10-modified liposome at a higher pH region than
377	those of MGlu ₄₁ -Curd-C ₁₀ -modified and MGlu ₅₉ -Curd-C ₁₀ -modified liposomes.
378	3.3. Interaction of Polysaccharide Derivative-Modified Liposomes with DCs
379	Dendritic cells have various lectins that recognize specific polysaccharides or

380	oligosaccharides derived from bacteria [34]. Therefore, the effects of polysaccharide
381	structures on the cellular association of polysaccharide derivative-modified liposomes
382	were examined. Figure 6 depicts a comparison of fluorescence from the cells treated
383	with Rh-PE-labeled liposomes modified with or without polysaccharide derivatives. For
384	MGlu-Curd- C_{10} -modified liposomes, the cellular association changed depending on
385	MGlu unit contents. MGlu ₅₉ -Curd-C ₁₀ showed the highest cellular association, which
386	was 13 times higher than that of unmodified liposomes. For MGlu-Man-C ₁₀ -modified
387	liposomes, the cellular association was low, probably because low zeta potential of
388	these liposomes suppressed interaction with scavenger receptors on dendritic cells,
389	which recognize anionic molecules (Table 3). In comparison with the backbone
390	structure, MGlu ₅₉ -Curd-C ₁₀ -modified liposomes exhibited higher cellular association
391	than MGlu ₆₅ -Man-C ₁₀ -modified and MGlu ₅₆ -Dex-C ₁₀ -modified liposomes. These
392	results show that both MGlu unit contents and backbone structures are important to
393	obtain liposomes with high affinity to DCs.
394	To reveal the cellular association mechanism of these liposomes, inhibition
395	assay was performed using dextran sulfate, curdlan, and mannan, which are the
396	respective inhibitors for scavenger receptors, Dectin-1, and Dectin-2 [32, 33, 43].
397	Figures 7A and 7B depict the effects of inhibitors on the cellular association of

398	MGlu-Curd- C_{10} -modified liposomes. Cellular association of MGlu-Curd- C_{10} -modified
399	liposomes was strongly suppressed in the presence of dextran sulfate (Fig. 7A).
400	Reportedly, cellular association of carboxylated polymer-coated liposomes or
401	nanoparticles to macrophages and DCs is inhibited by dextran sulfate because these
402	nanoparticles are recognized by scavenger receptors, which are receptors on
403	macrophages and DCs for the recognition of anionic molecules or surface such as aged
404	erythrocytes or apoptotic cells [44]. Therefore, the result of strong inhibition by dextran
405	sulfate indicates that MGlu-Curd-C ₁₀ -modified liposomes have high affinity to
406	scavenger receptors on DC2.4 cells. The presence of curdlan also suppressed the
407	cellular association of MGlu-Curd-modified liposomes to some degree but not
408	suppressed the cellular association of MGlu-Dex-modified liposomes, indicating the
409	recognition of MGlu-Curd by Dectin-1 (Fig. 7B). However, the cellular association of
410	liposomes modified with MGlu-Curd having high MGlu contents was not suppressed by
411	curdlan, indicating that the modification of high amounts of MGlu unit to curdlan
412	interrupts the interaction curdlan backbone with Dectin-1. Cellular association of
413	MGlu-Man-C ₁₀ -modified liposomes were also inhibited by dextran sulfate (Fig. 7C),
414	suggesting that MGlu-Man-C ₁₀ -modified liposomes also internalized to the cells via
415	interaction with scavenger receptors. In contrast, the presence of free mannan showed

416	no effect to the cellular association of MGlu-Man-C ₁₀ -modified liposomes irrespective
417	of the MGlu unit contents (Fig. 7D). This result indicates that the modification of MGlu
418	units to mannan completely suppresses the interaction of mannan derivatives with
419	Dectin-2. Combined with these results, high performance of MGlu-Curd-modified
420	liposomes in cellular association might result from the efficient recognition of these
421	liposomes by both scavenger receptors and Dectin-1.
422	Next, the intracellular antigen delivery performance of polysaccharide
423	derivative-modified liposomes was examined. FITC-labeled model antigenic protein,
424	OVA-loaded liposomes containing DiI as a fluorescence lipid were applied to DC2.4
425	cells. Then intracellular distributions of OVA and DiI (liposome) were observed using
426	CLSM (Fig. 8, S3). For cells treated with unmodified liposomes, punctate red and green
427	fluorescence was observed within cells even in the case of high concentration of
428	liposomes and FITC-OVA (Fig. S3), indicating that both liposomes and FITC-OVA
429	were trapped in endosomes or lysosomes. In the cases of cells treated with
430	polysaccharide derivative-modified liposomes, punctate red and green fluorescence was
431	also observed. However, some parts of the green fluorescence were diffused throughout
432	cells, except to the nucleus. The colocalization efficiency of FITC fluorescence with DiI
433	fluorescence was calculated from CLSM images (Fig. S4). Liposomes modified with

434	polysaccharide derivatives, especially MGlu ₂₁ -Curd-C ₁₀ , MGlu ₄₁ -Curd-C ₁₀ and
435	MGlu ₅₉ -Curd-C ₁₀ , showed much lower colocalization values than that of unmodified
436	liposomes. These results indicate that polysaccharide derivatives became hydrophobic at
437	weakly acidic pH inside of early or late endosomes and efficiently destabilized their
438	own liposomal membrane and endosomal membrane, consequently delivering of
439	FITC-OVA into cytosol of DCs. MGlu-Curd- C_{10} -modified liposomes with 21, 41, 59%
440	of MGlu unit showed excellent performance of cytoplasmic delivery of FITC-OVA,
441	whereas MGlu ₇₇ -Curd-C ₁₀ -modified liposomes showed both punctate and diffused
442	fluorescence of FITC-OVA (Fig. 8). MGlu ₇₇ -Curd-C ₁₀ -modified liposomes showed
443	sharp content release below pH 6.5, which corresponds to the pH region of early
444	endosomes in the cells (Fig. 5A). Therefore, MGlu77-Curd-C10-modified liposomes
445	might release FITC-OVA within the early endosomes, but the pH in early endosomes
446	was insufficient for MGlu77-Curd-C10 to induce destabilization of the endosomal
447	membrane, resulting in observation of punctate green fluorescence inside of cells after 4
448	h incubation (Fig. 8). In contrast, MGlu-Curd- C_{10} -modified liposomes with 21, 41, 59%
449	of MGlu unit showed content release below at pH 6.0, which corresponds to the pH
450	region of late endosomes in the cells (Fig. 5A). In addition, these polymers formed
451	strong hydrophobic domains below pH 6.0 (Fig. S2). Therefore, these polymers induced

452	both content release from liposomes and endosomal membrane destabilization, resulting
453	in efficient cytoplasmic delivery of FITC-OVA. In the case of MGlu-Man-C ₁₀ -modified
454	liposomes, cytoplasmic delivery performance was not so high, reflecting their moderate
455	performance of contents released at pH 6.5-5.5 (Fig. 5B). These results indicate that the
456	cytoplasmic delivery performance is affected by pH-sensitive content release
457	performance, which is determined not only by the main chain structure, but also by the
458	MGlu unit contents. The excess destabilization of endosomal membrane might cause
459	the cytotoxicity. Therefore, the cytotoxicity of MGlu-Curd- C_{10} -modified liposomes
460	with high cytoplasmic delivery performance was examined (Fig. S5). As shown in Fig.
461	S5, no cytotoxicity was observed under experimental conditions.
462	3.4. Activation of DCs by Polysaccharide Derivatives and Liposomes
463	β -glucans and mannan are recognized by DCs or macrophages, which activates
464	them [32–34]. In addition, curdlan- or mannan-modified poly(D,L-lactide-co-glycolide)
465	(PLGA) nanoparticles also activated the macrophages or dendritic cells [45, 46].
466	Therefore, we investigated whether carboxylated polysaccharides retain their capability
467	to activate the immunocompetent cells, or not. DC2.4 cells were incubated with MGlu
468	unit-introduced curdlan, mannan and dextran without anchor moiety overnight. Then
469	the production of Th1 cytokines such as TNF- α and IL-12 was measured. As presented

470	in Figure 9, cytokine production from the DC2.4 cells increased concomitantly with
471	increasing MGlu unit contents in polysaccharides. These results demonstrate that DCs
472	were activated by these polysaccharide derivatives. The introduction of MGlu units
473	promoted their capability for activation. As described in previous reports of the related
474	literature, macrophage activation by carboxylmethylated curdlan or curdlan sulfate was
475	evaluated [32, 47]. Carboxylmethylated curdlan showed no activation property of APCs
476	[32], although curdlan sulfate slightly increased cytokine production from macrophages
477	[47]. Compared with those earlier studies, the activation properties of MGlu
478	unit-incorporated curdlan were quite high, probably because of the high density of
479	carboxylic acid groups on polysaccharide main chain compared with curdlan sulfate
480	(sulfate contents: 9.23% [47]). In addition, IL-12 production from the cells treated with
481	curdlan and mannan derivatives having medium amounts of MGlu units was apparently
482	higher than that of dextran derivatives (Fig. 9B). This result suggests the importance of
483	backbone structures for the efficient activation of DCs. Actually, IL-12 is an important
484	cytokine for the activation of cellular immune responses. Therefore, MGlu-Curd and
485	MGlu-Man, of which backbones are bioactive polysaccharide, are expected to activate
486	the cellular immune responses.

Activation properties of polysaccharide derivative-modified liposomes were

488	also examined (Fig. 10). Figure 10A shows TNF- α production from DC2.4 cells treated
489	with liposomes modified with or without MGlu-Curd-C ₁₀ . Reflecting the results of the
490	polymers themselves (Fig. 9), TNF- α production increased concomitantly with
491	increasing MGlu unit contents in curdlan derivative-modified liposomes. Figures 10B-D
492	show the effects of backbone structures on TNF- α , IL-10 and IL-12 production,
493	respectively. Cytokine production from these polysaccharide derivative-modified
494	liposomes was quite higher than that of cells treated with unmodified liposomes. There
495	is no significant difference between the backbone structures of polysaccharides. IL-1 β
496	production, which indicates the activation of inflammasome, was also examined (Fig.
497	S6). As shown in Figure S6, IL-1 β production was enhanced by carboxylated
498	polysaccharide derivative-modified liposomes, especially MGlu-Curd- and
499	MGlu-Man-modified liposomes, indicating that carboxylated polysaccharide derivatives,
500	especially bioactive curdlan or mannan derivatives might activate inflammasome. In
501	these experiments, MPLA, which is a commonly used lipid type adjuvant [28, 29, 48],
502	is introduced into the liposomal membrane, where its effect on cytokine production was
503	also investigated. MPLA inclusion slightly promoted cytokine production from
504	liposome-treated cells, but its effect was not significant, suggesting that DC2.4 cells
505	might be fully activated by these polysaccharide derivative-modified liposomes,

506 irrespective of MPLA inclusion.

507	3.5. Induction of In Vivo Immune Responses
508	Next, the induction of immune response in vivo by polysaccharide
509	derivative-modified liposomes was examined. OVA-loaded liposomes were
510	administered subcutaneously to mice twice. Seven days after the second immunization,
511	splenocytes were collected and stimulated in vitro for 5 days in the presence of OVA.
512	Furthermore, IFN- γ secretion from splenocytes was measured using ELISA (Fig. 11A).
513	In the cases of splenocytes from mice treated with polysaccharide derivative-modified
514	liposomes, high amounts of IFN- γ were produced compared with the case of PBS.
515	Production levels increased concomitantly with increasing OVA concentrations used for
516	in vitro culture, indicating that OVA-specific Th1-dominant immune responses were
517	induced by polysaccharide derivative-modified liposomes. Especially,
518	MGlu-Curd-C ₁₀ -modified liposomes induced the highest production of IFN- γ , which
519	might result from efficient cellular association and cytoplasmic delivery of OVA into
520	antigen-presenting cells by MGlu-Curd- C_{10} -modified liposomes (Figs. 6 and 8).
521	The CTL activity in the spleen was also evaluated. Splenocytes stimulated in
522	vitro for 5 days were co-cultured with E.G7-OVA cells, which are OVA-expressing
523	tumor cells, as a target cell. Then, cytotoxic effects against E.G7-OVA cells were

524	measured (Fig. 11B). Compared with splenocytes from PBS-treated mice, splenocytes
525	from mice treated with polysaccharide derivative-modified liposomes showed higher
526	cytotoxicity against E.G7-OVA cells, indicating that OVA-specific CTLs were induced
527	efficiently by immunization of polysaccharide derivative-modified liposomes.
528	Reflecting the results of IFN- γ secretion, MGlu-Curd-C ₁₀ -modified liposomes exhibited
529	higher CTL response, suggesting that IFN- γ secretion from Th1 cells or CTLs activated
530	cellular immune response efficiently.
531	As another strategy for induction of cellular immunity, mice were treated with
532	the mixture of OVA solution and liposomes modified with polysaccharide derivatives
533	and their immunity-inducing performance was evaluated (Fig. S7). Unexpectedly, the
534	mixture of OVA and polysaccharide derivative-modified liposomes also induced IFN- γ
535	secretion from splenocytes as the case of OVA-loaded liposomes (Fig. 11A). Especially,
536	MGlu ₅₉ -Curd-C ₁₀ - and MGlu ₆₅ -Man-C ₁₀ -modified liposomes induced much higher
537	cellular immune responses than that of MGlu ₅₆ -Dex-C ₁₀ -modified liposomes.
538	Polysaccharide derivative-modified liposomes could promote the production of Th1
539	cytokines from dendritic cells (Figs. 9 and 10). In addition, the transfer of OVA
540	molecules to cytosol might be promoted if both OVA molecules and liposomes are taken
541	up in the same endosomes. Cytoplasmic transfer of OVA and the production of Th1

542	cytokines by mixture of OVA and polysaccharide derivative-modified liposomes might
543	induce the OVA-specific cellular immune responses. These unexpected results are
544	promising because various antigenic proteins or peptides can be combined with
545	polysaccharide derivative-modified liposomes by just mixing for induction of
546	antigen-specific cellular immunity.
547	3.6. Therapeutic Effect of Polysaccharide Derivative-Modified Liposomes
548	Finally, therapeutic effects on tumor-bearing mice by immunization with
549	polysaccharide derivative-modified liposomes were investigated. E.G7-OVA cells were
550	inoculated to mice at 5 days and 15 days after tumor cell inoculation, OVA-loaded
551	liposomes were administered subcutaneously to mice. Then tumor growth and survival
552	were monitored (Fig. 12). This experiment also examined the effects of MPLA
553	inclusion to liposomes on their therapeutic effect. For mice treated with PBS, the tumor
554	volume increased with time. However, in the cases of mice treated with polysaccharide
555	derivative-modified liposomes, tumor volumes decreased at around 7 days after from
556	immunization, indicating the induction of strong cellular immune responses against
557	E.G7-OVA cells by these liposomes, as presented in Fig. 11B. In the absence of MPLA,
558	MGlu-Curd-C ₁₀ -modified liposomes showed higher tumor regression and more
559	prolonged survival than either MGlu-Dex- C_{10} -modified ($p = 0.0533$) or

560	MGlu-Man-C ₁₀ -modified liposomes ($p = 0.0495$) (Figs. 12A, 12C and Table S2), which
561	might derive from the synergy of efficient intracellular delivery of OVA to DCs (Figs. 6
562	and 8), the activation of DCs (Fig. 9). In the presence of MPLA, all polysaccharide
563	derivative-modified liposomes exhibited much stronger antitumor effects than those of
564	liposomes without MPLA. Most tumors nearly disappeared (Fig. 12B). Mice survival
565	was also prolonged efficiently. 40–50% of mice became completely tumor-free during
566	60 days (Fig. 12D). In this case, MGlu-Man- C_{10} -modified liposomes showed the
567	strongest antitumor effects in the polysaccharide derivatives. This result suggests that
568	MPLA is a suitable adjuvant to enhance the immunity-inducing effects of
569	MGlu-Man-C ₁₀ -modified liposomes. The combination of proper adjuvant with
570	polysaccharide-modified liposomes might produce more efficient antigen delivery
571	systems. It is noteworthy that, even in the absence of MPLA, MGlu-Curd- C_{10} -modified
572	liposomes showed strong tumor regression comparable to MPLA-containing liposomes
573	(Fig. 12A). In addition, there is no significant difference in survival between
574	MGlu-Curd-C ₁₀ -modified liposome with or without MPLA ($p = 0.364$, Table S2).
575	Therefore, MGlu-Curd-C ₁₀ -modified liposomes are beneficial as adjuvant-free antigen
576	delivery systems.

4. Conclusion

579	This study developed bioactive polysaccharide-based pH-sensitive polymers.
580	MGlu unit-introduced curdlan and mannan efficiently destabilized liposomal membrane
581	at weakly acidic pH and promoted Th1 cytokine production from dendritic cells.
582	MGlu-Curd-C ₁₀ -modified or MGlu-Man-C ₁₀ -modified liposomes were taken up
583	efficiently by DCs mainly via scavenger receptors. They delivered model antigenic
584	protein into cytosol of DCs. Subcutaneous administration of these liposomes to mice
585	induced OVA-specific cellular immune responses and CTLs in spleen, resulting in the
586	strong therapeutic effects on tumor-bearing mice. Therefore, bioactive
587	polysaccharide-based pH-sensitive polymers and these polymer-modified liposomes are
588	promising as potent antigen delivery systems to achieve both antigen delivery and
589	activation of immune systems for cancer immunotherapy.
590	
591	Acknowledgments
592	This work was supported by Grants-in-aid for Scientific Research from the Ministry of
593	Education, Science, Sports, and Culture in Japan (15H03024, 25750177).

595 **References**

- 596 [1] S.A. Rosenberg, J.C. Yang, N.P. Restifo, Cancer immunotherapy: moving beyond
- 597 current vaccines, Nat. Med. 10 (2004) 909–915.
- 598 [2] F. Wang, E. Bade, C. Kuniyoshi, L. Spears, G. Jeffery, V. Marty, et al., Phase I trial
- 599 of a MART-1 peptide vaccine with incomplete Freund's adjuvant for resected high-risk
- 600 melanoma, Clin. Cancer Res. 5 (1999) 2756–2765.
- [3] S.A. Rosenberg, M.E. Dudley, Adoptive cell therapy for the treatment of patients
- with metastatic melanoma, Curr. Opin. Immunol. 21 (2009) 233-240.
- [4] J. Banchereau, R.M. Steinman, Dendritic cells and the control of immunity, Nature
- 604 **392** (1998) 245-252.
- [5] I. Mellman, R.M. Steinman, Dendritic cells: specialized and regulated antigen
- 606 processing machines, Cell 106 (2001) 255-258.
- 607 [6] N.C. Fernadez, A. Lozier, C. Flament, P. Ricciardi-Castagnoli, D. Bellet, M. Suter,
- 608 et al., Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate
- anti-tumor immune responses in vivo, Nat. Med. 5 (1999) 405-411.
- 610 [7] O.P. Joffre, E. Segura, A. Savina, S. Amigorena, Cross-presentation by dendritic
- 611 cells, Nat. Rev. Immunol. 12 (2012) 557-569.
- 612 [8] J. Panyam, W.Z. Zhou, S. Prabha, S.K. Sahoo, V. Labhasetwar, Rapid

- 613 endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for
- 614 drug and gene delivery, FASEB J. 16 (2002) 1217–1226.
- [615 [9] T. Akagi, M. Baba, M. Akashi, Biodegradable nanoparticles as vaccine adjuvants
- and delivery systems: regulation of immune responses by nanoparticle-based vaccine,
- 617 Adv. Polym. Sci. 247 (2012) 31–64.
- [10] E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J.M.J. Fréchet, M.T. Albrecht, A.J.
- 619 Mateczun, et al., In vitro analysis of acetalated dextran microparticles as a potent
- delivery platform for vaccine adjuvants, Mol. Pharm. 7 (2010) 826–835.
- 621 [11] A. Boudier, A. Aubert-Pouëssel, N. Mebarek, A. Chavanieu, J. Quentin, D. Martire,
- et al., Development of tripartite polyion micelles for efficient peptide delivery into
- dendritic cells without altering their plasticity, J. Control. Release 154 (2011) 156-163.
- [12] T. Nochi, Y. Yuki, H. Takahashi, S. Sawada, M. Mejima, T. Kohda, et al., Nanogel
- antigenic protein-delivery system for adjuvant-free intranasal vaccines, Nat. Mater. 9
- 626 (2010) 572-578.
- 627 [13] J. Kunisawa, T. Nakanishi, I. Takahashi, A. Okudaira, Y. Tsutsumi, K. Katayama,
- et al., Sendai virus fusion protein mediates simultaneous induction of MHC class
- 629 I/II-dependent mucosal and systemic immune responses via the
- 630 nasopharyngeal-associated lymphoreticular tissue immune system, J. Immunol. 167

631 (2001) 1406-1412.

- 632 [14] L. Bungener, K. Serre, L. Bijl, L. Leserman, J. Wilschut, T. Daemen, et al.,
- 633 Virosome-mediated delivery of protein antigens to dendritic cells, Vaccine 20 (2002)

634 2287**-**2295.

- [15] R. Reddy, F. Zhou, L. Huang, F. Carbone, M. Bevan, T.B. Rouse, pH sensitive
- 636 liposomes provide an efficient means of sensitizing target cells to class I restricted CTL
- recognition of a soluble protein, J. lmmun. Methods 141 (1991) 157-63.
- [16] T. Nakamura, R. Moriguchi, K. Kogure, N. Shastri, H. Harashima, Efficient MHC
- 639 class I presentation by controlled intracellular trafficking of antigens in
- octaarginine-modified liposomes, Mol. Ther. 16 (2008) 1507-1514.
- 641 [17] N. Murthy, J.R. Robichaud, D.A. Tirrell, P.S. Stayton, A.S. Hoffman, The design
- and synthesis of polymers for eukaryotic membrane disruption, J. Control. Release 61
- 643 (**1999**) **137-143**.
- 644 [18] K. Kono, K. Zenitani, T. Takagishi, Novel pH-sensitive liposomes: liposomes
- bearing a poly(ethylene glycol) derivative with carboxyl groups, **Biochim. Biophys.**
- 646 **Acta** 1193 (1994) 1-9.
- [19] K. Kono, T. Igawa, T. Takagishi, Cytoplasmic delivery of calcein mediated by
- 648 liposomes modified with a pH-sensitive poly(ethylene glycol) derivative, Biochim.

- 649 Biophys. Acta 1325 (1997) 143-154.
- [20] N. Sakaguchi, C. Kojima, A. Harada, K. Kono, Preparation of pH-sensitive
- 651 poly(glycidol) derivatives with varying hydrophobicities: their ability to sensitize stable
- 652 liposomes to pH, Bioconj. Chem. 19 (2008) 1040-1048.
- [653 [21] E. Yuba, A. Harada, Y. Sakanishi, K. Kono, Carboxylated hyperbranched
- 654 poly(glycidol)s for preparation of pH-sensitive liposomes, J. Control. Release 149
- 655 (2011) 72-80.
- [22] E. Yuba, C. Kojima, A. Harada, Tana, S. Watarai, K. Kono, pH-Sensitive fusogenic
- 657 polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular
- 658 immunity, **Biomaterials 31** (2010) 943-951.
- [23] E. Yuba, A. Harada, Y. Sakanishi, S. Watarai, K. Kono, A liposome-based antigen
- delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy,
- 661 **Biomaterials 34 (2013)** 3042-3052.
- 662 [24] E. Yuba, N. Tajima, Y. Yoshizaki, A. Harada, H. Hayashi, K. Kono, Dextran
- derivative-based pH-sensitive liposomes for cancer immunotherapy, Biomaterials 35
- **664** (**2014**) 3091-3101.
- [25] R.D. Weeratna, M.J. McCluskie, Y. Xu, H.L. Davis, CpG DNA induces stronger
- 666 immune responses with less toxicity than other adjuvants, Vaccine 18 (2000)

- 667 1755-1762.
- 668 [26] S.Y. Kim, M.B. Heo, G.S. Hwang, Y. Jung, Y. Choi do, Y.M. Park, et al.,
- 669 Multivalent polymer nanocomplex targeting endosomal receptor of immune cells for
- 670 enhanced antitumor and systemic memory response, Angew. Chem. Int. Ed. Engl. 54
- 671 (2015) 8139**-**8143.
- [27] C. Wischke, J. Zimmermann, B. Wessinger, A. Schendler, H.H. Borchert, J.H.
- 673 Peters, et al., Poly(I:C) coated PLGA microparticles induce dendritic cell maturation, Int.
- 674 J. Pharm. 365 (2009) 61-68.
- [28] C.R. Alving, M. Rao, N.J. Steers, G.R. Matyas, A.V. Mayorov, Liposomes
- 676 containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines,
- 677 Expert Rev. Vaccines 11 (2012) 733-744.
- [29] Y. Guo, D. Wang, Q. Song, T. Wu, X. Zhuang, Y. Bao et al., Erythrocyte
- 679 membrane-enveloped polymeric nanoparticles as nanovaccine for induction of
- antitumor immunity against melanoma, ACS Nano 9 (2015) 6918-6933.
- [30] Y. Yoshizaki, E. Yuba, N. Sakaguchi, K. Koiwai, A. Harada, K. Kono, Potentiation
- 682 of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen
- delivery carriers for cancer immunotherapy, **Biomaterials 35** (2014) 8186-8196.

- [31] E. Yuba, Y. Kanda, Y. Yoshizaki, R. Teranishi, A. Harada, K. Sugiura, T. Izawa, J.
- 685 Yamate, N. Sakaguchi, K. Koiwai, K. Kono, pH-Sensitive polymer-liposome-based
- antigen delivery systems potentiated with interferon- γ gene lipoplex for efficient cancer
- 687 immunotherapy, **Biomaterials 67** (2015) 214-224.
- [32] K. Kataoka, T. Muta, S. Yamazaki, K. Takeshige, Activation of macrophages by
- 689 linear (1 \rightarrow 3)-β-D-glucans: Implications for the recognition of fungi by innate immunity,
- 690 J. Biol. Chem. 277 (2002) 36825-36831.
- [33] E.P. McGreal, M. Rosas, G.D. Brown, S. Zamze, S.Y. Wong, S. Gordon, et al.,
- 692 The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for
- 693 high mannose, Glycobiology 16 (2006) 422-430.
- [34] V. Sukhithasri, N. Nisha, L. Biswas, V. Anil Kumar, R. Biswas, Innate immune
- recognition of microbial cell wall components and microbial strategies to evade such
- 696 recognitions, Microbiol. Res. 168 (2013) 396-406.
- [35] Z. Shen, G. Reznikoff, G. Dranoff, K.L. Rock, Cloned dendritic cells can present
- exogenous antigens on both MHC class I and class II molecules, J. Immunol. 158
- 699 (1997) 2723–2730.
- [36] M.W. Moore, F.R. Carbone, M.J. Bevan, Introduction of soluble protein into the
- class I pathway of antigen processing and presentation, Cell 54 (1988) 777-785.

- 702 [37] D.L. Daleke, K. Hong, D. Papahadjopoulos, Endocytosis of liposomes by
- macrophages: binding, acidification and leakage of liposomes monitored by a new
- fluorescence assay, Biochim. Biophys. Acta 1024 (1990) 352-366.
- [38] K. Miyoshi, K. Uezu, K. Sakurai, S. Shinkai, Proposal of a new hydrogen-bonding
- form to maintain curdlan triple helix, Chem. Biodivers. 1 (2004) 916-924.
- [39] K. Ogawa, T. Dohmaru, T. Yui, Dependence of complex formation of
- 708 (1-->3)-beta-D-glucan with congo red on temperature in alkaline solutions, Biosci.
- 709 Biotechnol. Biochem. 58 (1994) 1870-1872.
- [40] K. Ogawa, M. Hatano, Circular dichroism of the complex of a (1-3)-/ β -D-glucan
- 711 with Congo Red, Carbohydr. Res. 67 (1978) 527-535.
- [41] M. Furukawa, R.S. Farinato, E. Kokufuta, Potentiometric titration behavior of
- 713 poly(acrylic acid) within a cross-linked polymer network having amide groups. Colloid
- 714 Polym. Sci. 286 (2008) 1425-1434.
- 715 [42] K. Kalyanasundaram, J.K. Thomas, Environmental effects on vibronic band
- intensities in pyrene monomer fluorescence and their application in studies of micellar
- 717 systems, J. Am. Chem. Soc. 99 (1977) 2039-2044.
- [43] T. Thelen, Y. Hao, A.I. Medeiros, J.L. Curtis, C.H. Serezani, L. Kobzik, et al., The
- class A scavenger receptor, macrophage receptor with collagenous structure, is the

- major phagocytic receptor for Clostridium sordellii expressed by human decidual
- 721 macrophages, J. Immunol. 185 (2010) 4328-4335.
- [44] M.L. Albert, S.F. Pearce, L.M. Francisco, B. Sauter, P. Roy, R.L. Silverstein, et al.
- Immature dendritic cells phagocytose apoptotic cells *via* $\alpha_v \beta_5$ and CD36, and
- cross-present antigens to cytotoxic T lymphocytes, J. Exp. Med. 188 (1998) 1359-1368.
- [45] M. Tukulula, R. Hayeshi, P. Fonteh, D. Meyer, A. Ndamase, M.T. Madziva, et al.,
- 726 Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and
- 727 drug delivery capabilities. Pharm. Res. 32 (2015) 2713-2726.
- [46] A. Haddadi, S. Hamdy, Z. Ghotbi, J. Samuel, A. Lavasanifar, Immunoadjuvant
- activity of the nanoparticles' surface modified with mannan. Nanotechnology 25 (2014)
- 730 355101.
- [47] P. Li, X. Zhang, Y. Cheng, J. Li, Y. Xiao, Q. Zhang, et al., Preparation and in vitro
- immunomodulatory effect of curdlan sulfate, Carbohydr. Polym. 102 (2014) 852–861.
- [48] V. Mata-Haro, C. Cekic, M. Martin, P.M. Chilton, C.R. Casella, T.C. Mitchel, The
- vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4, Science
- 735 316 (2007) 1628-1632.
- 736

÷			A I I I I I I I I I I
Polymer	-OH (mol%)*	-MGIu (mol%)*	-Anchor (mol%)*
MGlu ₃₂ -Curd	68	32	-
MGIu ₄₃ -Curd	57	43	-
MGIu ₆₅ -Curd	35	65	
MGIu ₈₁ -Curd	19	81	-
MGlu ₄₃ -Man	57	43	-
MGlu ₇₄ -Man	26	74	-
MGlu ₉ -Dex**	91	9	-
MGlu ₃₅ -Dex**	65	35	-
MGlu ₆₅ -Dex**	35	65	-
MGlu ₈₅ -Dex**	15	85	-
$MGlu_{21}\text{-}Curd\text{-}C_{10}$	76	21	3
$MGlu_{41}\text{-}Curd\text{-}C_{10}$	55	41	4
$MGlu_{59}\text{-}Curd\text{-}C_{10}$	35	59	6
MGlu77-Curd-C10	17	77	6
MGlu ₃₆ -Man-C ₁₀	60	36	4
MGlu ₆₅ -Man-C ₁₀	29	65	6
MGlu ₅₆ -Dex-C ₁₀ **	27	56	7

Table 1. Compositions of Polysaccharide Derivatives

⁷³⁸ *Determined by ¹H NMR. **Synthesized as previously reported [24].

 † MGlu_X-Curd refers to the polymer with X mol% of MGlu groups. MGlu_Y-Curd-C₁₀ refers to

T40 the polymer with Y mol% of MGlu groups and decyl (C_{10}) groups as indicated mol% in a

column in –Anchor (mol%).

Table 2. pKa and Precipitation pH for Polysaccharide Derivatives				
Dolumor	р <i>К</i> а	Precipitation pH	Degree of protonation	
Polymer			at precipitation pH	
MGlu ₃₂ -Curd	-	N.D.	-	
MGlu ₄₃ -Curd	5.85	4.4	0.98	
MGlu ₆₅ -Curd	5.78	4.8	0.94	
MGlu ₈₁ -Curd	5.96	5.0	0.95	
MGlu ₄₃ -Man	6.40	N.D.	-	
MGlu ₇₄ -Man	6.53	3.8	0.99	
MGlu ₆₅ -Dex	6.26*	4.5*	0.95*	

*Previously reported [24].

Table 3. Hydrodynamic Sizes and Zeta Potentials of Liposomes

Polymer	Hydrodynamic size (nm)	Zeta potential (mV)
Unmodified	157 \pm 4	-11.6 ± 5
MGlu ₂₁ -Curd-C ₁₀	109 \pm 3	-46.9 \pm 5
MGlu ₄₁ -Curd-C ₁₀	121 \pm 6	-47.3 \pm 4
MGIu ₅₉ -Curd-C ₁₀	131 \pm 2	-50.5 \pm 1
MGlu77-Curd-C10	121 \pm 4	-46.5 \pm 2
MGlu ₃₆ -Man-C ₁₀	123 \pm 3	-20.0 \pm 2
MGlu ₆₅ -Man-C ₁₀	100 ± 1	-31.7 \pm 2
MGIu ₅₆ -Dex-C ₁₀ *	109 \pm 4	-46.5 \pm 2

*As previously reported [24]

748 **Figure captions**

Figure 1. Design of liposomes modified with bioactive polysaccharide derivatives for 749induction and activation of antigen-specific immunity. These liposomes are taken up by 750751dendritic cells *via* endocytosis and trapped in endosome. Its weakly acidic environment triggers destabilization of the liposome, which induces release of antigen molecules in 752endosome and their transfer to cytosol via fusion with endosome. Antigen molecules in 753754cytosol cause antigen-specific cytotoxic T lymphocytes (CTL) via presentation by MHC class I, resulting in the induction of cellular immunity. Liposomes modified with 755756bacteria-derived polysaccharide derivatives, MGlu-Curd or MGlu-Man are also recognized via Dectin-1 and Dectin-2, respectively, which causes the promotion of Th1 757cytokine production and the activation of cellular immunity. 758Figure 2. (A) Synthetic route for polysaccharide derivatives having carboxy groups and 759alky chains as anchor units to liposomal membrane. (B) Structures of polysaccharides 760 761 used in this study. Figure 3. ¹H NMR spectra of (A) curdlan, (B) MGlu₄₃-Curd, (C) MGlu₄₁-Curd-C₁₀, (D) 762 763 mannan, (E) MGlu₇₄-Man, and (F) MGlu₆₅-Man-C₁₀ in D₂O/NaOD. 764 Figure 4. Acid-base titration curves for (A) MGlu₅₀-Curd (open diamonds), MGlu₆₅-Curd (gray triangles), MGlu₈₁-Curd (closed squares), and (B) MGlu₄₃-Man 765

766 (closed diamonds), and MGlu₇₄-Man (open squares).

767	Figure 5. pH-s	sensitive content	s release beh	aviors of	curdlan (A)	or mannan	(B)
-----	----------------	-------------------	---------------	-----------	-------------	-----------	-----

- derivative-modified liposomes. Pyranine release after 30 min-incubation from
- liposomes modified with MGlu₂₁-Curd-C₁₀ (closed diamonds), MGlu₄₁-Curd-C₁₀
- (closed circles), MGlu₅₉-Curd-C₁₀ (closed squares), MGlu₇₇-Curd-C₁₀ (closed triangles),
- MGlu₃₆-Man- C_{10} (open squares), MGlu₆₅-Man- C_{10} (open circles), and without polymer
- (open diamonds) were shown. Lipid concentrations were 2.0×10^{-5} M. Each point is the
- 773 mean \pm SD (*n* = 3).
- **Figure 6.** Fluorescence intensity for DC2.4 cells treated with Rh-PE-labeled EYPC
- liposomes modified with or without polysaccharide derivatives having various amounts
- of MGlu groups. DC2.4 cells were incubated with liposomes (lipid concentration: 0.5
- mM) for 4 h at 37 °C in serum free medium. Cellular auto fluorescence was corrected.
- 778 **p* <0.05. ***p* <0.01.

Figure 7. Inhibition of cellular association of liposomes modified with

- 780 MGlu₂₁-Curd-C₁₀ (closed diamonds), MGlu₄₁-Curd-C₁₀ (closed circles),
- 781 MGlu₅₉-Curd-C₁₀ (closed squares), MGlu₇₇-Curd-C₁₀ (closed triangles),
- 782 MGlu₃₆-Man-C₁₀ (open squares), MGlu₆₅-Man-C₁₀ (open circles), and MGlu₅₆-Dex-C₁₀
- 783 (closed inverted triangles). Various concentrations of free dextran sulfate (A, C), free

784	curdlan (B) and free mannan (D) were incubated with DC2.4 cells for 1 h before sample
785	apply. Relative fluorescence intensity was calculated as the ratios of the amount of
786	association in the presence of ligands to that in the absence of ligands. * $p < 0.05$ and ** p
787	< 0.01 comapred to the case in the absence of ligands.
788	Figure 8. Confocal laser scanning microscopic (CLSM) images of DC2.4 cells treated
789	with DiI-labeled and FITC-OVA-loaded liposomes modified with indicating
790	polysaccharide derivatives or without polymer for 4 h at 37 °C in serum-free medium.
791	Bar represents 10 µm.
792	Figure 9. (A) TNF- α and (B) IL-12 productions from DC2.4 cells treated with curdlan
793	(diamonds), mannan (triangles) and dextran (squares) derivatives having various
794	contents of MGlu groups (1 mg/mL) for 24 h. $p < 0.05$ and $p < 0.01$ comapred to the
795	parent polysaccharide.
796	Figure 10. Cytokine production from DC2.4 cells treated with polysaccharide
797	derivatives-modified liposomes (0.5 mM lipid concentration) for 24 h. (A) Effect of
798	MGlu group contents for MGlu-Curd-C ₁₀ -modified liposomes. (B, C) Effects of main
799	chain structures and inclusion of MPLA. * $p < 0.05$. ** $p < 0.01$.
800	Figure 11. (A) IFN-γ production from splenocytes of OVA-immunized mice.
801	Splenocytes were isolated from C57BL/6 mice immunized with PBS (white bars), OVA

802	encapsulated liposomes modified with MGlu ₅₉ -Curd-C ₁₀ (gray bars), MGlu ₆₅ -Man-C ₁₀
803	(striped bars) and MGlu_{56}-Dex-C_{10} (closed bars) twice. Splenocytes (2 \times 10 ⁶ /mL in 2
804	mL) were incubated with OVA (0, 25 or 50 $\mu g/mL)$ for 5 days. Concentration of IFN- γ
805	in the medium was measured by ELISA. (B) OVA-specific CTL induction in spleen of
806	mice after 7 days from subcutaneous immunization with polysaccharide
807	derivative-modified liposomes twice. Cytotoxic activity was measured at effecter
808	cell/target cell (E/T) ratio of 25 using the LDH assay. Aliquots of OVA (100 $\mu g)$ was
809	administered per mouse. E.G7-OVA cells were used as target cells. Each plots shows
810	the data from each mouse and bars represent the mean value. * $p < 0.05$. ** $p < 0.01$. † p
811	=0.14.

Figure 12. Antitumor effects induced by subcutaneous administration of OVA-loaded 812 liposomes without (A, C, open symbols) or with (B, D, closed symbols) MPLA. 813 E.G7-OVA cells were subcutaneously inoculated into the left backs of C57BL/6 mice 814 815 and tumor volume was monitored. Tumor volumes (A, B) and survival (%) (C, D) of tumor-bearing followed inoculation. 816 mice were from cell tumor MGlu₅₆-Dex-C₁₀-modified liposomes (squares), MGlu₅₉-Curd-C₁₀-modified liposomes 817818 (diamonds), and MGlu₆₅-Man-C₁₀-modified liposomes (triangles) containing 100 µg of OVA were subcutaneously administered into the right backs of the mice twice on day 5 819

820	and day 15. Mice administered with PBS (circles) were used as controls to confirm the
821	development of tumor. Typical results of tumor volume change using four mice were
822	shown in Figs. 12A and B. Eight to twelve mice were used for each treated group. $*p$
823	<0.05 and $**p$ <0.01 comapred to PBS-treated group. Results for Log-rank test is
824	shown in Table S2.

829 Yuba, et al., Figure 2.

831 Yuba, et al., Figure 3.

833 Yuba, et al., Figure 4.

835 Yuba, et al., Figure 5.

837 Yuba, et al., Figure 6.

839 Yuba, et al., Figure 7.

841 Yuba, et al., Figure 8

843 Yuba, et al., Figure 9.

845 Yuba, et al., Figure 10.

847 Yuba, et al., Figure 11.

849 Yuba, et al., Figure 12.