

学術情報リポジトリ

Dual-stimuli responsive liposomes using pH- and temperature-sensitive polymers for controlled transdermal delivery

メタデータ	言語: eng		
	出版者:		
	公開日: 2018-02-20		
	キーワード (Ja):		
キーワード (En):			
作成者: Yamazaki, Naoko, Sugimoto, Takumi,			
Fukushima, Mitsuhiro, Teranishi, Ryoma, Kotaka, Ak			
Shinde, Chiharu, Kumei, Takayuki, Sumida, Yasush			
Munekata, Yuki, Maruyama, Keiichi, Yuba, Eiji, I			
	Atsushi, Kono, Kenji		
	メールアドレス:		
	所属:		
URL	http://hdl.handle.net/10466/15731		

1	Dual-stimuli responsive liposomes using pH- and temperature-sensitive polymers
2	for controlled transdermal delivery
3	
4	Naoko Yamazaki ^{1,3} , Takumi Sugimoto ³ , Mitsuhiro Fukushima ² , Ryoma Teranishi ³ ,
5	Aki Kotaka ¹ , Chiharu Shinde ¹ , Takayuki Kumei ¹ , Yasushi Sumida ¹ , Yuki Munekata ² ,
6	Keiichi Maruyama ² , Eiji Yuba ^{3,*} , Atsushi Harada ³ , and Kenji Kono ³
7	¹ Research Institute, Fancl Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama,
8	Kanagawa, Japan; ² Oleo & Speciality Chemicals Research Laboratory, NOF
9	Corporation, Amagasaki, Hyogo 660-0095, Japan; ³ Department of Applied Chemistry,
10	Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho,
11	Naka-ku, Sakai, Osaka 599-8531, Japan
12	
13	*Corresponding author: Eiji Yuba
14	Department of Applied Chemistry, Graduate School of Engineering,
15	Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
16	Tel.: +81-722-54-9913; Fax: +81-722-54-9913; yuba@chem.osakafu-u.ac.jp
17	

18 Keywords:

19 liposome / temperature-sensitive / pH-sensitive / transdermal delivery / cosmetics

21 ABSTRACT

22 Recent development in transdermal drug delivery systems has led to improvement of 23 systemic and local efficacies. In the cosmetics field, liposomes have long been used as a container of cosmetic agents for their protection. Considering that these agents 24 25 should be released from the liposomes at appropriate sites during their penetration into 26 the skin, the use of skin environment-sensitive liposomes for transdermal penetration 27 is beneficial for improving cosmetics efficacy. For this study, we prepared novel functional liposomes modified with methacrylate-based copolymers 28 29 poly(MD-co-MAA-co-LT)s, which have sensitivity to both temperature and pH. 30 Poly(MD-co-MAA-co-LT)s changed their water-solubility in response to both pH and 31 temperature. Poly(MD-co-MAA-co-LT)-modified liposomes showed content release in conditions with acidic pH and temperatures higher than 35 °C, which correspond to 32 33 endosome/lysosome environments of the melanocytes at the stratum basale of the skin. Polymer-modified liposomes were taken up efficiently by a murine melanoma cell line, 34 35 B16-F10 cells, which delivered their contents into endosomes and cytosol. Polymer-modified liposomes could penetrate into deep layers of skin models and 36 37 reached to stratum basale. Results demonstrate that

- 38 poly(MD-co-MAA-co-LT)-modified liposomes are promising as a system for
- 39 delivering cosmetic agents to melanocytes.
- 40

41 **1. Introduction**

42 In the medical field, transdermal drug delivery systems (TDDSs) have been studied intensively for drug administration methods instead of intravenously injected drugs 43 and orally administered drugs. In the field of cosmetics, TDDS is an attractive method 44 to deliver active agents to the skin interior and to improve skin surface conditions for 45 anti-aging effects.¹ Skin is an important tissue separating the exterior environment and 46 47 the body, acting as a protective barrier against harmful environmental effects. The skin surface takes a block mortar structure composed of well-ordered keratinocytes 48 resembling a brick wall, with intercellular lipids (stratum corneum) as the mortar.² 49 Intercellular lipids in the stratum corneum present a barrier preventing the invasion of 50 51 various allergens and bacteria. Moreover, they control trans-epidermal water loss from the skin.³ The epidermis, basement membrane, and dermis layer underlie the stratum 52 53 corneum. When UV-A and UV-B are irradiated to skin or reactive oxygen species are produced in the skin, melanocytes in the stratum basale produce melanin granules to 54 protect the skin from damage.⁴ Therefore, the delivery of antioxidants or 55 UV-protective agents to melanocytes is regarded as an effective means of protection 56 against the production of melanin and freckles.⁵ Because of skin barrier functions, it is 57

 $\mathbf{5}$

difficult to penetrate the dermis and insert active agents deep into skin tissues such as
the epidermis.⁶

60	To date, TDDSs of two types have been studied to improve the penetration of active
61	agents into skin: nanocarrier-based methods, physical techniques such as iontophoresis,
62	electroporation, and the use of microneedles and pasting agents. ^{1, 7, 8} Actually,
63	iontophoresis and electroporation are used to promote the penetration of water-soluble
64	molecules by a difference of voltage produced by electric fields. However, these
65	methods are inapplicable with water-insoluble drugs. The micrometer-sized needles
66	(microneedles) penetrate directly into the corner layer and introduce drug molecules
67	into the dermis. However, adjustment is difficult because the penetration depth
68	depends on the angle and applied strength. For pasting agents or patches, it is difficult
69	to find a balance between drug stability, skin acidity, and transdermal delivery
70	functions.
71	Nanocarrier-based transdermal delivery systems such as polymer micelles, nanogels,
72	and liposomes have also been studied intensively.9-26 Among them, liposome-based
73	TDDSs are more practical than other delivery systems because of their capability to
74	encapsulate both water-soluble and water-insoluble drugs, to control the size and
75	surface charges, and to introduce various functions. ^{27–35} Many studies have suggested

76	that liposomes of various types can penetrate into the skin tissues and deliver their
77	cargo to cells existing on the basement membrane ^{.3, 4, 17-21, 32-39} In addition, because
78	liposomes comprise phospholipids, which are the same components as those in skin
79	tissues, liposomes are regarded as showing few stimuli and little toxicity to skin.
80	Actually, some liposomes have been used as additives in commercially available
81	cosmetics. ¹⁷ In such applications, liposomes are used merely as carriers. Their drug
82	release control has not been well-studied. For more precise delivery of drugs to target
83	cells (melanocytes) existing at the stratum basale, liposomes having skin
84	environmental stimuli-responsive properties are desired.
85	Deep sites of the skin have higher temperatures than those outside and the skin
86	surface (e.g., skin surface temperature is about 30°C, whereas the temperature of deep
87	skin sites is 37 °C when the environmental temperature is 25 °C) ⁴⁰ . Furthermore,
88	although skin tissues are mildly acidic to neutral pH, after internalization of liposomes
89	via endocytosis, liposomes are located in endosomes and lysosomes with acidic
90	pH. ⁴¹⁻⁴⁵ Therefore, dual-stimuli (temperature and pH)-sensitive liposomes are useful
91	for the precise delivery of drugs to the interior of melanocytes deep inside skin tissues.
92	Stimuli-sensitive liposomes are generally prepared using two methods: liposomes
93	containing pH-sensitive or temperature-sensitive lipids, and stable liposomes modified

94	with pH-sensitive or temperature-sensitive polymers. ^{46–55} From the perspective of
95	liposome stability, stimuli-sensitive polymer-modified liposomes are beneficial.
96	For this study, pH-sensitive and temperature-sensitive liposomes were prepared
97	using liposomes modified with pH-sensitive and temperature-sensitive polymers (Fig.
98	1). Methacrylate-based monomers of three kinds, methoxy diethyleneglycol
99	methacrylate (MD), methacrylic acid (MAA), and lauroxy tetraethyleneglycol
100	methacrylate (LT), were used, respectively, for temperature-sensitivity, pH-sensitivity
101	and anchoring. Their random copolymers (poly(MD-MAA-LT)) were prepared using a
102	free radical initiator. These copolymer-modified liposomes are expected to deliver the
103	active agents to melanocytes and to release drugs inside of these cells responding to
104	endosomal acidic pH and high temperature at the stratum basale (Fig. 1). Here, the
105	synthesis of dual stimuli-sensitive polymers was examined along with characterization
106	of polymers, drug-release performance of polymer-modified liposomes at
107	skin-mimetic environments, intracellular delivery of model drugs to melanocytes and
108	the penetration of liposomes using human 3-dimensional cultured epidermal model.
109	
110	2. Experimental methods

2.1. Materials

112	Methoxy diethylene glycol methacrylate (MD, BLEMMER [®] PME-100), lauroxy
113	tetraethylene glycol methacrylate (LT, BLEMMER [®] PLE-200), and dipropyl
114	peroxydicarbonate (PEROYL [®] NPP) were obtained from NOF Corp. (Tokyo, Japan).
115	Methacrylic acid (MAA) was obtained from Kuraray Co. Ltd. (Tokyo, Japan).
116	Non-hydrogenated soy bean PC (SPC) was provided by Lipoid GmbH (Ludwigshafen,
117	Germany). Calcein was from Sigma-Aldrich Corp. (St. Louis, USA). Lissamine
118	rhodamine B-sulfonylphosphatidylethanolamine (Rh-PE) was purchased from Avanti
119	Polar Lipids Inc. (Birmingham, AL, USA). Triton X was obtained from Tokyo
120	Chemical Industry Co., Ltd. (Tokyo, Japan). Test-Wako-C was obtained from Wako
121	Pure Chemical Inds. Ltd. (Osaka, Japan).
122	2.2. Synthesis of Poly(MD-co-MAA-co-LT)s
123	Poly(MD-co-MAA-co-LT)s were synthesized by radical copolymerization of MD,
124	MAA, and LT using dipropyl peroxydicarbonate as an initiator (Scheme 1). For
125	synthesis of MD-MAA ₄₀ -LT, MD (64.1 g), MAA (21.6 g), LT (14.4 g), and dipropyl
126	peroxydicarbonate (1.94 g) were added dropwise into freshly distilled isopropanol
127	(100 g) under N_2 atmosphere and were kept at 60 $^\circ C$ for 2 h. Then the solution was
128	heated at 80 °C for 1 h under N_2 atmosphere. The obtained polymers were recovered
120	by removal of solvents under the vacuum. The yield was 99.8 σ (97.8%). Other

130	polymers were synthesized using the same procedure at different feeds, as shown in
131	Table 1. The number-average molecular weight (Mn) , the weight-average molecular
132	weight (Mw) , and polydispersity index (Mw/Mn) of the copolymers were evaluated
133	using gel-permeation chromatography on a system equipped with a column (Shodex
134	LF-804; Showa Denko K.K., Tokyo, Japan) with THF as an eluent. Polystyrene was
135	used as a standard. Molar ratio of MD/LT and MAA units in the copolymers were
136	estimated using ¹ H NMR (JNM-AL-400; JEOL, Tokyo, Japan) and acid value test as
137	described in JIS K 0070-1992, respectively. Briefly, titration of polymer dissolved in
138	methanol (20 mg/mL) using 0.1 M KOH (ethanol/water = 95/5, v/v) was performed
139	and the wt% of MAA units in the copolymer was calculated compared with theoretical
140	acid value of poly(methacrylic acid). Molar ratio of MD units and LT units was
141	calculated from the peak for alkyl group in LT units (δ : 1.2~1.4 (br, 20H,
142	-CH ₂ C ₁₀ H_{20} CH ₃) and the peak for methoxy groups in MD units (δ : 3~3.5 (br, 3H,
143	-OCH ₃). This molar ratio was once converted to wt% and then, wt% of MAA, MD and
144	LT units was calculated. Finally, the wt% values were divided by the unit molecular
145	weights and converted to the unit molar ratio.
146	2.3. Cloud Point Determination

147	The turbidity of the copolymer PBS solution (10 mg/mL) as a function of
148	temperature was measured at 500 nm using a spectrophotometer (V-560; Jasco Corp.,
149	Tokyo, Japan) equipped with a Peltier type thermostatic cell holder, coupled with an
150	ETC-505T controller. Temperature was raised at 2 °C/min. Cloud points were taken as
151	the initial break points in the resulting transmittance versus temperature curves.
152	2.4. Determination of the Transition Temperature of Copolymers by DSC
153	Thermograms of copolymers dissolved in 10 mM phosphate and 140 mM NaCl
154	were recorded by NANO DSC (TA Instruments, New Castle, DE, USA). The
155	copolymer solutions were placed in a sample cell and were analyzed at a heating rate
156	of 1.0 °C/min.
157	2.5 Preparation of Calcein-Loaded Liposomes
158	Given amounts of chloroform solution of SPC (23 mg) and copolymer (1 mg) were
159	added to a flask. Then the solvent was evaporated. The obtained thin film was dried
160	further under vacuum overnight and was dispersed in 2 mL of aqueous calcein solution
161	(63 mM, pH 7.4). The liposome suspension was extruded through a polycarbonate
162	membrane with pore diameter of 100 nm in an ice-cooled water bath. The free calcein
163	and free copolymer were removed using Sephadex G-50 column (GE Healthcare UK

164 Ltd., Buckinghamshire, England) at 4 °C in a 10 mM phosphate and 137 mM NaCl

165	solution at pH 9.0.	The lipid	concentration wa	as ascertained	(Test-Wako-C;	Wako Pure
-----	---------------------	-----------	------------------	----------------	---------------	-----------

- 166 Chemical Inds. Ltd., Osaka, Japan). The calcein-loaded liposomes were kept at 5 °C
- 167 until measurement. The liposome size was evaluated using dynamic light scattering
- 168 (ELS-8000 and ELS-Z 1000; Otsuka Electronics Co. Ltd., Tokyo, Japan) in PBS(-),
- 169 pH 7.4, at 25 °C. Transmission electron microscopic (TEM) analysis for the liposomes
- 170 stained by phosphotungstic acid solution was performed using JEM-2000FEX II
- 171 (JEOL Ltd., Tokyo, Japan) with carbon-coated copper grids.
- 172 2.6. Calcein Release from Liposomes
- 173 Liposome suspension was added to PBS(-) (4.0 mL) at various pH (pH4.0–7.4) and
- temperatures (25–70 °C). Calcein fluorescence at 520 nm with excitation at 490 nm
- 175 was measured using a spectrophotofluorimeter (Spectra Max Gemini EM; Molecular

176 Devices Corp., Montana, USA). The percent release of calcein from liposome was

177 defined as

178 %Release =
$$(F - F_0)/(F_{100} - F_0) \times 100$$

179 where F_0 and F respectively denote the initial and intermediary fluorescence

180 intensities of the liposome suspension at 5 °C. F_{100} is the fluorescence intensity of the

- 181 liposome suspension after the addition of Triton X-100 (final concentration, 0.2 wt%).
- 182 F_{100} of liposomes (lipid concentration: 20 μ M) after addition of Triton-X100 (final

183 concentration: 0.2 wt%) were 3195 ± 179 (a. u.) for unmodified liposome, 2725 ± 80

184 (a. u.) for liposomes modified with MD-MAA₀-LT, 2499 ± 282 (a. u.) for

185 MD-MAA₂₀-LT, 2056 \pm 39 (a. u.) for MD-MAA₃₀-LT, and 1913 \pm 75 (a. u.) for

 $186 MD-MAA_{40}-LT.$

187 2.7. Confocal Laser Scanning Microscopic Observation and Flow Cytometry

188 First, 2.0×10^5 of B16-F10 melanoma cells obtained from Tohoku University

189 (Sendai, Japan) were grown in DMEM containing 10% FBS for 24 h in humidified

190 atmosphere containing 5% CO₂ at 37 °C. 0.2 mol% of The rhodamine-PE-labeled and

191 calcein-loaded liposomes modified with or without MD-MAA₄₀-LT copolymer were

added (0.5 mM lipid concentration) to cells in serum-free DMEM and were incubated

193 for 3 h at 37 °C. The cells were washed with PBS(+) and were observed using

194 confocal laser scanning microscopy (LSM 5 Exciter; Carl Zeiss Inc., Oberkochen,

195 Germany) and flow cytometers (CytoFlex; Beckman Coulter Inc., Fullerton, CA,

196 USA).^{55–58}

197 2.8. Evaluation of liposomes penetration in skin models

198 3D skin models (LabCyte EPI-MODEL, Japan Tissue Engineering Co., Ltd., Aichi,

- 199 Japan) were used for the evaluation of liposome penetration. 3D skin models were
- treated with calcein solution (25.2 μ M) or 0.2 mol% Rh-PE-labeled liposomes

201	containing calcein (lipid and calcein concentrations were 1 mM and 25.2 $\mu M,$
202	respectively) for 24 h in PBS. After removal of supernatant, 3D skin models were
203	frozen immediately after embedding in Tissue-Tek O.C.T. Compound (Sakura Finetek
204	Japan Co., Ltd., Tokyo, Japan). Skin models were sectioned 10 µm slices and mounted
205	on glass slides by New Histo. Science Laboratory Co., LTd. (Tokyo, Japan). Confocal
206	laser scanning microscopic analysis of these slides was performed using LSM 5
207	Exciter (Carl Zeiss Inc., Oberkochen, Germany).
208	
209	3. Results and Discussion
210	3.1 Characterization of pH-sensitive and Thermo-sensitive Polymers
211	
	Poly(MD-co-MAA-co-LT)s having carboxyl units, oligo(ethylene glycol) units and
212	Poly(MD-co-MAA-co-LT)s having carboxyl units, oligo(ethylene glycol) units and hydrophobic units were synthesized by radical copolymerization of MD, MAA, and
212 213	Poly(MD-co-MAA-co-LT)s having carboxyl units, oligo(ethylene glycol) units and hydrophobic units were synthesized by radical copolymerization of MD, MAA, and LT. The compositions and molecular weight of obtained polymers were evaluated,
212 213 214	Poly(MD-co-MAA-co-LT)s having carboxyl units, oligo(ethylene glycol) units and hydrophobic units were synthesized by radical copolymerization of MD, MAA, and LT. The compositions and molecular weight of obtained polymers were evaluated, respectively, using NMR and GPC (Table 1). Results show that compositions of
212 213 214 215	Poly(MD-co-MAA-co-LT)s having carboxyl units, oligo(ethylene glycol) units and hydrophobic units were synthesized by radical copolymerization of MD, MAA, and LT. The compositions and molecular weight of obtained polymers were evaluated, respectively, using NMR and GPC (Table 1). Results show that compositions of poly(MD-co-MAA-co-LT)s were almost identical to the feed ratio of respective
212 213 214 215 216	Poly(MD-co-MAA-co-LT)s having carboxyl units, oligo(ethylene glycol) units and hydrophobic units were synthesized by radical copolymerization of MD, MAA, and LT. The compositions and molecular weight of obtained polymers were evaluated, respectively, using NMR and GPC (Table 1). Results show that compositions of poly(MD-co-MAA-co-LT)s were almost identical to the feed ratio of respective monomers. By changing the feed ratios of monomers, poly(MD-co-MAA-co-LT)s

weights of these polymers were 5,000–24,000. The molecular weight distributionswere high, reflecting radical polymerization.

220 Because poly(MD-co-MAA-co-LT)s have both carboxyl groups and oligo(ethylene glycol) groups, they are expected to respond to both pH and temperature. Therefore, 221 222 pH-sensitive and temperature-sensitive properties of the poly(MD-co-MAA-co-LT)s 223 were examined using detection of phase separation of the polymer's aqueous solutions. 224 Figures 2a–2d respectively portray the optical transmittance of the MD-MAA₀-LT, 225 MD-MAA₃₀-LT, MD-MAA₄₀-LT, and MD-MAA₄₅-LT aqueous solutions at various 226 pH as a function of temperature. The cloud points of polymer solution, defined as the temperature at the transmittance, began to decrease drastically.⁵⁹ As presented in Fig. 227 228 2a, the solution of $poly(MD-MAA_0-LT)$ suddenly became turbid at temperatures 229 higher than 13 °C, which indicates that this polymer lost water-solubility because of 230 dehydration of oligo(ethylene glycol) units responding to the temperature increase. 231 Poly(MD-MAA₀-LT) showed the same cloud points irrespective of the solution pH (Fig. 2a). Poly(MD-MAA₀-LT) has no protonation groups. Therefore, this polymer 232 233 shows only temperature sensitivity. In the case of poly(MD-MAA₃₀-LT), the solution of this polymer at pH 7.4 was transparent at 10–70 °C. However, at acidic pH, 234 poly(MD-MAA₃₀-LT) showed cloud points (Fig. 2b). The carboxyl groups of MAA 235

236	unit are deprotonated at neutral pH. For that reason, the polymer aggregation might be
237	inhibited by electro-repulsion of the deprotonated carboxyl groups even after
238	dehydration of MD units at high temperatures. After protonation of carboxyl groups of
239	MAA unit with pH decreasing, polymers became water-insoluble. Therefore, this
240	polymer is sensitive to both pH and temperature. Poly(MD-MAA ₄₀ -LT) and
241	poly(MD-MAA ₄₅ -LT) showed the same tendency with poly(MD-MAA ₃₀ -LT) (Figs. 2c
242	and 2d). Cloud points of these polymers increased concomitantly with increasing
243	MAA contents at the same pH, which indicates that higher temperatures are necessary
244	for the aggregation of polymers with higher contents of deprotonated carboxyl groups
245	on the polymer chains. The pH and MAA content dependences of cloud points for
246	these polymers are presented in Figure 3.
247	To evaluate correlation between the phase separation of these polymers and the
248	dehydration of side chain units, DSC measurements for the polymers were examined.
249	Figure 4 presents thermograms for respective polymers. Their cloud points,
250	endothermic peak, and calculated ΔH are presented in Table 2. The endothermic peaks
251	for respective polymers mostly agreed with the cloud point measured by turbidity
252	measurements, suggesting that the endotherms are derived from dehydration upon the
253	conformational transition of the polymer chains. Compared with poly(MD-MAA ₀ -LT),

254 Δ H values for poly(MD-MAA₂₀-LT), poly(MD-MAA₃₀-LT), and

255	poly(MD-MAA ₄₀ -LT)	were quite low	(Table 2). Assuming	that dehydration main	nly
-----	--------------------------------	----------------	---------------------	-----------------------	-----

takes place at oligo(ethylene glycol) units, ΔH values per MD units were calculated

257 (Table 2). Poly(MD-MAA₀-LT) showed Δ H values irrespective of pH, although

- 258 MAA-containing polymers showed quite low ΔH values per MD units. These results
- indicate that the protonated carboxyl groups might form hydrogen bonds with
- 260 oligo(ethylene glycol) units and promote polymer aggregation. Therefore, these

261 polymers might show phase separation even at low dehydration of MD units.

- 262 3.2 Characterization of Dual Stimuli-Responsive Behaviors of Polymer-Modified
- 263 *Liposomes*
- 264 Next, pH-sensitivity and temperature-sensitivity of liposomes modified with

265 copolymers were evaluated. Each polymer has LT units as hydrophobic groups, which

- 266 enables fixing of these polymers to a liposomal membrane via hydrophobic
- 267 interactions. Table 3 shows that the diameters of SPC-based liposomes modified with
- these copolymers at a weight ratio of 1/23 (polymer/lipid) were almost identical to
- those of polymer-unmodified liposomes. Figure 5 shows the TEM images of
- 270 liposomes. Typical spherical and vesicular structures with size of around 100 nm for
- 271 liposomes were observed. A fluorescence dye, calcein, was encapsulated to liposomes.

272	Their content-release properties were evaluated. Comparison of calcein fluorescence
273	intensities after liposome disruption revealed that MAA-containing
274	copolymer-modified liposomes had somewhat lower calcein encapsulation than the
275	unmodified or MAA-free copolymer-modified liposomes (see Experimental section).
276	Probably, negatively charged calcein molecules can be excluded from the liposome
277	surface spaces of the rumen through electrostatic and steric repulsive forces of
278	copolymers. Figure 6a depicts the pH-dependence of calcein release at 25 °C and
279	35 °C, which corresponds to skin temperature. Polymer-unmodified liposomes showed
280	no content release at any pH. In addition, poly(MD-MAA ₀ -LT)-modified liposomes
281	show no content release at any pH region or at 25 °C and 35 °C, although
282	poly(MD-MAA ₀ -LT) became hydrophobic at these temperatures (Fig. 2a). In contrast,
283	MAA unit-containing polymer-modified liposomes were stable at neutral pH, but
284	exhibited content release at weakly acidic pH. These results indicate that carboxyl
285	groups on the polymer chain are important to induce liposomal membrane
286	destabilization. Poly(carboxylic acid) derivatives are known to form hydrogen bonds
287	with phosphate groups on liposomal membrane and induce membrane lysis or
288	destabilization. ^{46, 57, 61} Although poly(MD-MAA ₀ -LT) became hydrophobic at 25 °C
289	and 35 °C (Fig. 2a), polymer chains might be unable to interact with liposome

290	efficiently because of the lack of hydrogen bond formation. In contrast, MAA
291	unit-containing polymers might form hydrogen bonds with a liposomal membrane and
292	might be able to approach to liposome surface. Subsequently, they destabilize via
293	hydrophobic interaction. Especially, poly(MD-MAA40-LT)-modified liposomes
294	showed no content release at 25 °C and pH 7.4, but promoted release at 35 °C and
295	below at pH 6.5. According to turbidity measurements, poly(MD-MAA ₄₀ -LT) showed
296	no transmittance decrease at pH 7.4–5.5 and 35 °C (Fig. 2c), which indicates that
297	hydrophobization of poly(MD-MAA ₄₀ -LT) existing at the periphery of the liposome
298	surface might be promoted because of the hydrophobic environment of the lipid
299	membrane, resulting in efficient destabilization of liposomal membrane at 35 °C and
300	below at pH 6.5.
301	Temperature-sensitivity of polymer-modified liposomes was evaluated at pH 7.4
302	and 5.0 (Fig. 6b). At pH 7.4, no liposome showed any content release at any
303	temperature region after 10 min incubation. In contrast, at pH 5.0, polymer-modified
304	liposomes exhibited content release, especially at temperatures higher than 35 °C. In
305	addition, the extent of content release increased concomitantly with decreasing MAA
306	contents in copolymers. According to results of cloud point measurements,
307	copolymers with lower MAA contents have more hydrophobic properties, which

308	might induce	more efficient	membrane	destabilization.	Consequently,
	<u> </u>				

309 poly(MD-MAA-LT)-modified liposomes showed content release in response to both 310 pH and temperature. Release behaviors are also controllable by changing the MAA 311 contents of the copolymers. Especially, poly(MD-MAA₄₀-LT)-modified liposomes 312 exhibited remarkable content release in conditions with acidic pH and temperatures 313 higher than 35°C, which correspond to the temperature and the pH of a skin 314 environment. The poly(MD-MAA₄₅-LT)-modified liposomes showed content release 315 at temperatures higher than 50 °C. The poly(MD-MAA₅₀-LT)-modified liposomes 316 showed low content release behavior. Their yield was low (data not shown). Therefore, poly(MD-MAA₄₀-LT)-modified liposomes were used for the following experiments. 317 318 3.3 Intracellular Behavior 319 Next, intracellular delivery performance of copolymer-modified liposomes was 320 evaluated. Murine melanoma-derived B16F10 cells were used as model melanocytes. 321 Rh-PE-labeled and calcein-loaded liposomes were applied to B16F10 cells. After 3 h, 322 intracellular distribution of liposome and calcein was observed using confocal laser 323 scanning microscopy (Fig. 7). As presented in Fig. 7A, cells treated with unmodified 324 SPC liposomes displayed punctate fluorescence of Rh-PE, but calcein fluorescence 325 was not observed from the same locations of Rh-PE, suggesting that the unmodified

326	liposomes were taken up by cells via endocytosis, but they retained calcein molecules
327	inside of liposomes. In contrast, cells treated with the poly(MD-MAA ₄₀ -LT)-modified
328	liposomes displayed strong fluorescence of both Rh-PE and calcein, indicating that
329	polymer-modified liposomes were taken up by melanocytes more efficiently than
330	unmodified liposomes and released calcein molecules from liposomes responding the
331	intracellular acidic pH and cultural temperature (37 °C). ^{61, 62} In addition, some green
332	fluorescence was observed at locations different from those showing red fluorescence.
333	Poly(MD-MAA ₄₀ -LT)-modified liposomes might destabilize not only their own
334	liposomal membranes but also endosomal membranes, resulting in cytoplasmic
335	delivery of contents. Cells treated with calcein solution showed much weaker green
336	fluorescence than polymer-modified liposomes did (Fig. 7C).
337	Next, flow cytometry was used to evaluate the delivery kinetics of liposomes and
338	calcein (Fig. 8). B16–F10 melanoma cells that had been treated with liposomes for 2 h
339	or 3 h and cellular fluorescence at varying times were measured. Unmodified liposome
340	and poly(MD-MAA ₄₀ -LT)-modified liposome-treated cells respectively showed
341	calcein and Rh-PE-derived fluorescence. The fluorescence increased concomitantly
342	with increased incubation time (Figs. 8c and 8d). Poly(MD-MAA ₄₀ -LT)-modified
343	liposomes showed higher fluorescence intensity than unmodified liposomes did,

344	reflecting the results of CLSM images (Figs. 8a and 8b). However, cells treated with
345	the calcein solution displayed very low fluorescence of calcein. These results
346	demonstrate that calcein molecules were released efficiently from
347	Poly(MD-MAA ₄₀ -LT)-modified liposomes by pH and temperature sensitivity of
348	MD-MAA ₄₀ -LT polymer.
349	3.4. Penetration of liposomes in skin models
350	Finally, the skin penetration experiments of liposomes were examined using 3D
351	skin models (LabCyte EPI MODEL), which are commonly used for the evaluation of
352	drug penetration in the cosmetic field. ⁶³ Figure 9 shows confocal laser scanning
353	microscopic images of 3D skin models treated with PBS, calcein solution,
354	calcein-loaded unmodified liposomes and MD-MAA ₄₀ -LT-modified liposomes.
355	Liposomes were fluorescently labeled with 0.2 mol% of rhodamine-lipids. As shown
356	in Fig. 9b, calcein solution hardly penetrated the skin model and quite weak green
357	fluorescence was observed from the surface, which corresponds to stratum corneum.
358	In contrast, strong green and red fluorescence was observed from the surface of skin
359	models treated with liposomes. MD-MAA40-LT-modified liposomes showed much
360	higher fluorescence than that of unmodified liposomes, which might reflect the high
361	cellular association of MD-MAA40-LT-modified liposomes in Figure 8. In addition,

362	fluorescence derived from liposome and calcein diffused to underlayers, which
363	correspond to stratum granulosum and stratum spinosum. Green and red fluorescence
364	was also detected from stratum basale in the both cases of liposome-treated skin
365	models. These results indicate that most of liposomes absorbed on the skin surface but
366	a part of liposomes diffused to the underlayers and reached to stratum basale. In
367	addition, both calcein and rhodamine fluorescence was detected from stratum basale,
368	which might suggest that liposomes retained the calcein molecules during the
369	penetration into stratum basale. Combined with the results in Figures 7-9,
370	MD-MAA ₄₀ -LT-modified liposomes might efficiently absorb to surface of skin and a
371	part of liposomes penetrate into stratum basale and be taken up by melanocytes. Then,
372	liposomes might release drugs responding to both high temperature at stratum basale
373	and low pH in endosomes of melanocytes.
374	
375	4. Conclusion
376	For this study, a dual stimuli-sensitive polymer was newly developed:
377	poly(MD-co-MAA-co-LT). Liposomes were modified with copolymers to produce

- functional DDS with destabilization that might be triggered by a combination of acidic
- pH signals and temperature signals. Poly(MD-co-MAA-co-LT) changed their water

380	solubility depending on pH and temperature. Contents released from the
381	copolymer-modified liposomes were enhanced in weakly acidic pH and
382	body-temperature conditions, corresponding to a skin environment. Therefore, these
383	liposomes have potential usefulness for the selective delivery of antioxidants or
384	UV-protective agents to melanocytes existing in deep skin tissues, which provides
385	highly protective effects against the production of melanin and freckles. These
386	skin-environment-responsive liposomes can be exploited not only for use in cosmetics
387	delivery systems but also for transdermal drug delivery systems.
388	
389	Acknowledgment
389 390	Acknowledgment This work was supported by a Grant-in-aid for Scientific Research from the
389 390 391	Acknowledgment This work was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan (26242049).
389 390 391 392	Acknowledgment This work was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan (26242049).
389 390 391 392 393	Acknowledgment This work was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan (26242049). Author Contribution
389 390 391 392 393 394	Acknowledgment This work was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan (26242049). Author Contribution KK conceived the idea and supervised the work. MF, YM and KM synthesized the
389 390 391 392 393 394 395	Acknowledgment This work was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan (26242049). Author Contribution KK conceived the idea and supervised the work. MF, YM and KM synthesized the polymers and performed NMR and GPC analyses. NY and TS performed the turbidity
389 390 391 392 393 394 395 396	Acknowledgment This work was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan (26242049). Author Contribution KK conceived the idea and supervised the work. MF, YM and KM synthesized the polymers and performed NMR and GPC analyses. NY and TS performed the turbidity and DSC measurements of polymers and they prepared the polymer-modified

399	and CH performed the evaluation of data. The manuscript was written through
400	contributions from KK, AH, EY and NY. All authors have given approval to the final
401	version of the manuscript.
402	

experiments. NY and RT performed TEM measurements of liposomes. YS, TK, AK

403 References

- 404 1. B. W. Barry, Eur. J. Pharm. Sci., 2007, 14, 101.
- 405 2. P. M. Elias, J. Invest. Dermatol., 1983, 80, 44.
- 406 3. K. Kikuchi, H. Kobayashi, T. Hirano, A. Ito, H. Takahashi, and H. Tagami,
- 407 *Dermatology*, 2003, **207**, 269.
- 408 4. Y. Shindo, E. Witt, L. Packer, and D. Han., J. Invest. Dermatol., 1993, 100, 260.
- 409 5. Y. Shindo, E. Witt, D. Han, and L. Packer, J. Invest. Dermatol., 1994, 102, 470.
- 410 6. D. Nava, Cosmetics & Toiletries, 2005, 120, 67.
- 411 7. S. A. Burton, C. Y. Ng, R. Simmers, C. Moeckly, D. Brandwein, T. Gilbert, N.
- 412 Johnson, K. Brown, T Alston, G. Prochnow, K. Siebenaler, and K. Hansen., *Pharm.*
- 413 Res., 2011, 28, 31.
- 414 8. V. Damme, F.Oosterhuis-Kafeja, M. Van der Wielen, Y. Almagor, O. Sharon, and
- 415 Y. Levin, *Vaccine*, 2009, **14**, 454.
- 416 9. N. Nishiyama, Y. Morimoto, W. D. Jang, and K. Kataoka, Adv. Drug Deliv. Rev.,
- **417** 2009, **61**, 327.
- 418 10. E. Mahmoud, and L. Karen, *Chem. Soc. Rev.*, 2012, 41, 2545.
- 419 11. S. Punit, D. Pinaki, P. Apurva, and S. Mandip, *Biomaterials*, 2012, 33, 1607.

- 420 12. G. S. L. Singka, N. A. Samah, M. H. Zulfakar, A. Yurdasiperb, and C. M. Heard,
- 421 Eur. J. Pharm. Biopharm., 2012, 2, 275.
- 422 13. B. W. Barry, J. Control. Release, 1987, 6, 85.
- 423 14. H. E. Junginger, Cosmetics & Toiletries, 1991, 106, 45.
- 424 15. G. M. E. Maghraby, B. W. Barry, and A. C. Williams, Eur. J. Pharm. Sci., 2008,
- **425 34**, 203.
- 426 16. D. D. Verma, S. Verma, G. Blume, and A. Fahr, *Eur. J. Immunol.*, 2003, 55, 258.
- 427 17. G. Cevc, G. Blume, A. Schätzleina, D. Gebauera, and A. Paula, Adv. Drug Deliv.
- **428** *Rev.*, 1996, **18**, 349.
- 429 18. K. Egbaria, C. Ramachandran, D. Kittayanond, and N. Weiner, Antimicrob. Agents
- 430 *Chemother.*, 1990, **34**, 107.
- 431 19. G. Cevc, A. Schätzlein, and H. Richardsen, Biochim. Biophys. Acta, 2002, 1564,
- **432** 21.
- 433 20. G. Cevc, and D. Gebauer. *Biophys. J.*, 2003, 84, 1010.
- 434 21. G. Cevc, D. Gebauer. J. Stieber, A. Schätzlein, and G. Blume, Biochim. Biophys.
- 435 Acta, 1998, 1368, 201.
- 436 22. Y. Yokomizo, Int. J. Pharm., 1997, 147, 219.
- 437 23. J. Lasch, R. Laub, and W. Wohlrab, J. Control. Release, 1996, 38, 267.

- 438 24. N. Yamazaki, T. Kumei, C. Shinde, and Y. Sumida, *J. Soc. Cosmet. Chem. Jpn.*,
 439 2016, 50, 25.
- 440 25. J. Plessis, C. Ramachandran, N. Weiner, and D.G. Müller, Int. J. Pharm., 1994,

441 103, 277.

- 442 26. P. L. Honeywell-Nguyen, A. M. de Graaff, H. W. Wouter Groenink, and J. A.
- 443 Bouwstra, Biochim. Biophys. Acta, 2002, 1573, 130.
- 444 27. D. D. Verma, S. Verma, G. Blume, and A. Fahr, Eur. J. Pharm., 2003, 258, 141.
- 445 28. H. E. Hofland, R. van der Geest, H. E. Bodde, H. E. Junginger, and J. A. Bouwstra,
- 446 Pharm. Res., 1994, 11, 659.
- 447 29. Y. Yokomizo, and H. Sagitani, J. Control. Release, 1996, 38, 267.
- 448 30. N. Yamazaki, I. Hisamitsu, and Y. Sumida, J. Soc. Cosmet. Chem. Jpn., 2009, 43,
 449 260.
- 450 31. D. B. Yarosh, *Photodermatol. Photoimmunol. Photomed.*, 2001, 17, 203.
- 451 32. S. I. Park, E. O. Lee, H. M. Yang, C. W. Park, and J. D. Kim. Colloids Surf. B
- 452 *Biointerfaces*, 2013, **110**, 333.
- 453 33. Y. Wang, W. Sub, Q. Li, C. Li, H. Wang, Y. Li, Y. Caoa, J. Chang, and L. Zhang,
- 454 Int. J. Pharm., 2013, 441, 748.
- 455 34. W. Zhou, W. Liu, L. Zou, W. Liu, C. Liu, R. Liang, and J. Chen, Colloids Surf. B

- 456 Biointerfaces, 2014, 117, 330.
- 457 35. S. Jeon, C. Y. Yoo, and S. N. Park, Colloids Surf. B Biointerfaces, 2015, 129, 7.
- 458 36. M. Foldvari, A. Gesztes, and M. Mezei, J. Microencapsul., 1990, 7, 479.
- 459 37. M. Fresta, and G. Puglisi, J. Drug Target, 1996, 4, 95.
- 460 38. C. Valenta, and M. Janisch, Int. J. Pharm., 2003, 258, 133.
- 461 39. D. Verma, S. Verma, G. Blume, and A Fahr, Int. J. Pharm., 2003, 258, 141.
- 462 40. R. H. Fox, A. J. Solman, R. Isaacs, A. J. Fry, and I. C. MacDonald, *Clin. Sci.*, 1973,
- **463 44**, 81.
- 464 41. N. Nakagawa, S. Sakai, M. Matsumoto, K. Yamada, M. Nagano, T. Yuki, Y.
- 465 Sumida, and H. Uchiwa, J. Invest. Dermatol., 2004, 122, 755.
- 466 42. D. K. Harrison, V. A. Spence, J. Swanson Beck, J. G. Lowe, and W. F. Walker,
- 467 *Immunology*, 1986, 59, 497.
- 468 43. M. J. Behne, J. W. Meyer, K. M. Hanson, N. P. Barry, S. Murata, D. Crumrine, R.
- 469 W. Clegg, E. Gratton, W. M. Holleran, P. M. Elias, and T. M. Mauro., J. Biol. Chem.,
- **470** 2002, **277**, 47399.
- 471 44. D. K. Harrison, and W. F. Walker, J. Physiol., 1979, 291, 339.
- 472 45. T. Abe, J. Mayuzumi, N. Kikuchi, and S. Arai, *Chem. Pharm. Bull.*, 1980, 28, 387.

- 473 46. N. Sakaguchi, C. Kojima, A. Harada, and K. Kono, *Bioconj. Chem.*, 2008, 19,
 474 1040.
- 475 47. K. Kono, A. Henmi, H. Yamashita, H. Hayashi, and T. Takagishi, J. Control.
- 476 *Release*, 1999, **59**, 63.
- 477 48. H. Hayashi, K. Kono, and T. Takagishi, *Bioconj. Chem.*, 1999, **10**, 412.
- 478 49. E. Yuba, Y. Kono, A. Harada, S. Yokoyama, M. Arai, K. Kubo, and K. Kono,
- 479 Biomaterials, 2013, 34, 5711.
- 480 50. K. Kono, T. Ozawa, T. Yoshida, F. Ozaki, Y. Ishizaka, K. Maruyama, C. Kojima,
- 481 A. Harada, and S. Aoshima, *Biomaterials*, 2010, **31**, 7096.
- 482 51. E. Yuba, A. Harada, Y. Sakanishi, and K. Kono, J. Control. Release, 2011, 149,
- **483** 72.
- 484 52. M. Carafa, L. D. Marzio, C. Marianecci, B. Cinque, G. Lucania, K. Kajiwara, M.
- 485 G. Cifone, and E. Santucci, Eur. J. Pharm. Sci., 2006, 28, 385
- 486 53. I. M. Hafez, S. Ansell, and P. R. Cullis, *Biophy. J.*, 2000, **79**, 1438.
- 487 54. L. Qiu, Z. Li, M. Qiao, M. Long, M. Wang, X. Zhang, C. Tian, and D. Chen, Acta
- 488 *Biomaterialia*, 2014, **10**, 2024.
- 489 55. V. A. Slepushkin, S. Simões, P. Dazin, M. S. Newman, L. S. Guo, M. C. P. de
- 490 Lima, and N. Düzgüneş, J. Biol. Chem., 1997, 272, 2382.

- 491 56. T. Kaiden, E. Yuba, A. Harada, Y. Sakanishi, and K. Kono, *Bioconj. Chem.*, 2011,
 492 22, 1909.
- **493** 57. C. Kojima, K. Yoshimura, A. Harada, Y. Sakanishi, and K. Kono, *Bioconj. Chem.*,
- **494** 2009, **20**, 1054.
- 495 58. K. F. Yu, W. Q. Zhang, L. M. Luo, P. Song, D. Li, R. Du, W. Ren, D. Huang, W. L.
- 496 Lu, X. Zhang, and Q. Zhang, Int. J. Nanomedicine, 2013, 8, 2473.
- 497 59. P. Reynier, D. Briane, A. Cao, N. Lievre, R. Naejus, P. Bissieres, J. L. Salzmann,
- 498 and E. Taillandier, J. Drug Target, 2007, 10, 557.
- 499 60. E. Koren, A. Apte, A. Jani, and V. P. Torchilin, J. Control. Release, 2012, 160,
- **500** 264.
- 501 61. K. Yoshino, A. Kadowaki, T. Takagishi, and K. Kono, *Bioconj. Chem.*, 2004, 15,
- **502** 1102.
- 503 62. T. Fujimura, S. Nakagawa, T. Ohtani, Y. Ito, and S. Aiba, Eur. J. Immunology,
- **504** 2006, **36**, 3371.
- 505 63. T. Hikima, N. Kaneda, K. Matsuo, and K. Tojo, *Biol. Pharm. Bull.*, 2012, 35, 362.
 506

507 Figure captions

- **508** Scheme 1. Synthesis of poly(MD-MAA-LT)s.
- **Figure 1.** pH-sensitive and temperature-sensitive polymer-modified liposomes as a
- 510 transdermal drug delivery system that responds to both high temperatures at the
- 511 epidermis and acidic pH at the endosome interior.
- 512 Figure 2. Transmittance of (a) MD-MAA₀-LT, (b) MD-MAA₃₀-LT, (c)
- 513 MD-MAA₄₀-LT, and (d) MD-MAA₄₅-LT copolymer solution (10 mg/mL) at various
- 514 pH as a function of temperature.
- 515 Figure 3. Cloud points of poly(MD-co-MAA-co-LT)s as a function of MAA contents
- 516 at pH 5.0 (open squares), pH 5.5 (closed squares), pH 5.8 (open triangles), pH 6.0
- 517 (open circles), pH 6.5 (closed circles), and pH 7.4 (open diamonds).
- 518 Figure 3. Cloud points of poly(MD-co-MAA-co-LT)s as a function of MAA contents
- at pH 5.0 (open squares), pH 5.5 (closed squares), pH 5.8 (open triangles), pH 6.0
- 520 (open circles), pH 6.5 (closed circles), and pH 7.4 (open diamonds).
- 521 Figure 4. Microcalorimetric endotherms for (a) MD-MAA₀-LT, (b) MD-MAA₂₀-LT,
- 522 (c) MD-MAA₃₀-LT, and (d) MD-MAA₄₀-LT suspended in 10 mM phosphate buffer
- 523 containing 140 mM NaCl at various pH (10 mg/mL). Samples were heated at
- **524** 1 °C/min.

525 Figure 5. TEM images for unmodified liposomes and MD-MAA₄₀-LT-modified

- 526 liposomes. Scale bars represent 100 nm.
- 527 Figure 6. pH-dependence (a) and temperature-dependence (b) of calcein release from
- 528 liposomes modified with MD-MAA₀-LT (diamonds), MD-MAA₂₀-LT (circles),
- 529 MD-MAA₃₀-LT (triangles), MD-MAA₄₀-LT (squares), and without polymers (crosses).
- 530 (a) Release after 30 min-incubation at 25 °C (open symbols) and 35 °C (closed
- 531 symbols) are shown. (b) Release after 10 min-incubation at pH 7.4 (open symbols) and
- 532 pH 5.0 (closed symbols) are shown.
- **Figure 7.** Confocal laser scanning microscopic images of B16-F10 cells treated with
- calcein-loaded, Rh-PE-labeled liposomes modified without (a) or with (b)
- 535 MD-MAA₄₀-LT and calcein solution (c) for 3 h.
- **Figure 8.** Rhodamine (a) and calcein (b) fluorescence intensity for B16-F10 cells
- treated with liposomes without (gray lines) or with (black line) MD-MAA₄₀-LT for 3 h.
- 538 Cell autofluorescence was set under 10^4 . Time courses of rhodamine (c) and calcein
- 539 (d) fluorescence intensity for B16–F10 cells treated with calcein-loaded,
- 540 Rh-PE-labeled liposomes without (circles), or with MD-MAA₄₀-LT (squares) or
- 541 calcein solution (triangles). Cells were treated with liposomes for 2 or 3 h and washed
- 542 with PBS. Then, cellular fluorescence intensity was measured. In addition, cellular

543	fluorescence intensity was measured after incubation in the culture medium for
544	another 2 h for the cells treated with liposomes for 3 h and washed with PBS.
545	Figure 9. Confocal laser scanning microscopic images of the section of 3D skin
546	models treated with PBS (a), calcein solution (b), unmodified liposomes (c) and
547	MD-MAA ₄₀ -LT-modified liposomes (d) for 24 h. Calcein was encapsulated to
548	liposomes and liposomes were labeled with 0.2 mol% Rh-PE. Lipid and calcein
549	concentrations were 1 mM and 25.2 μ M, respectively. The regions indicated by white
550	dotted lines represent stratum basale in the skin models. Magnified images for red
551	squares in Kn-PE fluorescence images are shown in right panels.

Polymer	In feed (mol/mol/mol)	MD	MAA	LT	- M _n ^b	M _w ^b	Mw/Mn
 MD-MAA ₂₀	80.0/20.0/0	80.9	19.1	0.0	18,870	74,400	3.9
MD-MAA ₀ -LT	94.7/0/5.3	95.2	0.0	4.8	10,510	58,120	5.5
MD-MAA ₂₀ -LT	74.7/20.0/5.3	75.3	19.5	5.2	23,680	72,770	3.1
MD-MAA ₃₀ -LT	64.7/30.0/5.3	67.9	27.9	4.2	22,120	64,170	2.9
MD-MAA ₄₀ -LT	54.7/40.0/5.3	58.7	37.6	3.7	22,320	61,110	2.7
MD-MAA ₄₅ -LT	49.7/45.0/5.3	51.3	44.0	4.7	9,080	70,040	7.7
MD-MAA ₅₀ -LT	44.7/50.0/5.3	48.0	47.6	4.4	20,480	67,680	3.3

Table 1. Compositions and Molecular Weights of Polymers

a Determined by ¹H-NMR.

b Determined by ¹H-NMR and GPC measurements.

MD : methoxy diethyleneglycol methacrylate

MAA : methacrylic acid

LT : lauroxy tetraethyleneglycol methacrylate

554

nolymor	۳Ц	Cloud Point			ΔH
porymer	рп	(°C)	Tmax ^a (°C)	∆H (J/g)	(KJ/unit mol
					MD)
	7.4	13	14.8 ± 0.1	19.3 ± 0.3	4.1 ± 0.0
MD-MAA ₀ -LT	6	13.4	14.4 ± 0.2	19.2 ± 0.3	4.1 ± 0.0
	5.5	13.2	14.5 ± 0.2	19.3 ± 0.3	4.1 ± 0.1
	7.4	N.D ^b	N.D ^b	N.D ^b	N.D ^b
MD-MAA ₂₀ -LT	6	28.7	28.6 ± 0.1	2.3 ± 0.1	0.5 ± 0.0
	5.5	16.1	16.4 ± 0.2	6.0 ± 0.4	1.5 ± 0.1
	7.4	N.D ^b	N.D ^b	N.D ^b	N.D ^b
	6	44.1	35.3 ± 0.1	1.5 ± 0.1	0.9 ± 0.0
MD-MAA30-LT	5.8	29.2	30.0	2.0 ± 0.1	1.2 ± 0.1
	5.6	-	18.6 ± 0.1	3.5 ± 0.2	2.2 ± 0.1
	7.4	N.D ^b	N.D ^b	N.D ^b	N.D ^b
	6	N.D ^b	N.D ^b	N.D ^b	N.D ^b
WD-WAA40-LT	5.8	40.6	45.4 ± 0.7	0.5	0.1 ± 0.0
	5.6	21.9	30.9 ± 0.4	1.0	0.3 ± 0.0
	7.4	N.D ^b	—	—	—
	6	N.D ^b	—	—	—
	5.4	67.1	—	—	—
	5.3	≦20	—	—	—
	7.4	N.D ^b	N.D ^b	N.D ^b	N.D ^b
MD-MAA50-LT	6	N.D ^b	N.D ^b	N.D ^b	N.D ^b
	5.5	43.3	46.1 ± 0.1	0.3	0.09 ± 0.0

Table 2. Cloud Points and DSC Analysis of Polymers

^a Temperature of peak maximum of calorimetric

endotherm.

^b Not detected.

- Not tested.

557

Polymer-modified liposome	Size/nm	Polydispersity
Unmodified	119.7 ± 4.8	0.12
MD-MAA0-LT	117.5 ± 2.7	0.21
MD-MAA20-LT	107.3 ± 2.5	0.13
MD-MAA30-LT	108.1 ± 0.5	0.14
MD-MAA40-LT	106.8 ± 2.5	0.14

 Table 3.
 Diameter of Polymers-Modified Liposomes

563 Yamazaki et al., Scheme 1.

566 Yamazaki et al., Figure 1.

569 Yamazaki et al., Figure 2.

572 Yamazaki et al., Figure 3.

- 578 Yamazaki et al., Figure 5.

581 Yamazaki et al., Figure 6.

Yamazaki et al., Figure 8.

591 Yamazaki et al., Figure 9.