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Abstract 10 

In designing energy supply systems, designers should consider the robustness in 11 

performance criteria against the uncertainty in energy demands.  In this paper, a robust 12 

optimal design method of energy supply systems under uncertain energy demands is 13 

proposed using a mixed-integer linear model so that it can consider discrete 14 

characteristics for selection and on/off status of operation and piecewise linear 15 

approximations for nonlinear performance characteristics of constituent equipment.  16 

First, a robust optimal design problem is formulated as a three-level min-max-min 17 

optimization one by expressing uncertain energy demands by intervals based on the 18 

interval programming, evaluating the robustness in a performance criterion based on the 19 

minimax regret criterion, and considering hierarchical relationships among design 20 

variables, uncertain energy demands, and operation variables.  Then, a special solution 21 

method of the problem is proposed especially in consideration of the existence of 22 
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integer operation variables.  In a case study, the proposed method is applied to the 23 

robust optimal design of a cogeneration system with a simple configuration.  Through 24 

the study, the validity and effectiveness of the method is ascertained, and some features 25 

of the obtained solutions are clarified. 26 

 27 
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 31 
1. Introduction 32 

In energy supply systems, the values of performance criteria such as annual total 33 

cost, primary energy consumption, and CO2 emission depend not only on design 34 

specifications but also on energy demands and corresponding operational strategies.  35 

Thus, it is important to determine design specifications optimally in consideration of 36 

operational strategies corresponding to seasonal and hourly variations in energy 37 

demands.  However, many conditions under which energy demands are estimated have 38 

some uncertainty at the design stage, and thus the energy demands which occur at the 39 

operation stage may differ from those estimated at the design stage.  Even if the 40 

optimal design is conducted in consideration of the estimated energy demands, the 41 

values of performance criteria expected at the design stage may not be attained at the 42 

operation stage.  Therefore, designers should consider that energy demands have some 43 

uncertainty, evaluate the robustness in performance criteria against the uncertainty, and 44 

design the systems rationally in consideration of the robustness. 45 
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One of the rational approaches to the optimal design is to use mathematical 46 

programming methods, and they have been applied increasingly with the development 47 

of computation hardware and software.  Especially, the mixed-integer linear 48 

programming (MILP) method has been utilized widely.  This is because it can consider 49 

discrete characteristics for selection and on/off status of operation of equipment, and 50 

can also treat nonlinear performance characteristics of equipment by piecewise linear 51 

approximations.  In addition, although the MILP method takes longer computation 52 

times than the linear programming method, it can obtain global optimal solutions more 53 

easily than the nonlinear programming method.  In recent years, since commercial 54 

MILP solvers have become more efficient, they have been applied to the optimal design 55 

of small-scale commercial and residential energy supply systems in consideration of 56 

multi-period operation.  However, most of the models used for the optimal design may 57 

not be sufficient.  For example, Buoro et al., and Wakui and Yokoyama determined 58 

only the types of equipment with fixed capacities [1, 2].  Lozano et al. and Carvalho et 59 

al. determined the types and numbers of equipment with fixed capacities [3–5].  Buoro 60 

et al. and Voll et al. determined the types and capacities of equipment, but treated the 61 

capacities as continuous variables [6–8].  Piacentino at al. and Zhou et al. used similar 62 

models, but did not take account of the dependence of performance characteristics of 63 

equipment on their capacities or part load levels [9, 10].  On the other hand, Yokoyama 64 

and Ito, and Yang et al. proposed optimal design methods in consideration of 65 

discreteness of equipment capacities to resolve the aforementioned insufficiency of 66 

equipment models [11–13].  However, these studies were conducted under certain 67 

energy demands.   68 
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A simple way to evaluate the robustness in performance criteria under uncertain 69 

energy demands is to conduct a sensitivity analysis.  Some studies are concerned with 70 

sensitivity analyses of performance criteria with respect to changes in energy demands.  71 

Ashouri et al. conducted a sensitivity analysis of the optimal design of a building energy 72 

system with respect to the changes in conditions related with energy demands and 73 

others, and they used deterministic and stochastic optimization approaches [14].  Wang 74 

et al. conducted a sensitivity analysis of the optimal design of a building energy system 75 

with respect to the changes in energy demands and others, and they used the genetic 76 

algorithm to solve the optimization problem [15].  Carvalho et al. conducted a 77 

sensitivity analysis to investigate the resilience of the optimal design of an energy 78 

system for a hospital with respect to the changes in energy demands and others, and 79 

they used an MILP approach for optimization [16].  To conduct such a sensitivity 80 

analysis, scenarios for the change in energy demands are inevitable.  However, energy 81 

demands change with season and time, and there can be innumerable scenarios even if 82 

their intervals are given.  Thus, it is necessary to limit the number of scenarios, and 83 

limited scenarios are not necessarily sufficient for the sensitivity analysis. 84 

On the other hand, many papers on optimization of energy systems planning under 85 

uncertainty have been published.  Verderame et al. reviewed many papers on planning 86 

and scheduling under uncertainty in multiple sectors, and reviewed some papers on 87 

energy planning [17].  Zeng et al. also reviewed many papers on optimization of 88 

energy systems planning under uncertainty [18].  In these review papers, the 89 

approaches adopted for optimization of energy systems planning were categorized into 90 

three ones: stochastic, fuzzy, and interval programming.  However, it is difficult for 91 

designers to specify stochastic distribution and fuzzy membership functions for 92 
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uncertain parameters in the first and second approaches.  From the viewpoint of 93 

practical applications, it is much more meaningful for designers to specify fluctuation 94 

intervals for uncertain parameters in the third approach.  Thus, this paper focuses on 95 

the third approach. Lin and Huang introduced an interval-parameter linear programming 96 

approach to energy systems planning [19].  Zhu et al. developed an interval-parameter 97 

full-infinite linear programming approach to energy systems planning under multiple 98 

uncertainties with crisp and functional intervals [20].  They also proposed an 99 

interval-parameter full-infinite mixed-integer programming approach to energy systems 100 

planning under uncertainties with functional intervals [21].  Dong et al. developed an 101 

interval-parameter minimax regret programming method for power management 102 

systems planning under uncertainty [22].  However, these methods do not consider the 103 

difference between design and operation variables whose values are determined at the 104 

design and operation stages, respectively.  In addition, most of these methods cannot 105 

produce a unique optimal solution but an interval one, which cannot support the 106 

decision-making for design.  Majewski et al. investigated the trade-off relationship in 107 

the objective function between the nominal and worst cases [23].  However, this 108 

method produces Pareto optimal solutions depending on the importance given to the 109 

nominal and worst cases, which is also unsuitable for design.  Yokoyama and Ito 110 

proposed a robust optimal design method of energy supply systems in consideration of 111 

the economic robustness against the uncertainty in energy demands based on the 112 

minimax regret criterion [24].  This method is very natural because the design is 113 

determined so that the value of the objective function for the robust optimal design 114 

becomes as close as possible to that for the optimal design.  In addition, this method 115 

considers that values of design and operation variables are determined at the design and 116 
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operation stages, respectively, and produces a unique optimal solution.  Yokoyama et 117 

al. revised this robust optimal design method so that it can be applied to energy supply 118 

systems with more complex configurations and larger numbers of periods set to 119 

consider variations in energy demands [25].  Assavapokee et al. presented a general 120 

framework for the robust optimal design based on the minimax regret criterion [26].  121 

Although innumerable scenarios within intervals are considered in these methods, the 122 

used models for constituent equipment are not mixed-integer linear but only linear.   123 

Therefore, it is strongly required to develop a robust optimal design method of 124 

energy supply systems based on a mixed-integer linear model, so that it can treat not 125 

only continuous but also discrete variables.  At the first step for this challenge, the 126 

authors have proposed a method of comparing performances of two energy supply 127 

systems under uncertain energy demands based on a mixed-integer linear model for 128 

constituent equipment [27].  In this paper, a robust optimal design method of energy 129 

supply systems under uncertain energy demands is proposed using a mixed-integer 130 

linear model.  A robust optimal design problem is formulated as a three-level 131 

min-max-min optimization one by expressing uncertain energy demands by intervals 132 

based on the interval programming, evaluating the robustness in a performance criterion 133 

based on the minimax regret criterion, and considering hierarchical relationships among 134 

design variables, uncertain energy demands, and operation variables.  Although this 135 

formulation of the robust optimal design problem based on the mixed-integer linear 136 

model is similar to that based on the linear model, the solution method have to be 137 

changed substantially because of the existence of integer operation variables.  In this 138 

paper, a special solution method is proposed especially in consideration of the existence 139 

of integer operation variables.  In a case study, the proposed method is applied to the 140 
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robust optimal design of a cogeneration system with a simple configuration, and the 141 

validity and effectiveness of the method is investigated.  142 

 143 

 144 
2. Formulation of robust optimal design problem 145 

2.1. Basic concept 146 

In designing an energy supply system under uncertain energy demands, flexibility 147 

and robustness have to be taken into account [28].  The former means the feasibility in 148 

energy supply for all the possible values of uncertain energy demands, and is related 149 

with constraints.  The latter means the sensitivity of performance criteria for all the 150 

possible values of uncertain energy demands, and is related with objective functions.  151 

In this paper, a robust optimal design method is proposed by which the robustness is 152 

improved while the flexibility is secured for all the possible values of uncertain energy 153 

demands.  As a criterion for the robustness, the minimax regret criterion is adopted 154 

here [29].  Figure 1 shows a basic concept of the robust optimal design based on the 155 

minimax regret criterion.  The regret is defined as the difference in an objective 156 

function between non-optimal and optimal designs for some values of uncertain energy 157 

demands.  The minimax regret criterion means that the values of design variables are 158 

determined to minimize the maximum regret for all the possible values of uncertain 159 

energy demands.  Therefore, if this criterion is adopted, the difference in the objective 160 

function between the robust optimal and optimal designs can be small for all the 161 

possible values of uncertain energy demands. 162 

 163 

2.2. Formulation 164 
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Following the aforementioned basic concept, a robust optimal design problem for 165 

an energy supply system is described as follows:  the values of integer and continuous 166 

design variables  !  as well as the values of integer operation variables  !  and 167 

continuous operation variables  z  are determined to minimize the maximum regret in 168 

the annual total cost  f  and to satisfy all the constraints for all the possible values of 169 

uncertain energy demands  y .  Types, capacities, and numbers of equipment are 170 

expressed by integer design variables, while maximum demands of utilities are 171 

expressed by continuous design variables.  Numbers of equipment at the on status of 172 

operation are expressed by integer operation variables, while energy flow rates of 173 

equipment are expressed by continuous operation variables.  Here, it is assumed that 174 

all the objective function and constraints are expressed by linear equations with respect 175 

to  ! ,  y ,  ! , and  z .  In addition, it should be noted that although the values of 176 

design variables  !  must be determined at the design stage when energy demands are 177 

uncertain, the values of operation variables  !  and  z  can be adjusted for energy 178 

demands which become certain at the operation stage.  Therefore, there is a 179 

hierarchical relationship among the design variables, uncertain energy demands, and 180 

operation variables as shown in Fig. 2.  181 

The robust optimal design problem in which the values of design and operation 182 

variables are determined to minimize the maximum regret in  f  under uncertain energy 183 

demands  y  is expressed by 184 
 185 

 
      
min
!

max
y

min
", z

f (!, y, ", z)!min
!'

min
"' , z'

f (!' , y, "' , z')
"

#
$$$

%

&
''''  (1) 186 

where   ( )'  denotes a different value of the corresponding variable.  Next, the 187 

flexibility, or the feasibility in energy supply is incorporated into Eq. (1).  To secure 188 
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the flexibility for all the possible values of uncertain energy demands  y , an objective 189 

function which expresses the infeasibility in energy supply is introduced [30], and the 190 

values of design variables  !  are determined to minimize (make zero) the maximum of 191 

this objective function for all the possible values of  y .  This idea is applied to the 192 

ordinary and robust optimal designs, and the corresponding optimization problems are 193 

expressed by  194 
 195 

 
     
min
!'

max
y''

min
"'' , z''

p(!' , y'' , "'' , z'')  (2) 196 

and 197 
 198 

 
     
min
!

max
y'''

min
"''' , z'''

p(!, y''' , "''' , z''')  (3) 199 

respectively, where  p  is the objective function for the infeasibility in energy supply, 200 

and   ( )''  and   ( )'''  denote different values of the corresponding variables.  To take 201 

account of Eqs. (2) and (3) prior to Eq. (1), they are added to Eq. (1) as penalty terms.  202 

As a result, the robust optimal design problem is formulated as 203 
 204 

 

      

min
!

max
y

min
", z

f (!, y, ", z)
!
"
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$##

%

&
'
'

               (min
!'
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"' , z'

f (!' , y, "' , z')+W max
y''

min
"'' , z''

p(!' , y'' , "'' , z'')
)

*
+++

,

-
....
/
0
##
1##

       + W max
y'''

min
"''' , z'''

p(!, y''' , "''' , z''')
2

3
4
4

 (4) 205 

where  W  is the coefficient for penalty terms, and should be given a value large 206 

sufficiently.  Then, the operation of minimization with respect to   !'  is moved 207 

forward and is changed to that of maximization to reformulate Eq. (4) as 208 
 209 
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 (5) 210 

The optimization problem of Eq. (5) includes the operations of minimization and 211 

maximization hierarchically, and is formulated as a kind of multilevel programming 212 

problems [31].  Here, a special solution method of this three-level min-max-min 213 

optimization problem is proposed especially in consideration of the existence of not 214 

only continuous but also integer operation variables.  The problem is solved by 215 

evaluating upper and lower bounds for the optimal value of the maximum regret 216 

iteratively.  However, the upper bound has to be evaluated by solving a bilevel 217 

max-min optimization problem.  Thus, this problem is solved by evaluating lower and 218 

upper bounds for the maximum regret iteratively for the optimization with respect to 219 

integer operation variables, and adopting the Karush-Kuhn-Tucker conditions at each 220 

iteration for the optimization with respect to continuous operation variables.  On the 221 

other hand, the lower bound is evaluated by solving a single-level optimization problem.  222 

A concrete solution procedure is described in the following.  A flow chart for an 223 

outline of the solution procedure is shown in Fig. 3. 224 

 225 

 226 
3. Solution of robust optimal design problem 227 

3.1. Evaluation of upper bound 228 

On one hand, appropriate values of  !  and   y''  are assumed in Eq. (5), and the 229 

following optimization problem is considered: 230 
 231 
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min
", z

f (!, y, ", z)
!
"
##
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        % min
"' , z'

f (!' , y, "' , z')+W min
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)
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y'''
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p(!, y''' , "''' , z''')

 (6) 232 

The optimal value of Eq. (6) gives an upper bound for that of Eq. (5).  The optimal 233 

solution of Eq. (6) is obtained by solving two optimization problems corresponding to 234 

the first and second lines, and the third line independently.  These problems are 235 

formulated as bilevel MILP ones which include the operations of maximization and 236 

minimization hierarchically.  These problems are solved independently as follows.  237 

This part is an extention of the robust optimal design method using a linear model [24, 238 

25]. 239 

 240 

3.1.1. Evaluation of flexibility 241 

The problem corresponding to the third line in Eq. (6)  242 
 243 

 
     
max
y'''

min
!''' , z'''

p(", y''' , !''' , z''')  (7) 244 

is solved by evaluating lower and upper bounds for the optimal value of this equation 245 

repeatedly until both the bounds coincide with each other. 246 

On one hand, a lower bound for the optimal value of the equation is obtained by 247 

assuming the value of   y'''  as follows: 248 
 249 

 
     
min
!''' , z'''

p(", y''' , !''' , z''')  (8) 250 

This problem is an MILP one, and can be solved easily.   251 

On the other hand, an upper bound for the optimal value of the equation is obtained 252 
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by limiting the value of   !'''  as follows:  253 
 254 

 
      
max
y'''

min
!'''!A

min
z'''

p(", y''' , !''' , z''') (9) 255 

where the value of   !'''  is selected from its set  A  which includes the values of   !'''  256 

obtained by solving Eq. (8).  The application of the Karush-Kuhn-Tucker conditions to 257 

the minimization with respect to   z'''  transforms Eq. (9) into     258 
 259 

 
      
max
y'''

min
!'''!A

max
z''' , µ''' , "''' , #'''

q($, y''' , !''' , z''' , µ''' , "''' , #''')  (10) 260 

where   µ'''  and   !'''  are vectors composed of Lagrange multipliers corresponding to 261 

equality and inequality constraints, respectively,   !'''  is the vector composed of integer 262 

variables which convert the nonlinear complementarity condition generated by the 263 

Karush-Kuhn-Tucker conditions into linear equations [32], and  q  is the function 264 

converted from  p .  Although the operation of maximization with respect to   z''' ,   µ''' , 265 

  !''' , and   !'''  is not necessary, it is included for the following procedure.  This 266 

problem is a three-level MILP one which includes the operations of maximization and 267 

minimization hierarchically.  However, the operation of minimization is only with 268 

respect to   !''' , and is conducted by selecting the value of   !'''  from its finite number of 269 

candidates in the set  A .  Therefore, the introduction of a variable for minimum with 270 

respect to   !'''  and inequality constraints changes Eq. (10) into  271 
 272 

 

      

max
y''' , z''' , µ''' , !''' , "'''

Q                                                            

      sub. to  Q ! q(#, y''' , $''' , z''' , µ''' , !''' , "''')  ("$''' # A) 

$
%
&&&

'
&&&

 (11) 273 

where  Q  is the minimum of  q  with respect to   !''' .  This problem is also an MILP 274 

one, and can be solved easily.  Here, the value of   y'''  to be determined should be 275 
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independent of the value of   !'''  to be selected.  This is because energy demands arise 276 

before operational strategies are determined.  However, the value of   y'''  may be 277 

dependent on the value of   !'''  to satisfy energy demands.  To avoid this dependence, 278 

virtual energy supply flows are added to existing ones to satisfy energy demands by 279 

virtual ones if and only if existing ones cannot satisfy energy demands.  For this 280 

purpose,  q  is modified by considering virtual energy supply flows as penalty terms. 281 

The value of   y'''  obtained by solving Eq. (9) is used in Eq. (8) to evaluate another 282 

lower bound for the optimal value of Eq. (7). 283 

 284 

3.1.2. Evaluation of robustness 285 

The problem corresponding to the first and second lines in Eq. (6) 286 
 287 
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min
", z
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f (!' , y, "' , z')+W min
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 (12) 288 

is solved by evaluating lower and upper bounds for the optimal value of this equation 289 

repeatedly until both the bounds coincide with each other. 290 

On one hand, a lower bound for the optimal value of the equation is obtained by 291 

assuming the values of  y  and   !'  as follows: 292 
 293 

 
      
min
!, z

f (", y, !, z)! min
!' , z' , !'' , z''

f ("' , y, !' , z')+Wp("' , y'' , !'' , z'')( )  (13) 294 

This problem is composed of two MILP ones, and can be solved easily. 295 

On the other hand, an upper bound for the optimal value of the equation is obtained 296 

by limiting the value of  !  as follows:  297 
 298 
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y, !' , "' , z' , "'' , z''

min
"!!

min
z

f (!, y, ", z){
                   " f (!' , y, "' , z')+Wp(!' , y'' , "'' , z'')( )}

 (14) 299 

where the value of  !  is selected from its set  B  which includes the values of  !  300 

obtained by solving Eq. (13).  The application of the Karush-Kuhn-Tucker conditions 301 

to the minimization with respect to  z  transforms Eq. (14) into 302 
 303 

 

       

max
y, !' , "' , z' , "'' , z''

min
"!!

max
z , µ, #, $

g(!, y, ", z, µ, #, $)
"
#
$$
%$$

                   & f (!' , y, "' , z')+Wp(!' , y'' , "'' , z'')( )}
 (15) 304 

where  µ  and  !  are vectors composed of Lagrange multipliers corresponding to 305 

equality and inequality constraints, respectively,  !  is the vector composed of integer 306 

variables which convert the nonlinear complementarity condition generated by the 307 

Karush-Kuhn-Tucker conditions into linear equations, and  g  is the function converted 308 

from  f .  Although the operation of maximization with respect to  z ,  µ ,  ! , and  !  309 

is not necessary, it is included for the following procedure.  This problem is a 310 

three-level MILP one which includes the operations of maximization and minimization 311 

hierarchically.  In a similar way to that of coverting Eq. (10) to Eq. (11), the 312 

introduction of a variable for minimum with respect to  !  and inequality constraints 313 

changes Eq. (15) into  314 
 315 

 

       

max
y, !' , "' , z' , "'' , z'' , z , µ, #, $

G ! f (!' , y, "' , z')+Wp(!' , y'' , "'' , z'')( ){ }  

           sub. to       G " g(!, y, ", z, µ, #, $)  (#" $ !)

%
&
'''

(
'''

 (16) 316 

where  G  is the minimum of  g  with respect to  ! .  This problem is also an MILP 317 

one, and can be solved easily.  In a similar way to that in Eq. (11), to avoid the 318 

dependence of the value of  y  on the value of  ! , virtual energy supply flows are 319 
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added to existing ones to satisfy energy demands by virtual ones if and only if existing 320 

ones cannot satisfy energy demands.  For this purpose,  g  is modified by considering 321 

virtual energy supply flows as penalty terms. 322 

The values of  y  and   !'  obtained by solving Eq. (14) is used in Eq. (13) to 323 

evaluate another lower bound for the optimal value of Eq. (12). 324 

  325 

3.2. Evaluation of lower bound 326 

On the other hand, the values of  y  and   !'  are assumed to be selected only from 327 

their combinations obtained by solving Eq. (6), and the following optimization problem 328 

is considered in place of Eq. (5): 329 
 330 
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 (17) 331 

where  C  is the set for combinations of values of  y  and   !' .  The optimal value of 332 

Eq. (17) gives a lower bound for that of Eq. (5).  In Eq. (17), the values of 333 
 334 

 
      
!(!' , y)=min

"' , z'
f (!' , y, "' , z')  (18) 335 

and 336 
 337 

 
      
!(!')=max

y''
min
"'' , z''

p(!' , y'' , "'' , z'')  (19) 338 

can be evaluated for each candidate of combinations of values of  y  and   !'  339 

independently.  The following procedure is used to solve the problem of Eq. (17). 340 

First,  D  is defined as the set for values of   y''' .  An appropriate value of   y'''  is 341 
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assumed, and is made an element of  D .  The value of   y'''  is assumed to be selected 342 

only from the elements of  D , and the following optimization problem is solved in 343 

place of Eq. (17): 344 
 345 
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 (20) 346 

This problem is a three-level MILP one which includes the operations of minimization 347 

and maximization hierarchically.  In a similar way to that of coverting Eq. (10) to Eq. 348 

(11), the introduction of variables for maxima with respect to ( y ,   !' ) and   y''' , and 349 

inequality constraints changes Eq. (12) into  350 
 351 

 

       

 min
!, ", z , "''' , z'''

 (F +WP)

    sub. to  F ! f (!, y, ", z)" !(!' , y)+W"(!')( )   (#(y, !')$C ) 
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%

&

'''''

(
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 (21) 352 

where  F  and  P  are the maxima of     f!(!+W")  and  p  with respect to ( y ,   !' ) 353 

and   y''' , respectively.  This problem is also an MILP one, and can be solved easily.   354 

Next, using the value of  !  obtained by solving Eq. (21), the problem 355 
 356 

 
     
max
y'''

min
!''' , z'''

p(", y''' , !''' , z''')  (22) 357 

is solved by the solution method for Eq. (7) shown previously, and it is tested whether 358 

the value of  p  for the optimal solution is zero or not.  If the value of  p  is zero, it is 359 

judged that the optimal solution of Eq. (17) is obtained by solving Eq. (21);  otherwise 360 

the value of   y'''  for the optimal solution of Eq. (22) is added to the set  D , and the 361 

problems of Eqs. (21) and (22) are solved repeatedly until the value of  p  becomes 362 



17 

zero. 363 

The values of  !  and   y''  obtained by solving Eq. (17) are used in Eq. (6) to 364 

evaluate another upper bound for the optimal value of Eq. (5). 365 

 366 

 367 
4. Case study 368 

4.1. Conditions 369 

The proposed method is applied to a case study on the robust optimal design of a 370 

gas engine cogeneration system for electric power and hot water supply.  Figure 4 371 

shows the super structure for the system, which has two gas engine cogeneration units 372 

with a same capacity and two gas-fired auxiliary boilers with a same capacity.  The 373 

robust optimal design problem is formulated using the integer and continuous design 374 

variables  ! , uncertain energy demands  y , integer operation variables  ! , and 375 

continuous operation variables  z  defined as 376 
 377 

 
      

! = (!GE1, !, !GEJGE
, !GB1, !, !GBJGB

, 
        "GE1, !, "GEJGE

, "GB1, !, "GBJGB
, Ebuy, Vbuy)T

 (23) 378 

 379 

 
     

yt = (Edemt , Hdemt )   (t = 1, 2, !, T) 
y = (y1, y 2, !, yT )T

!
"
##

$##
 (24) 380 

 381 

 
      

!t = (!GEt , !GBt )   (t = 1, 2, !, T) 
! = (!1, !2, !, !T )T

!
"
##

$##
 (25) 382 

and 383 
 384 
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zt = (EGEt , HGEt , VGEt , HGBt , VGBt , Ebuyt , Vbuyt , Hdispt ) 
                                                   (t = 1, 2, !, T)
z = (z1, z2, !, zT )T

!

"

####

$
####

 (26) 385 

respectively.  In Eq. (23),  !  and  !  are binary and integer design variables for the 386 

selection and number of equipment, respectively, the subscripts 1 to J denote the 1st to 387 

Jth capacities of equipment, the subscripts GE and GB denote gas engine cogeneration 388 

unit and gas-fired auxiliary boiler, respectively,   Ebuy  and   Vbuy  are continuous design 389 

variables for the maximum demands of purchased electricity and city gas, respectively, 390 

and the superscript T denotes the transposition of a vector.  In Eq. (24),   Edem  and 391 

  Hdem  are uncertain electricity and hot water demands, respectively, the subscript t 392 

denotes the index for the periods set to consider seasonal and hourly variations in 393 

energy demands, and T denotes the number of the periods.  In Eq. (25),  !  is an 394 

integer operation variable for the number of equipment at the on status of operation.  In 395 

Eq. (26), the components in   zt  denote energy flow rates shown in Fig. 4. 396 

Table 1 shows the capacities and performance characteristic values of the gas 397 

engine cogeneration units and gas-fired auxiliary boilers to be selected.  As shown in 398 

this table, if each type of equipment is installed, one of the two candidates for capacities 399 

is selected.  In addition to the equipment, the maximum demands of electricity and city 400 

gas purchased from outside utility companies are also determined.  Table 2 shows the 401 

capital unit costs of equipment as well as the unit costs for demand and energy charges 402 

of utilities.  In evaluating the annual capital cost, the capital recovery factor is set at 403 

0.7782 by assuming the interest rate and life of equipment as 0.02 and 15 y, 404 

respectively.   405 

A hotel with the total floor area of 3000 m2 is selected as the building which is 406 
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supplied with electricity and hot water by the cogeneration system.  To take account of 407 

seasonal and hourly variations in energy demands, a typical year is divided into three 408 

representative days in summer, mid-season, and winter whose numbers of days per year 409 

are set at 122, 122, and 121 d/y, respectively, and each day is further divided into 6 410 

sampling time intervals with 4 h/d.  Thus, the year is divided into 18 periods 411 

correspondingly.  Figures 5 (a) and (b) show the hourly variations in average 412 

electricity and hot water demands in each season.  Electricity and hot water demands 413 

for each period are assumed to vary within ±  !  times of their averages, and 414 

correspondingly their upper and lower limits are given. 415 

Table 3 shows the sizes of the optimization problems, i.e., the numbers of 416 

binary/integer variables, continuous variables, and constraints for Eqs. (8), (11), (13), 417 

(16), and (21).  Since Eqs. (16) and (21) are solved repeatedly by adding variables and 418 

constraints, the basic numbers for the first iteration and the incremental numbers for 419 

each iteration are shown.  All the optimization calculations are conducted using a 420 

commercial solver GAMS/CPLEX Ver. 12.6.1 on a MacBook Pro with the Intel Core i5 421 

processor of 2.4 GHz and RAM of 8 GB [33].   422 

 423 

4.2. Results and discussion 424 

First, the convergence characteristics of the upper and lower bounds evaluated in 425 

the solution process are investigated.  As an example, Figs. 6 (a) and (b) show the 426 

changes in the upper and lower bounds for the maximum regret in the annual total cost 427 

of Eq. (12) and the minimum of the maximum regret in the annual total cost of Eq. (5), 428 

respectively, in the case of the uncertainty in energy demands  !  = 0.25.  Figure 6 (b) 429 

shows the convergence characteristics of the upper and lower bounds evaluated for the 430 
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outer loop in the flow chart shown in Fig. 3.  As shown in Fig. 6 (b), four iterations I to 431 

IV are necessary to attain the coincidence of the upper and lower bounds for the 432 

minimum of the maximum regret in the annual total cost.  On the other hand, Fig. 6 (a) 433 

shows the convergence characteristics of the upper and lower bounds evaluated for the 434 

second inner loop in the flow chart shown in Fig. 3.  As shown in Fig. 6 (a), three or 435 

four iterations are necessary to attain the coincidence of the lower and upper bounds for 436 

the maximum regret in the annual total cost for a system in each iteration I to IV shown 437 

in Fig. 6 (b).  It turns out that the convergence characteristics are preferable in all the 438 

cases. 439 

Next, the minimum of the maximum regret in the annual cost is evaluated by 440 

changing the value of the uncertainty in energy demands  ! .  Figure 7 shows the 441 

minimum of the maximum regret in the annual total cost in relation to  ! .  This figure 442 

means that the regret of the robust optimal design for any possible energy demands is 443 

smaller than the minimum of the maximum regret.  In addition, it also means that there 444 

exist some energy demands for which the regret of a design different from the robust 445 

optimal one is larger than the minimum of the maximum regret.  The increasing rate in 446 

the minimum of the maximum regret increases with  !  in the case study based on a 447 

linear model for constituent equipment.  However, the minimum of the maximum 448 

regret increases while the increasing rate in the minimum of the maximum regret 449 

decreases with an increase in  !  in this case study based on a mixed-integer linear 450 

model for constituent equipment.  This is because the former model can change the 451 

optimal capacities of equipment continuously while the latter model has to change them 452 

discretely.   453 

Table 4 shows the optimal values of design variables, or capacities and numbers of 454 
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equipment as well as maximum demands of utilities, in relation to  ! .  In the overall 455 

range of  !  = 0.0 to 0.25, the capacities and numbers of gas engine cogeneration unit 456 

and gas-fired auxiliary boiler do not change, and the maximum demands of electricity 457 

and city gas increase with  ! .   458 

As an example, Figs. 8 (a) and (b) show the hourly variations in electricity and hot 459 

water demands, respectively, in winter which give the maximum regret in the annual 460 

total cost in the case of  !  = 0.25.  They also include the average energy demands as 461 

well as the upper and lower limits for energy demand intervals.  In many sampling 462 

times, the energy demands which give the maximum regret in the annual total cost 463 

coincide with upper or lower limits.  However, they do not necessarily coincide with 464 

upper or lower limits.  Figure 8 shows this feature of the mixed-integer linear model 465 

for constituent equipment.  As an example, Figs. 9 (a) and (b) show the optimal 466 

operational strategies for electricity and hot water supplies, respectively, corresponding 467 

to the energy demands in winter which give maximum regret in the annual total cost in 468 

the case of  !  = 0.25.  The operational strategies are determined appropriately 469 

according to the energy demands.  The gas engine cogeneration unit is operated in the 470 

thermal following mode.  Namely, it is stopped for a low hot water demand, is 471 

operated at part load levels for middle hot water demands, and is operated at the rated 472 

load level for high hot water demands.   473 

Figure 10 compares the annual total costs of the robust optimal and optimal 474 

designs for the energy demands which give the maximum regret in the annual total cost 475 

in relation to  ! .  The difference in the annual total cost between the robust optimal 476 

and optimal designs coincides with the maximum regret in the annual total cost shown 477 

in Fig. 7.  This difference ranges only 0.0 to 3.4% of the annual total cost of the 478 
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optimal design.  Therefore, it turns out that the proposed method enables the annual 479 

total cost of the robust optimal design to be close to that of the optimal design for all the 480 

possible values of uncertain energy demands. 481 

Finally, Fig. 11 shows the overall computation time and its contents, or 482 

computation times for Eq. (14) and the other equations, in relation to  ! .  The overall 483 

computation time increases drastically with  ! .  The computation time to solve Eq. 484 

(14) tends to dominate the overall one with an increase in  ! .  Especially, in the case 485 

of  !  = 0.25, it is extremely hard to solve Eq. (14) directly using the commercial 486 

solver.   487 

 488 

 489 
5. Conclusions 490 

A robust optimal design method of energy supply systems under uncertain energy 491 

demands has been proposed using a mixed-integer linear model for constituent 492 

equipment.  A robust optimal design problem has been formulated as a three-level 493 

min-max-min optimization one by adopting the interval programming and minimax 494 

regret criterion, and considering hierarchical relationships among design variables, 495 

uncertain energy demands, and operation variables.  This problem has been solved 496 

especially in consideration of the existence of integer operation variables by evaluating 497 

upper and lower bounds for the maximum regret and the optimal value of the maximum 498 

regret in the performance criterion iteratively.  In a case study, the proposed method 499 

has been applied to the robust optimal design of a gas engine cogeneration system with 500 

a simple configuration.  Through the case study, the following main results have been 501 

obtained: 502 



23 

   • The robust optimal design method based on the linear model proposed previously 503 

has been extended successfully to that based on the mixed-integer linear model.  504 

   • The proposed method has preferable convergence characteristics in evaluating 505 

upper and lower bounds for the maximum regret and the minimum of the 506 

maximum regret in the annual total cost repeatedly. 507 

   • With an increase in the uncertainty in energy demands, the minimum of the 508 

maximum regret increases while its increasing rate decreases.  This tendency 509 

based on the mixed-integer linear model is different from that based on the linear 510 

model. 511 

   • The energy demands which give the maximum regret in the annual total cost do not 512 

necessarily coincide with upper or lower limits.  This tendency based on the 513 

mixed-integer linear model is also different from that based on the linear model. 514 

   • The difference in the annual total cost between the robust optimal and optimal 515 

designs for the energy demands which give the maximum regret in the annual total 516 

cost ranges only 0.0 to 3.4 % of the annual total cost of the optimal design. 517 

   • It is difficult to obtain these results by conventional optimal design and sensitivity 518 

analysis methods where energy demands are treated as certain parameters.  The 519 

results show the validity and effectiveness of the proposed method. 520 

Through the case study, it has turned out that the computation time increases 521 

drastically with the uncertainty in energy demands.  Especially, it takes long 522 

computation time to evaluate an upper bound for the maximum regret.  Therefore, it is 523 

inevitable to reduce it so that the proposed robust optimal design method can be applied 524 

to practical case studies.   525 

 526 
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 527 
Nomenclature 528 

  A  : set for candidate values of   !'''  529 

  B  : set for candidate values of  !  530 

  C  : set for candidate values of  y  and   !'  531 

  D  : set for candidate values of   y'''  532 

  E  : electric power, kWh/h 533 

  F  : maximum of     f!(!+W")  with respect to  y  and   !' , yen/y 534 

  f  : performance criterion (annual total cost), yen/y 535 

  G  : minimum of  g  with respect to  ! , yen/y 536 

  g  : function converted from  f , yen/y 537 

  H  : heat flow rate, kWh/h 538 

  J  : number of capacity candidates 539 

  P  : maximum of  p  with respect to   y''' , kWh/y 540 

  p  : infeasibility in energy supply, kWh/y 541 

  Q  : minimum of  q  with respect to   !''' , kWh/y 542 

  q  : function converted from  p , kWh/y 543 

  T  : number of periods 544 

  V  : city gas flow rate, m3/h 545 

  W  : coefficient for penalty terms, yen/kWh 546 

  y  : vector for uncertain parameters (energy demands), kWh/h 547 

  z  : vector for continuous operation variables (energy flow rates), kWh/h, m3/h 548 

  
( )  : continuous design variable for maximum demand of utility, kW, m3/h 549 

  ( )' ,   ( )'' ,   ( )'''  :  different values of variables 550 
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 551 

Greek symbols 552 

  !  : uncertainty in energy demands 553 

  !  : binary design variable for selection of equipment 554 

  !  : integer operation variable for number of equipment at on status of operation 555 

  !  : vector for integer operation variables 556 

  !  : binary variables for linearizing complementarity constraint 557 

  !  : integer design variable for number of equipment 558 

  !  : vector for integer and continuous design variables, kW, m3/h 559 

  !  : vector for Lagrange multipliers for inequality constraints 560 

  µ  : vector for Lagrange multipliers for equality constraints 561 

  !  : function of  f  with respect to  y  and   !' , yen/y 562 

  !  : function of  p  with respect to   !' , kWh/y 563 

 564 

Equipment symbols (subscripts) 565 

 GB : gas-fired auxiliary boiler 566 

 GE : gas engine cogeneration unit 567 

 568 

Subscripts 569 

 buy  :  purchase 570 

 dem  :  demand 571 

 disp  :  disposal 572 

  t  : index for periods 573 

 574 
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Superscript 575 

  T  : transposition of vector 576 

 577 
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Table 1  Capacities and performance characteristic values of candidates of equipment 704 

for selection 705 

 706 

 707 

  708 

Equipment Capacity/performance * Candidate 

Gas engine 
cogeneration 
unit 

 #1 #2 
Max. power output  kW  25.0  35.0 
Max. hot water output  kW  38.4  52.7 
Power generating efficiency 0.335 0.340 
Heat recovery efficiency 0.515 0.511 

Gas-fired 
auxiliary 
boiler 

 #1 #2 
Max. hot water output  kW  99.0 198.0 
Thermal efficiency 0.886 0.900 

*At rated load level 
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Table 2  Capital unit costs of equipment, and unit costs for demand and energy charges 709 

of utilities 710 

 711 

 712 
  713 

Equipment/utility  Unit cost 
Gas engine cogeneration unit 225.0 103 yen/kW 
Gas-fired auxiliary boiler 9.0 103 yen/kW 

Electricity Demand charge 1685 yen/(kW month) 
Energy charge 12.08 yen/kWh 

City gas Demand charge 630 yen/(m3/h month) * 
Energy charge 60.0 yen/m3 * 

*At standard state 
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Table 3  Sizes of optimization problems 714 

 715 

 716 
  717 

 
Equation 

 
Iteration 

Binary/ 
integer 
variables 

Continuous 
variables  

 
Constraints 

Eq. (8)  36 325 847 
Eq. (11) for Eq. (9) 
Eq. (13) 1st term 

 2nd term 
Eq. (16) for Eq. (14) 
 
Eq. (21) for Eq. (17) 

 
 
 
Basis 
Increment 
Basis 
Increment 

180 
36 
92 

272 
+180 

92 
+36 

526 
327 
677 

1197 
+486 

705 
+290 

904 
849 

1987 
2831 
+865 
1967 
+849 
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Table 4  Optimal values of design variables 718 

 719 

 720 
  721 

Uncertainty 
in energy 
demands  α 

Capacity and number 
of equipment 

GE       GB 

Maximum demand  
of utility 

Electricity 
kW 

City gas 
m3/h * 

0.00 #1 1 #1 1 75.9 9.66 
0.05 #1 1 #1 1 81.0 9.79 
0.10 #1 1 #1 1 86.0 10.34 
0.15 #1 1 #1 1 91.1 10.46 
0.20 #1 1 #1 1 96.1 10.55 
0.25 #1 1 #1 1 101.5 11.04 

 *At standard state



37 

 722 

 723 

Fig. 1  Concept of robust optimal design based on minimax regret criterion 724 
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 726 

 727 

Fig. 2  Hierarchical relationship among design variables, uncertain energy demands, 728 

and operation variables 729 
  730 
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 731 

 732 

Fig. 3  Flow chart for solution of robust optimal design problem 733 
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 735 

 736 

Fig. 4  Configuration of gas engine cogeneration system 737 
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 739 
(a) Electricity 740 

 741 

 742 
(b) Hot water 743 

 744 

Fig. 5  Average energy demands 745 
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 747 
(a) Maximum regret of Eq. (12) 748 

 749 

 750 
(b) Minimum of maximum regret of Eq. (5) 751 

 752 

Fig. 6  Convergence characteristics of upper and lower bounds ( !  = 0.25) 753 
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 755 

 756 

Fig. 7  Minimum of maximum regret in annual total cost in relation to uncertainty in 757 

energy demands 758 
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 760 
(a) Electricity 761 

 762 

 763 
(b) Hot water 764 

 765 

Fig. 8  Energy demands which give maximum regret in annual total cost ( !  = 0.25, 766 

winter) 767 
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 769 
(a) Electricity supply 770 

 771 

 772 
(b) Hot water supply 773 

 774 

Fig. 9  Optimal operational strategies corresponding to energy demands which give 775 

maximum regret in annual total cost ( !  = 0.25, winter) 776 
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 779 

Fig. 10  Annual total costs of robust optimal and optimal designs corresponding to 780 

energy demands which give maximum regret in annual total cost ( !  = 0.25) 781 
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 784 

Fig. 11  Computation time in relation to uncertainty in energy demands 785 
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