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Numerical simulations are performed to demonstrate that proportional-integral control, one of the most
commonly used feedback schemes in control engineering, can stabilize propagating wave segments in excitable
media to a desired size. The proportional-integral controller measures the size of a wave segment and applies
a spatially uniform signal to the medium. This controller has the following features: difficult trial-and-error
adjustment is not necessary, wave segments can be stabilized to different sizes without readjusting the controller,
and the wave segment size can be maintained even in media having position-dependent parameters.
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I. INTRODUCTION

Spirals, turbulence, and propagation waves in excitable
media have attracted growing interest in the field of nonlinear
science. Spirals and turbulence have been investigated as a
cause of cardiac arrhythmias [1,2], and propagating waves
are expected to be useful in engineering applications such
as finding optimal paths [3], chemical logic gates [4–8],
chemical memories [9,10], or information-processing devices
[11–13]. As such, the control of these nonlinear phenomena
has attracted considerable attention. A variety of methods
for controlling excitable media have been proposed. These
methods can be roughly categorized into two types: methods
that eliminate nonlinear phenomena and methods that control
waves or patterns.

Several methods have been proposed for eliminating
nonlinear phenomena, including global nonfeedback control
[14–18], local nonfeedback control [19–32], global feedback
control [33–35], and local feedback control [36]. Moreover,
numerous studies have shown theoretically and experimentally
that waves and patterns can be controlled [37,38]. Mihaliuk
et al. proposed a proportional feedback control method for
stabilizing a segment propagating through a photosensitive
Belousov-Zhabotinsky (BZ) chemical reaction system by ad-
justing the light intensity [39]. This proportional (P) controller
applies a position-independent (i.e., spatially uniform) output
signal to a medium by sensing the wave area in real time. Zykov
et al. analytically investigated in detail the shape and velocity
of a propagating wave stabilized by a position-independent
proportional feedback [40–42]. Sakurai et al. showed that the
stabilized wave can be made to propagate along a desired path
by using a position-dependent control in combination with
the position-independent proportional control law [43]. Steele
et al. demonstrated that a single wave and multiple waves
can be stabilized using a proportional-integral-derivative (PID)
position-independent feedback control [44,45]. In addition,
they showed that a position-dependent control, based on the
concept of the potential function, applied in conjunction with
the position-independent control enables the manipulation of
propagating waves [44,45].

*http://www.eis.osakafu-u.ac.jp/∼ecs

These studies allows us to realize that a key factor in
controlling propagating unstable waves is their stabilization
using position-independent P control. Although fundamental
knowledge of such stabilization has been reported in these
previous studies, for the practical situation in which excitable
media have uncertain parameters, the following serious prob-
lem is inevitable: the position-independent P control cannot
explicitly specify a desired size of propagating waves. This is
because the size of the stabilized waves depends not only on
the controller parameters but also on the uncertain parameters
of the medium. In particular, it is difficult to design the offset
in the P control law without using accurate parameters of the
medium. This problem causes the following inconveniences:
(1) Trial-and-error adjustment of the offset is needed in order
to stabilize wave segments of a desired size; (2) even if this
adjustment is successful, this controller cannot support other
desired sizes unless the adjustment is performed again; and
(3) the adjustment for a desired size cannot be used if the
parameters of the medium are changed. These inconveniences
hinder future innovative applications of excitable media.

In the present paper, we attempt to apply control theory
to the above-mentioned problem. Control theory indicates
that proportional-integral (PI) control, one of most popular
feedback schemes in control engineering [46], has a strong po-
tential to solve this problem because the offset is automatically
adjusted for a desired size without detailed information about
the medium.1 Numerical simulations are performed in order to
demonstrate that PI control can eliminate the above-mentioned
inconveniences. Specifically, (1) the stabilization of a wave
segment of a desired size can be automatically achieved
without trial-and-error adjustment, (2) wave segments of
different desired sizes can be stabilized without readjusting
the controller, and (3) the desired size can be maintained even
if the parameters of the medium are changed. Furthermore, we
describe analytically why PI control can solve this problem
while P control cannot. The present paper is a substantially
extended version of our conference paper [47].

1Although proportional-integral-derivative (PID) control, which
was used for the stabilization of wave segments in previous studies
[44,45], can be used to solve the above-described problem, to our
knowledge, there have been few efforts to use PID control for
the problem.
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FIG. 1. Snapshots of propagating wave segments [i.e., excited
area �(t)] in the Bär model and the Oregonator model without
feedback control: (a) U ≡ 0.142 (light-colored segments) and 0.144
(dark-colored segments) for the Bär model with L1 = 80 and L2 =
40, (b) U ≡ 0.090 (light-colored segments) and 0.094 (dark-colored
segments) for the Oregonator model with L1 = 12 and L2 = 8.
Snapshots were taken for increment of (a) t = 4 and (b) t = 0.5.

II. EXCITABLE MEDIA

In this section, we review the dynamics of excitable
media without feedback control. Let us consider an excitable
medium:

� :

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= F (u,v,U ) + D∇2u

∂v

∂t
= G(u,v,U )

. (1)

Here u := u(t,x) ∈ R and v := v(t,x) ∈ R are, respectively,
the activator and inhibitor variables at position x := (x1,x2) ∈
[0,L1] × [0,L2] and at time t ∈ R, where L1,2 > 0 denotes
the size of the medium. Moreover, U := U (t) ∈ R is the
spatially uniform input signal, which does not depend on
position x. The nonlinear functions F,G : R × R × R → R
describe the dynamics of reactors. D � 0 represents the
diffusive coefficient, and ∇2 := ∂2/∂x2

1 + ∂2/∂x2
2 denotes

the Laplacian operator. We define the excited area:

�(t) := {x ∈ [0,L1] × [0,L2] : u(t,x) > ū}, t > 0, (2)

where ū ∈ R is the threshold.
Throughout this paper, the two famous models, the Bär

model [48] and the Oregonator model [49,50], are used as
excitable media � to be controlled. The nonlinear functions of
the reaction term in each model are described in Appendix A.
We numerically investigate the influence of input signal
U without feedback control on the excited area �(t) (see
Appendix B for details on the numerical setup). The initial
condition is provided such that the segment wave propagates
in the x1 direction. The propagating wave segments in the Bär
model with constant input signals, U ≡ 0.142 and U ≡ 0.144,
are shown in Fig. 1(a). The initial segment, as explained in
Appendix B, expands and propagates from left to right for
U ≡ 0.142 (light-colored segments), but disappears for U ≡
0.144 (dark-colored segments). Similar behavior is observed
for the Oregonator model, as shown in Fig. 1(b). These results
suggest that it is difficult for a constant signal without feedback
to maintain the size of the propagating segments.

x1O

x2

x2,min(t)

x2,max(t)

w(t)

Excitable medium

w(t)U(t)

(t)

FIG. 2. Controlled object with input U (t) and output w(t).

III. FEEDBACK CONTROL OF EXCITABLE MEDIA

Most previous studies use P control to stabilize the propa-
gating wave segments. In this section, P control is reviewed,
and its drawback with respect to numerical simulation is
discussed. In order to overcome this drawback, we use PI
control, which is well known in control theory. An analysis is
performed in order to demonstrate why PI control works well.

A. Proportional control

As shown in Fig. 2, the excitable medium � is treated as
a controlled object with input signal U (t) and output signal
w(t) ∈ R. The output signal, w(t), which is the width of the
propagating wave segment, is defined as follows:

w(t) := x2,max(t) − x2,min(t),

x2,max(t) := max
x ∈�(t)

x2, x2,min(t) := min
x ∈�(t)

x2.

As shown in Fig. 3, this object is controlled by the input signal:

U (t) = KPe(t) + I, (3)

where KP ∈ R and I ∈ R are the proportional feedback gain
and the offset, respectively. Moreover, e(t) ∈ R is the error
between the width w(t) and the reference signal r(t) ∈ R:

e(t) := r(t) − w(t). (4)

The reference signal r(t), which is the desired width of the
propagating wave segments, is given by the user.

We evaluate the performance of the P control system
through numerical simulations. Figure 4(a) shows that the P
controller (3) with the control parameters KP = −3 × 10−3,
I = 0.15, and desired width r(t) ≡ 20 successfully stabilizes
a propagating wave segment in the Bär model (A1). However,
the width of the segment, w(t), does not converge to the desired
width r(t) ≡ 20, and the error e(t) does not become zero.
Similar results were obtained for the Oregonator model (A2)
with KP = −3 × 10−3, I = 0.093, and r(t) ≡ 4, as shown
in Fig. 4(b).

FIG. 3. Block diagram of the feedback control system consisting
of excitable medium � and the P controller (3).

042216-2
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FIG. 4. Snapshots and time series data of propagating wave
segments with P control in (a) the Bär model (L1 = 200 and L2 = 40)
and (b) the Oregonator model (L1 = 30 and L2 = 8). (a) Bär model
with KP = −3 × 10−3, I = 0.15, and r(t) ≡ 20. (b) Oregonator
model with KP = −3 × 10−3, I = 0.093, and r(t) ≡ 4.

Note that the error e(t) can be zero if a suitable offset I

is known. However, since the offset strongly depends on the
model parameters, it is generally not easy to find a suitable
offset in advance. As a result, in practical situations, we
usually do not stabilize the segment to the desired width. This
drawback is well known in the field of control theory [46]. In
order to overcome this drawback, control theory recommends
the use of PI control. In the next section, PI control will be
used in order to eliminate the error.

FIG. 5. Block diagram of the feedback control system consisting
of excitable medium � and PI controller (5).
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FIG. 6. Snapshots and time series data of propagating wave
segments with PI control in (a) the Bär model (L1 = 200 and
L2 = 40) and (b) the Oregonator model (L1 = 30 and L2 = 8).
(a) Bär model with KP = −3 × 10−3, KI = −2 × 10−4, r(t) ≡ 20,
and z(0) = 0.15. (b) Oregonator model with KP = −3 × 10−3, KI =
−2 × 10−3, r(t) ≡ 4, and z(0) = 0.093.

B. Proportional-integral control

The control law for the PI controller is given by

⎧⎨
⎩

U (t) = KPe(t) + z(t)

dz(t)

dt
= KIe(t)

, (5)

where KP ∈ R and KI ∈ R are the feedback gains, z(t) ∈ R is
the additional state variable of PI controller (5). The feedback
control system consisting of excitable medium � and PI
controller (5) is shown in Fig. 5.

We confirm the performance of the PI control system
through numerical simulations. The snapshots and time series
data of propagating wave segments with PI control (5) in the
Bär model (A1) are shown in Fig. 6(a). The PI controller
(5) with KP = −3 × 10−3 and KI = −2 × 10−4 successfully
stabilizes the propagating wave segment to the desired width
r(t) ≡ 20 without steady-state error. Similar results were
obtained for the Oregonator model (A2), as shown in Fig. 6(b).
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The numerical results indicate that PI control can solve the
problem of P control.

C. Analytical approach

The previous subsections showed numerically that P control
causes the steady state error, but PI control does not. In this
subsection, we analytically demonstrate the reason for this.

As it stands now, we cannot analytically extract the detailed
mathematical model of the controlled object illustrated in
Fig. 2 from excitable medium �. On the other hand, Sakurai
and Osaki showed that the dynamics of a propagating wave
segment in the Oregonator model can be reduced to that
of a two-dimensional ordinary differential equation having
an unstable equilibrium point [51]. This equilibrium point
corresponds to an unstable propagating wave segment. Based
on this reduction, let us assume that the dynamics around
the unstable equilibrium point (i.e., the unstable segment),
with a desired constant width r(t) ≡ w0 and the suitable offset
I = U0, can be roughly described by a linear system:⎧⎨

⎩
dx(t)

dt
= Ax(t) + b�U (t)

�w(t) = cx(t)
, (6)

where �U (t) := U (t) − U0 and �w(t) := w(t) − w0. Here
x(t) ∈ Rn is the state variable. Moreover, A ∈ Rn×n, b ∈ Rn,
and c ∈ R1×n are the system matrices.

For P control, the closed-loop system consisting of con-
trolled object (6) and P controller (3) around the unstable
equilibrium point is described by

dx(t)

dt
= (A − KPbc)x(t) + b(KP�r + �I ), (7)

where �r := r − w0 and �I := I − U0. Here r is the constant
reference signal. If KP is designed such that A − KPbc is
stable, then closed-loop system (7) converges to the stable
equilibrium point:

x∗ = −(A − KPbc)−1b(KP�r + �I ). (8)

As a result, the output signal w(t) converges to r , which
indicates that �w∗ := cx∗ = �r holds only if I is set to

I = −�r

{
1

c(A − KPbc)−1b
+ KP

}
+ U0, (9)

which depends on the system matrices (A,b,c) and the
suitable offset U0. Note that, in practical situations, it is
difficult to obtain these matrices and the offset precisely in
advance. Therefore, steady-state error limt→∞ {r − w(t)} =
�r − �w∗ inevitably occurs.

For PI control, controlled object (6) and PI controller (5)
around the unstable equilibrium point provide the following
closed-loop system:

d

dt

[
x(t)

�z(t)

]
=

[
(A − KPbc) b

−KIc 0

][
x(t)

�z(t)

]
+

[
bKP

KI

]
�r,

(10)

where �z(t) := z(t) − U0. If KP and KI are designed such that
closed-loop system (10) is stable, then its trajectories converge
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FIG. 7. Snapshots and time series data of propagating wave
segments with P and PI control in the Bär model (L1 = 700 and
L2 = 40) for the size change: r(t) ≡ w0 = 10 to r(t) ≡ r = 20 at
t = 200. P control with KP = −1 × 10−3 and I = U0 = 0.1413 and
PI control with KP = −1 × 10−3, KI = −1 × 10−4, and z(0) = 0.14.
Snapshots were taken every t = 8.

on stable equilibrium point [x∗T �z∗]T satisfying[
0
0

]
=

[
(A − KPbc) b

−KIc 0

][
x∗

�z∗

]
+

[
bKP

KI

]
�r. (11)

The second row of this equation indicates that

�w∗ = cx∗ = �r. (12)

Consequently, we have no steady-state error: limt→∞
{r − w(t)} = �r − �w∗ = 0. Note that the error becomes
zero as long as closed-loop system (10) is stable.

The arguments of the steady-state error mentioned above
provide a legitimate reason why P control has steady-state
error but PI control does not. These arguments are well known
in control theory [46].

IV. NUMERICAL SIMULATIONS

The preceding section showed numerically and analytically
that PI control can solve the serious problem of P control,
which causes the three inconveniences mentioned earlier. As
shown in Fig. 6, the need for trial-error adjustment of the
offset I was eliminated owing to the automatic adjustment
mechanism of PI control. In this section, we demonstrate
through numerical simulations that PI control can eliminate
the second and third inconveniences.

We consider the second inconvenience. Namely, even
though the offset I = U0 of P control is successfully decided
for a desired size w0 [see Eq. (9)], steady-state error occurs
for other desired sizes. Figure 7 shows snapshots and time
series data of propagating wave segments with P and PI
control in the Bär model (A1). P control with the ideal offset
I = U0 = 0.1413 for a desired size r(t) ≡ w0 = 10 does not
induce steady-state error until t = 200. The size is changed
to r(t) ≡ r = 20 at t = 200, and then a small error occurs
due to the nonideal offset. In contrast, PI control does not
induce steady-state error for both sizes owing to the automatic
adjustment mechanism. These results indicate that PI control
can eliminate the second inconvenience.

042216-4
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FIG. 8. Snapshots and time series data of propagating wave
segments with P and PI control in the Oregonator model (L1 = 60 and
L2 = 8), the parameter ε of which depends on position: ε = 0.010
in x1 ∈ [0,20] ∪ [40,60] and ε = 0.012 in x1 ∈ (20,40). P control
with KP = −4 × 10−3 and I = U0 = 0.0913 and PI control with
KP = −4 × 10−3, KI = −2 × 10−3, and z(0) = 0.091. Snapshots
were taken every t = 1.

As described previously, the third inconvenience is that P
control with the ideal offset I = U0 for a desired size r(t) ≡ w0

cannot maintain the size if media parameters are changed.
Snapshots and time series data of propagating wave segments
with P and PI control in the Oregonator model (A2) are shown
in Fig. 8. Let us consider the realistic situation in which the
media parameters depend on position x. Here, the parameter
ε depends on position as follows: ε = 0.010 in x1 ∈ [0,20] ∪
[40,60] and ε = 0.012 in x1 ∈ (20,40). P control with the
ideal offset I = U0 = 0.0913 for desired size r(t) ≡ w0 = 4
on ε = 0.010 does not induce steady-state error in x1 ∈ [0,20],
but does induce a large error in x1 ∈ (20,40) due to the nonideal
offset. On the other hand, PI control does not induce steady-
state error for any position. Thus, it is numerically verified that
the third inconvenience can be eliminated by PI control.

The analytical and numerical results mentioned above
suggest that the adjustment of offset I for P control is fragile
for the case with no steady-state error, because I should be set
to a unique point described by Eq. (9). In contrast, the design
of KP and KI for PI control is robust, because these parameters
only have to be designed such that closed system (10) becomes
stable. In order to confirm the robustness of the design, we
conduct numerical simulations for a variety of KP and KI, as
shown in Fig. 9. The open circles (crosses) indicate the set
(KP,KI) for which the steady-state error converges (does not
converge) to zero (see Appendix C for details). Snapshots and
time series data of propagating wave segments at the filled cir-
cles are shown in Fig. 6. For both the Bär model [Fig. 9(a)] and
the Oregonator model [Fig. 9(b)], stabilization without steady-
state error can be achieved for large region of the KP-KI space.

V. CONCLUSIONS

We have demonstrated that PI control can stabilize prop-
agating wave segments to a desired size without steady-state
error. Numerical simulations have demonstrated that PI control
has the following advantages: there is no need to conduct
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−2
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−4 −3 −2 −1 0
−10
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−2
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FIG. 9. Stability regions on KP-KI space for (a) the Bär model
(L1 = 300 and L2 = 40) and (b) the Oregonator model (L1 = 40 and
L2 = 8). Open circles indicate that stabilization without steady-state
error is achieved, whereas crosses indicate that stabilization without
steady-state error is not achieved.

difficult trial-and-error adjustment in order to achieve the
no-steady-state-error condition, the size of the wave segment
can be varied without readjustment of control, and the desired
size can be obtained even for the situation in which the media
parameters are position dependent.

Although PI control overcomes the serious problem of P
control, we noticed through numerical simulations that the
proposed control system is vulnerable to the initial conditions
and external disturbances. This suggests that the proposed
control system requires further development but also implies
that robust control theory concepts can be applied to excitable
media. The key to developing the proposed control system
based on these concepts is to identify system (6). If system
(6) is experimentally identified, it is expected that a number of
schemes developed for control theory can be directly applied to
excitable media in order to improve the control performance.
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APPENDIX A: BÄR MODEL AND OREGONATOR MODEL

The reaction term of the Bär model [48] with the input
signal U is described by

F (u,v,U ) := 1

ε
u(1 − u)

(
u − v + b

a

)
,

G(u,v,U ) := g(u) − v + U, (A1)

g(u) :=
⎧⎨
⎩

0 u < 1/3
1 − 6.75u(u − 1)2 1/3 � u � 1
1 u > 1

,

where the parameters are fixed as ε = 0.03, a = 0.84, b =
0.07,and D = 1.0. The Oregonator model with input signal U
[49,50] has the reaction term:

F (u,v,U ) := 1

ε

[
u − u2 − (av + U )

u − b

u + b

]
,

(A2)
G(u,v,U ) := u − v,

042216-5
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no flux boundary

FIG. 10. Schematic diagram of an excitable medium consisting
of region �0 without feedback control and region � with feedback
control for the numerical simulations of the present study.

with the parameters ε = 0.01, a = 2.5, b = 0.002,and
D = 0.1.

APPENDIX B: SETUP FOR THE
NUMERICAL SIMULATIONS

The numerical simulations of the present study were
performed using the explicit Euler method with time step
�t = 2 × 10−3 and grid size �x = 0.1 for the Bär model and
with time step �t = 2 × 10−4 and grid size �x = 0.02 for the
Oregonator model. Both models have no-flux boundary. The
threshold ū used in Eq. (2) is set to ū = b/a for the Bär model
and ū = 0.1 for the Oregonator model.

The initial condition is set up based on findings reported
in a previous study [52]. Figure 10 shows the excitable media
used in the numerical simulations of the present study. In the
region �0 between the two no-diffusion (D = 0) areas (i.e.,

shaded areas), an initial propagating segment with constant
input signal U (t) ≡ Û is generated by the initial state:

[
u(0,x)
v(0,x)

]
=

{[
0.5 0

]T
x ∈ [

0,x1

] × [
x2,x2

]
[
0 0

]T
otherwise

.

The propagating segment moves out of region �0 and into
controlled region �, where the spatially uniform input signal
U (t) is added as follows: constant input signals for Fig. 1 and
P control (3) and PI control (5) for Figs. 4 through 8. The
parameters for these setups are as follows: Û = 0.14, x1 = 1,
x1 = 20, x2 = 10, and x2 = 30 for the Bär model; and Û =
0.09, x1 = 0.2, x1 = 4, x2 = 2, and x2 = 6 for the Oregonator
model. As an exception, we use x2 = 15, and x2 = 25 for the
Bär model in Fig. 7.

APPENDIX C: NUMERICAL PROCEDURE FOR FIG. 9

The numerical procedure used to check the steady-state
error in Fig. 9 consists of the following four steps: (1) a gain set
(KP,KI) is fixed; (2) numerical simulations using the feedback
control system shown in Fig. 5 with the setup described in
Appendix B are conducted; and (3) an open circle is plotted
in Fig. 9 if w(t) converges to the desired width (i.e., |w(t) −
w0| < wth,∀t ∈ [T0,T1]), otherwise a cross is plotted. In order
to obtain Fig. 9, this procedure was conducted for various sets
(KP,KI). The parameters used in the procedure are as follows:
z(0) = 0.150, w0 = 20, wth = 1.0, T0 = 120, and T1 = 160
for the Bär model, and z(0) = 0.093, w0 = 4, wth = 0.2, T0 =
16, and T1 = 20 for the Oregonator model.
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