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The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists
of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time
series data of input and output signals for the media; in the second phase, the model derived in the first phase is
used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that
this scheme performs better than a conventional control scheme.
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I. INTRODUCTION

Excitable media have received considerable attention due
to their wide range of applications. For example, cardiac
arrhythmias can be modeled as spirals and turbulence occurring
in excitable media [1,2], and the propagating waves in excitable
media have the potential to be used for the realization of
chemical information processing [3–5] and for finding optimal
paths [6].

The elimination and control of turbulence, spirals, and
propagating waves in excitable media have been widely stud-
ied. Recent studies have shown that these phenomena can be
eliminated by external forces without feedback [7–11] or with
feedback [12–14]. In addition to elimination, the control of
waves and patterns in excitable media has also been actively
investigated [15,16]. It was demonstrated experimentally that
proportional (P) feedback control can stabilize a propagat-
ing wave segment in a photosensitive Belousov-Zhabotinsky
chemical reaction system [17], and wave segment stabilization
with P control has been analyzed in detail [18,19]. It was shown
that a wave segment stabilized with P control can propagate
along a desired path [20], and that multiple wave segments
stabilized with proportional-integral-derivative (PID) control
can be manipulated [21,22].

It has been analytically shown that it is difficult to specify the
size of the wave segment that is stabilized with P control [23].
Our previous study demonstrated in numerical simulations
that proportional-integral (PI) control, a common scheme in
control engineering [24], can overcome this drawback [23].
Although PI control does not require a mathematical model
of the controlled object, this control scheme will not perform
well. This is a significant obstacle to the use of the control
scheme. It is generally known in the field of control engineering
that good performances can be obtained by controllers which
are preliminarily designed based on a simple mathematical
model described by the transfer function or the state-space
representation. Unfortunately, it is difficult to analytically
derive the simple mathematical model for wave segments in

*http://www.eis.osakafu-u.ac.jp/∼ecs

excitable media. As a result, at the present stage, we are not
able to control the wave segments with good performance.
This difficulty is a bottleneck in the development of controlling
excitable media.

The present paper tackles the above problem in two phases:
in the first phase, to remove the bottleneck, the simple mathe-
matical model (i.e., the transfer function) for wave segments is
numerically derived using the prediction-error identification
method [25,26], a popular numerical approach in control
engineering. This method uses only the time series of input
and output data of excitable media but does not use any other
information about the media models, such as the dimension,
nonlinearity, parameters, and so on. In the second phase, the
controllers are preliminarily designed based on the model by
the two-degrees-of-freedom compensation scheme [27], which
is an advanced control technique. The designed controllers
are applied to the wave segments in excitable media. These
two phases are illustrated with numerical simulations of the
Oregonator model [17,28].

II. EXCITABLE MEDIA WITH PI CONTROL

This section reviews our previous study [23] on PI control
of propagating wave segments in excitable media. We consider
an excitable medium,

� :

⎧⎪⎨
⎪⎩

∂u

∂t
= F (u,v,U ) + D∇2u

∂v

∂t
= G(u,v,U )

, (1)

where u := u(t,x) and v := v(t,x) are the activator and the
inhibitor variables, respectively, at position x := (x1,x2) ∈
[0,L1] × [0,L2] at time t ∈ R. The size of the medium is
defined by L1, 2 > 0. The medium � has a spatially uniform
input signal U := U (t). The dynamics of the reactors are
governed by F,G : R × R × R → R. This paper employs the
Oregonator model [17,28] for these functions (see Appendix).
The medium � has diffusion coefficient D � 0 and Laplacian
operator ∇2 := ∂2/∂x2

1 + ∂2/∂x2
2 .
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Excitable medium

FIG. 1. Feedback system with PI control [23].

The present paper considers the excited area with the
threshold ū ∈ R,

�(t) := {x ∈ [0,L1] × [0,L2] : u(t,x) � ū}, t > 0, (2)

as sketched in Fig. 1. The width of the propagating wave
segment, w(t) ∈ R, in the excitable medium � is used as the
output signal [23]:

w(t) := x2,max(t) − x2,min(t),

x2,max(t) := max
x ∈�(t)

x2, x2,min(t) := min
x ∈�(t)

x2.

The spatially uniform input signal U (t) is provided by the PI
controller, ⎧⎨

⎩
U (t) = KPe(t) + z(t)
dz(t)

dt
= KIe(t)

, (3)

which has the additional state variable z(t) ∈ R and feedback
gains KP, I ∈ R. The error is defined by e(t) := r(t) − w(t),
where r(t) ∈ R is the reference signal. The frequency domain
description of this controller is given by

CB(s) := KP + KI/s. (4)

Snapshots of propagating wave segments with controller (3)
(see Appendix for details) are shown in Fig. 2. The reference
r(t) changes as a step function1 at t = 15. The width w(t)
oscillates with a large overshoot and then converges to the
reference signal r(t) = 5 [i.e., e(t) → 0].

The PI control method has been one of the most widely
used methods in the field of control engineering, since it does
not require a mathematical model of the controlled object.
However, in general, PI control without tuning of gains KP, I

does not perform well, as demonstrated in Fig. 2 (see the large
overshoot). If a simple mathematical model of the controlled
object is derived, advanced controllers designed using the
mathematical model perform well. Unfortunately, it is difficult
to derive the simple model for the medium �. It must be
emphasized that even if such a model for a specific medium
can be obtained analytically, it will likely not be valid for
other types of media and will have a low accuracy in practical
situations.

1The step function is generally used as the reference signal in the
field of control theory [24]. Throughout this paper, we use the step
function as the reference signal. We remark that our control system
works well for other types of reference signals.
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FIG. 2. Snapshots and time series of wave segments [KP = −3 ×
10−3, KI = −2 × 10−3, z(0) = 0.093].

III. SYSTEM IDENTIFICATION

In this section, a simple mathematical model for propagat-
ing wave segments is identified by a systematic procedure using
only time series of the input signal r(t) and the output signal
w(t). This procedure consists of collecting the time series data
of the PI control system (Fig. 1) and searching for a suitable
transfer function by numerical optimization. This procedure
allows us to solve the above-mentioned problems. This section
explains the procedure through a numerical example (Fig. 2).

Let us focus on the steady state of the control system
with reference signal r(t) ≡ w0 = 4 and input signal U (t) ≡
U0 = 0.0913, where a wave segment with width w(t) ≡ w0

propagates through the medium �. We suppose that the local
dynamics of the control system around the steady state is
governed by the linear system illustrated in Fig. 3, where the
error variables from the steady state are given by

�r(t) := r(t) − w0, �U (t) := U (t) − U0,

�w(t) := w(t) − w0. (5)

The medium � at the steady state can be described by the
transfer function from the input error �U (t) to the output error

FIG. 3. Block diagram of a linear system around the steady state
of the PI control system.
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FIG. 4. Time series of the reference signal r̂(t) and width ŵ(t)
around the steady state (w0 = 4 and U0 = 0.0913) for system iden-
tification with starting time T = 15, finishing time T = 30, and
amplitude �w0 = 0.1.

�w(t),

P (θm,s) = b1s
m−1 + b2s

m−2 + · · · + bm

sm + a1sm−1 + a2sm−2 + · · · + am

, (6)

where θm := {a1,a2, . . . ,am,b1,b2, . . . ,bm} ∈ R2m is an un-
known parameter vector and m ∈ N is the unknown degree
of the transfer function. In order to estimate θm and m, we use
the prediction-error identification method [25,26], a popular
numerical approach in control engineering.

First, we collect the time series data of the PI control system,
as in Fig. 1, at the steady state with r(t) = w(t) ≡ w0 and
U (t) ≡ U0. The reference signal for system identification is set
to r̂(t) = r(t) = w0 for t ∈ [0,T ), then it is supposed that w(t)
converges to w0 by time t = T as shown in Fig. 4. After that,
the reference r(t) is perturbed as a random binary signal r̂(t) =
r(t) = w0 ± �w0 for t ∈ [T ,T ], where �w0 is the amplitude
of the binary signal. The random reference signal disturbs the
width ŵ(t) = w(t) for t ∈ [T ,T ] as shown in Fig. 4. The time
series of r̂(t) and ŵ(t) for t ∈ [T ,T ] are collected for the next
step.

Next, we obtain the unknown θm and m using the collected
data. The data are transformed by

�r̂(t) := r̂(t) − w0, �ŵ(t) := ŵ(t) − w0. (7)

The transformed data �r̂(t) are used as the reference signal
�r(t) of the linear system shown in Fig. 3: the output signal
�w(t) is used as �w(θm,t), which depends on the unknown
θm and m. We try to estimate θm and m, which minimize the
cost function:

J (θm) = 1

T − T

∫ T

T

{�ŵ(t) − �w(θm,t)}2dt. (8)

This function defines the difference between the predicted
output signal �w(θm,t) and the observed output signal �ŵ(t).
We numerically try to find θm such that the cost function J (θm)
is minimized:

θ̃m := arg min
θm

J (θm). (9)
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FIG. 5. Time series of the predicted output signal �w(θ̃m,t)
(black line) and the observed output signal �ŵ(t) (gray line) for (a)
m = 1, (b) m = 2, and (c) m = 3.

We use the MATLAB function fminsearch to find θm in
numerical simulations. For m = 1, 2, and 3, we find θ̃m

(m = 1,2,3) and obtain the transfer functions:

m = 1: P (θ̃1,s) = −551.1

s − 0.7417
,

m = 2: P (θ̃2,s) = −241.9s − 721.0

s2 + 0.7244s − 0.1902
,

m = 3: P (θ̃3,s) = −194.7s2 − 1243s − 1091

s3 + 2.671s2 + 0.7736s − 0.1475
,

(10)

and the cost J , which minimizes the errors: J (θ̃1) = 1.3947 ×
10−3, J (θ̃2) = 6.4584 × 10−5, and J (θ̃3) = 6.2133 × 10−5.
The estimated parameter vector θ̃m and the transfer functions
P (θ̃m,s) depend on the degree m. In order to determine m,
we consider the cost J (θ̃m) and the difference between the
predicted output signal �w(θm,t) and the observed output
signal �ŵ(t) for m = 1,2,3 as shown in Fig. 5. It can be seen
that for m = 1, the cost is high and the error is too large, but
for m = 2 and 3, we have a low cost and small error. As a
consequence, we employ the smaller degree m = 2 so as to
simplify the design of the control system explained below.
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FIG. 6. Snapshots and time series of wave segments in the
medium where there are two narrow channels. The parameters, initial
conditions, and gains are the same as in Fig. 2.

IV. APPLICATION TO ADVANCED CONTROL

This section uses a numerical example to show how PI
control confronts a problem. To solve this problem, we intro-
duce the two-degrees-of-freedom compensation scheme [27],
and we demonstrate that our control system works well in
numerical simulations.

Let us consider the situation illustrated in Fig. 6, where there
are four black obstacles and we want to pass the propagating
wave segment through the narrow channels. The parameters
and the initial conditions of the medium � and the gains are
the same as in Fig. 2. The reference signal is varied so that
it can path through the narrow channels. As seen in Fig. 6,
the segment passes through the left channel but fails to pass
through the right channel because the segment collapses. This
collapse is induced by the rapid change and the large overshoot
of the input signal U rather than a collision with the obstacles.
If this rapid change and the large overshoot can be avoided,
the propagating wave segment can pass through these narrow
channels.

To solve this problem, we introduce the two-degrees-of-
freedom compensation scheme [27]. Figure 7 is the block
diagram of the control system for this scheme, where CB(s)
is the feedback PI controller (4) and CF(s) is the feed-forward
compensation. The linearized control system at steady state
(r(t) = w0 and U (t) = U0) can described by the transfer
function from the reference error �r(t) to the output error

FIG. 7. Control system with feed-forward compensation.

�w(t):

G�w−�r (s) := P (θ̃m,s)

1 + P (θ̃m,s)CB(s)
{CF(s) + CB(s)}. (11)

This function governs the response of the output signal w(t) to
the reference signal r(t); thus, if G�w−�r (s) can be adjusted to
the desired transfer function GM(s), which does not induce
a large overshoot, the propagating wave segment can pass
through the narrow channels. Now we see that if the feed-
forward compensation CF(s) is set to

CF(s) = GM(s)

P
(
θ̃m,s

) + CB(s){GM(s) − 1}

⇔ G�w−�r (s) = GM(s), (12)

then the response of w(t) to r(t) is described by the desired
GM(s). We remark that GM(s)/P (θ̃m,s) has to be stable and
proper to be realized.

Now we design the feed-forward compensator CF(s) in
accordance with the above scheme. First, we set the desired
transfer function to

GM(s) = 1

(1 + τs)2
, τ > 0, (13)

which does not result in an overshoot. If we obtain the transfer
function P (θ2,s) defined by Eq. (6), the input signal with the
feed-forward compensator (12) is described by

U (t) = cF zF(t) − KP�w(t),
d zF(t)

dt
= AF zF(t) + [KIe(t) 0 0 �r(t)]T ,

cF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
a2 + KPb2 − 2KIb2τ

b1τ 2

a1 + KPb1 − KI(2b1τ + b2τ
2)

b1τ 2

1 − KIb1τ
2

b1τ 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

,

AF =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 1

0 − b2

b1τ 2
−b1 + 2b2τ

b1τ 2
−2b1 + b2τ

b1τ

⎤
⎥⎥⎥⎦,

(14)
where zF(t) ∈ R4 is the variable for the controller (14).

We now demonstrate our control system with the de-
signed feed-forward compensator in numerical simulations.
For the function GM(s), we set τ = 0.2, and the transfer
function P (θ̃2,s) is estimated from Eq. (10). We note that
GM(s)/P (θ̃2,s) is stable and proper. The feedback PI controller
(4) has the same gains as in Figs. 2 and 6; the initial condition
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SYSTEM IDENTIFICATION OF PROPAGATING WAVE … PHYSICAL REVIEW E 97, 042210 (2018)

15 20 25 30 35 40
0

2

4

6

8

5 10 15 20 25 30
4
5
6

t

w
,r

5 10 15 20 25 30
0.085
0.09
0.095

t

U

x1

w

x
2

direction of propagation

w

w

r

w

FIG. 8. Control performances of the PI control system without
the feed-forward compensator CF(s) as shown in Fig. 1 and with the
feed-forward compensator as shown in Fig. 7.

for controller (14) is zF(0) = [0.093 0 0 0]T . Figure 8
shows the control performances of the PI control system
with and without the feed-forward compensator CF(s). The
PI control without a compensator has a large overshoot, w(t);
in contrast, the PI control with a compensator completely sup-
presses this overshoot. From this, we can see that the designed
compensator works well in the numerical simulations.

Consider the PI control with compensator applied to the
problem with the same parameters, initial conditions, and
gains as in Fig. 6. Figure 9 demonstrates that the segment
successfully passes through both the left and right channels.
The width w(t) responds to the reference r(t) without any
overshoot.

V. CONCLUSIONS

The present paper has provided an efficient scheme for
controlling wave segments in excitable media. This scheme
consists of two phases: the system identification phase and
the advanced control phase. In the system identification phase,
it is shown that, for the Oregonator model, the dynamics of
propagating wave segments can be approximated by the two-
dimensional transfer function. The advanced control phase
effectively employs two-degrees-of-freedom compensation.
Although this paper has considered only numerical simulations
for the Oregonator model, the proposed scheme can potentially
be applied to other types of models: similar results have been
observed with the the Bär model [29] (not shown here).2

2The Oregonator model has the spatially uniform input signalU only
in the function F [see Eq. (A1)]; on the other hand, the Bär model we
dealt with has U only in the function G(u,v,U ) := g(u) − v + U .
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FIG. 9. Snapshots and time series of wave segments with compen-
sator (12) in the medium with two narrow channels. The parameters,
initial conditions, and gains are the same as in Fig. 6.

The system identification phase can be used in future
developments for controlling reaction-diffusion systems. The
numerical identification scheme is relevant for modeling a vari-
ety of reaction-diffusion systems. The simple model presented
here can be used to design advanced controllers. In other words,
this scheme has a potential to combine reaction-diffusion
systems and a variety of advanced controllers which have been
proposed already in control engineering. The present paper
represents an attempt at such a combination. This combination
might suggest the possibility that we can control other types
of spatio-temporal nonlinear phenomena in reaction-diffusion
systems by choosing suitable input and output data of phenom-
ena.
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APPENDIX: OREGONATOR MODEL AND
NUMERICAL SIMULATIONS

The Oregonator model has reaction term [17,28,30–32]

F (u,v,U ) := 1

ε

[
u − u2 − (av + U )

u − b

u + b

]
,

G(u,v,U ) := u − v,

(A1)
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where the parameters are fixed at a = 2.5 and b = 0.002.
Note that the parameters fixed at ε = 0.01 and D = 0.1 do
not depend on position x. The size of the medium is set to
L1 = 60 and L2 = 8 throughout this paper. As an exception,
we use L1 = 40 in Figs. 6 and 9. The medium this paper deals

with has a no-flux boundary. We used the explicit Euler method
with grid size �x = 0.02 and time step �t = 2 × 10−4. The
threshold is set to ū = 0.1. The initial condition and the setup
procedure are the same as Appendices A and B in our previous
study [23].
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