

学術情報リポジトリ

Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems

メタデータ	言語: eng
	出版者:
	公開日: 2019-01-25
	キーワード (Ja):
	キーワード (En):
	作成者: Miyazaki, Maiko, Yuba, Eiji, Hayashi, Hiroshi,
	Harada, Atsushi, Kono, Kenji
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/16172

1	Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific
2	intracellular drug delivery systems
3	
4	Maiko Miyazaki ¹ , Eiji Yuba ^{1, *} , Hiroshi Hayashi ² , Atsushi Harada ¹ , and Kenji Kono ¹
5	
6	¹ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture
7	University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
8	² Science Lin Co., Ltd., 1-1-35 Nishiawaji, Higashiyodogawa-Ku, Osaka, Osaka 533-
9	0031, Japan
10	
11	*Corresponding authors: Eiji Yuba
12	Department of Applied Chemistry, Graduate School of Engineering,
13	Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
14	Tel: +81-722-54-9913; Fax: +81-722-54-9330; yuba@chem.osakafu-u.ac.jp

15 Abstract

For the enhancement of therapeutic effects and reduction of side effects derived from 16anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery 1718 systems with cancer-specificity and controlled release function inside cancer cells. pH-Sensitive liposomes are useful as an intracellular drug delivery system because of their 1920abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes 2122modified with various types of pH-sensitive polymers based on synthetic polymers and 23biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic 24acid (HA)-based pH-sensitive polymers were designed as multi-functional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, 2526which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic 27side chain structure than that of MGlu-HA, were synthesized by reaction with various 28dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, 29but showed content release under weakly acidic conditions. CHex-HA-modified 30 31liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the 32

 $\mathbf{2}$

33	same liposomes were taken up only slightly by cells expressing CD44 proteins less.
34	Competition assay using free HA or other polymers revealed that HA derivative-
35	modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified
36	liposomes are useful as cell-specific intracellular drug delivery systems.
37	

- 38 *Keywords*: hyaluronic acid / pH-sensitive liposome / CD44 / drug delivery system /
- 39 endosome / cancer chemotherapy

40 Introduction

Cell-specific drug delivery is crucially important to develop highly effective 41therapeutic systems with less-adverse effects. Furthermore, most bio-pharmaceuticals 4243should be delivered to target cell interior and to target organelles to express their drug efficacy. For this purpose, drug-loaded nanocarriers composed of polymeric materials or 44 lipid-based materials have been studied intensively.^{1–3} For cancer treatment, nano-sized 45drug carriers present benefits of reducing the spread of anticancer drugs to normal 46 tissues or normal cells and of accumulating into tumor tissues via enhanced permeation 47and retention (EPR) effects.⁴ For example, polymeric micelle-based systems having 48 various sizes efficiently accumulated to tumor tissues. Furthermore, smaller polymeric 49 micelles penetrated into tumor tissues more effectively.⁵ Poly(ethylene glycol) (PEG)-5051modified liposome encapsulating doxorubicin (DOX), Doxil, is an example of a commercially available lipid-based nanocarrier that can achieve DOX delivery into 52tumor tissues via the EPR effect.⁶ However, such a "passive targeting" approach 53requires more precise delivery of drugs directly to target cells only, in addition to 54control of drug release.^{2,7} The insertion of ligand molecules having specificity to tumor-5556specific surface receptors or endothelial cells directly into neovascular vessels of a tumor is regarded as effective approach providing cancer cell specificity to 57

58	nanocarriers. ^{8–11} To control drug release profiles, external stimuli-sensitive properties
59	such as temperature, pH, magnetic field and light have been applied for nanocarriers. ^{12–}
60	²¹ ThermoDox is one example of a temperature-responsive liposome designed to
61	achieve drug release at tumor tissues under local heating of tumor tissues. ^{22–24}
62	Temperature-sensitive polymer-modified liposomes are another platform to develop
63	temperature-responsive liposomes. ^{11,13} The use of functional polymers might be
64	beneficial to control temperature-sensitivity and temperature-regions to release
65	anticancer drugs by changing polymer chemical structures. To obtain stimulus-
66	responsive nanocarriers, pH is also an important external stimulus because tumor tissues
67	possess lower pH than physiological pH. Moreover, weakly acidic pH intracellular
68	compartments (endo/lysosomes) exist inside of cells. To deliver drugs or
69	macromolecules into cytosol of target cells, pH-responsive liposomes have been
70	developed. Mixtures of dioleoylphosphatidylethanolamine and amphiphiles having
71	carboxyl groups act as pH-responsive liposomes because, at neutral pH, this mixture
72	forms a bilayer structure by hydration derived from carboxyl groups, whereas a rapid
73	transition to hexagonal II phase is generated after protonation of carboxyl groups,
74	leading to membrane fusion or drug release. ²⁵ Modification of polymers having
75	carboxyl groups to liposomes is another strategy to obtain pH-responsive liposomes.

 $\mathbf{5}$

76	Poly(acrylic acid) derivative-modified liposomes show vigorous membrane disruptive
77	activity under acidic pH because polymers become hydrophobic after protonation of
78	carboxyl groups. The polymers interact with a lipid membrane via hydrogen bond
79	formation with phosphate groups and hydrophobic interactions. ^{26,27} Furthermore, the pH
80	region can be controlled by changing the hydrophobicity of poly(acrylic acid)
81	derivatives, which changes the pKa of carboxyl groups. ²⁷ We also prepared
82	carboxylated poly(glycidol)s as a pH-responsive polymer for pH-sensitization of
83	liposomes. ^{28–30} pKa and pH-sensitivity of carboxylated poly(glycidol)s were controlled
84	by spacer units next to carboxyl groups: poly(glycidol) derivatives having more
85	hydrophobic spacer structures exhibited higher pKa and stronger membrane disruptive
86	properties. ²⁹ We further introduced these pH-sensitive units to naturally occurring
87	polysaccharides such as dextran, mannan, and curdlan. ^{31–33} Carboxylated
88	polysaccharides also showed pH-responsive properties. These polysaccharide-modified
89	liposomes delivered model proteins into cytosol of target cells effectively via membrane
90	fusion with endosomes. ^{31–33} Polysaccharides are important as base materials because of
91	their biodegradability and easy functionalization. In addition, the cell surface has many
92	kinds of lectins, polysaccharide-specific receptors, which are useful for targeting ligands
93	to specific cells. ^{34–37}

94	Considering this background, we conceived multifunctional polysaccharide
95	derivatives having both specificity to tumor cells and pH-responsive properties for this
96	study. Integration of DDS functionalities into one molecule or one nanocarrier is
97	effective strategy to develop multifunctional DDS. Hyaluronic acid (HA) was selected
98	as a backbone of the multifunctional pH-responsive polymer. ³⁸ HA is a biocompatible
99	material: it is a main component of the extracellular matrix. Moreover, also it is known
100	to bind to CD44 proteins specifically as a surface receptor on cancerous cells. ^{34,35,39–41}
101	However, in most cases, raw HA was used for just providing targeting properties to
102	nanocarriers. Here, we extended our strategy for development of pH-responsive
103	polymers to HA: 3-methyl glutarylated (MGlu) units or 2-carboxycyclohexane-1-
104	carboxylated (CHex) units were introduced to HA, and their pH-responsive capabilities
105	were assessed (Figure 1). Furthermore, cell-specific anticancer drug delivery using HA
106	derivative-modified liposomes was examined.
107	

 $\overline{7}$

109 **Figure 1.** Design of hyaluronic acid derivative-modified liposomes for CD44-

- 111 cells via endocytosis and trapped in endosome. Its weakly acidic environment triggers
- 112 destabilization of the liposome, which induces release of drugs in endosome and their
- 113 transfer to cytosol *via* destabilization of endosome.

Results and Discussion

116	Characterization of Hyaluronic Acid Derivatives. Hyaluronic acid
117	derivatives with different contents of MGlu groups or CHex groups as pH-sensitive
118	moiety were synthesized by reacting HA with various amounts of 3-methylglutaric
119	anhydride or 1,2-cyclohexanedicarboxylic anhydride (Figure 2 and Table 1). Decyl
120	groups were further introduced to HA derivatives by reaction of decylamine with
121	carboxyl groups in HA derivatives for fixation of these polymers onto liposome
122	membrane (Figure 2 and Table 2). As a control, carboxyl groups of HA were reacted
123	directly with decylamine to obtain anchor group-having HA (HA- C_{10}). The obtained
124	HA derivatives were characterized using ¹ H NMR. Figures 3A–3C respectively
125	represent ¹ H NMR spectra of HA, MGlu ₅₂ -HA, and MGlu ₅₇ -HA-C ₁₀ . In comparison to
126	spectra for HA (Figure 3A) and for MGlu52-HA (Figure 3B), the introduction of MGlu
127	groups to HA was confirmed from the existence of new peaks corresponding to MGlu
128	groups (0.9 ppm, 1.9–2.3 ppm except for acetyl group of HA (2 ppm)) in Figure 3B.
129	From the integration ratio of peaks of MGlu residues to those of sugar backbone (2
130	ppm, 3.3–4.8 ppm), 52% of hydroxyl groups of HA was estimated as combined with
131	MGlu residues. Similarly, from the integration ratio between sugar backbone, MGlu

132	residues, and decyl groups (0.9–1.4 ppm), decyl-amidated MGlu residues and MGlu
133	residues were found to be combined to 2% and 57% of hydroxyl groups of HA,
134	respectively, in the product, which is designated as MGlu57-HA-C10. CHex-HA
135	derivatives were also evaluated using the same procedure (Figures 3D and 3E). The
136	synthesis of HA-C ₁₀ was also confirmed by the presence of decyl-amidated moieties
137	(0.9–1.4 ppm, Figure 3F). Compositions of HA derivatives prepared in this study are
138	presented in Tables 1 and 2.

Figure 2. Synthetic route for hyaluronic acid derivatives having carboxyl groups and

146 C₁₀, (D) CHex₆₀-HA, (E) CHex₅₀-HA-C₁₀, and (F) HA-C₁₀ in D₂O/NaOD.

147

14	18
----	----

Table 1. Synthesis of Hyaluronic Acid Derivatives

Polymer	HA (mg)	DMAP (mg)	Dicarboxylic acid DMSO (mL)		Reaction	Yield (mg)	Yield (%)	MGlu or CHex	
			anhydride (mg)	. ,	temperature (°C)			(%)*	
MGlu11-HA	266.2	161.8	286.5	25	25	201.4	73.4	11	
MGlu ₁₈ -HA	250.1	161.1	254.4	25	25	272.6	87.5	18	
MGlu ₄₃ -HA	104.8	66.1	210.7	10	40	144.2	120.2	43	
MGlu52-HA	509.8	327.1	4852.9	50	40	647.8	87	52	
CHex ₁₈ -HA	1022.6	658.3	333.9	100	40	891.4	81.2	18	
CHex ₂₇ -HA	307.2	197.4	103.3	30	40	377.2	85.3	34	
CHex ₃₄ -HA	305.3	196.6	153.2	30	40	393.7	83	34	

CHex ₆₀ -HA	310	194.9	261	30	40	490.7	80	60

*% for OH groups of HA determined by ¹H NMR.

Table 2. Synthesis of Hyaluronic Acid Derivatives Having Anchor Moieties

								Conversion (%)*	
Polymer	MGlu-HA, CHex- HA or HA (mg)	n- Decylamine (mg)	DMT-MM (mg)	Water (mL)	Reaction time (h)	Yield (mg)	Yield (%)	MGlu or CHex	C ₁₀
MGlu ₂₀ -HA-C ₁₀	206.6	24.9	42.3	12	17	210	95.5	20	4
MGlu ₅₇ -HA-C ₁₀	524.9	42.9	73.4	26	10	510	91.3	57	2
CHex ₂₇ -HA-C ₁₀	302.4	33.5	65.5	18	23	270.9	84.4	27	6
CHex ₅₀ -HA-C ₁₀	304.8	25.1	47.6	18	23	316.7	108.6	50	5
HA-C ₁₀	268.4	11.3	21.3	13	23	251.3	93.2	0	3

*% for OH groups of HA determined by ¹H NMR.

152	Acid–base titration was conducted to assess the protonation behaviors of
153	carboxyl groups on HA derivatives (Figure 4). MGlu-HA and CHex-HA changed their
154	protonation state in the range of pH 4–10. Considering that pKa of carboxyl groups in
155	the parent HA is reported as 3.04 and that the protonation degree of these carboxyl
156	groups is less than 0.1 at pH 4.5, ⁴² the carboxyl groups in MGlu unit or CHex unit
157	mainly changed their protonation state in the range of pH 4–10. The protonation
158	behaviors of HA derivatives were affected strongly by MGlu/CHex contents or a spacer
159	unit structure next to carboxyl groups. pKa of MGlu-HA/CHex-HA increased
160	concomitantly with increasing MGlu/CHex unit contents in HA derivatives (Table S1).

Figure 4. Acid-base titration curves for HA derivatives.

173	To elucidate the pH-sensitivity of HA derivatives, we evaluated the interaction
174	of HA derivatives with a liposomal membrane. First, HA derivatives were added to
175	pyranine-loaded egg yolk phosphatidylcholine (EYPC) liposomes at various pH. Then,
176	the release of pyranine was monitored (Figure 5). Addition of HA-C ₁₀ to liposome
177	affected the pyranine leakage from liposomes at any pH only slightly, which indicates
178	that the interaction of HA- C_{10} with liposomal membrane might be low, irrespective of
179	the environmental pH. In contrast, addition of MGlu ₂₀ -HA-C ₁₀ and CHex ₂₇ -HA-C ₁₀
180	suppressed the pyranine leakage at neutral pH compared with untreated liposomes
181	(Figures 5A and 5B), but gradually induced content release with decreasing pH (Figures
182	5C-E). These results suggest that the attachment of these polymers stabilized the
183	liposomal membrane but that the liposome membrane was destabilized gradually after
184	protonation of carboxyl groups in HA derivatives. However, the release percentage was
185	almost identical to that in the case of untreated liposomes, even after carboxyl groups
186	were protonated completely at pH 4 (Figure 4). For MGlu ₂₀ -HA-C ₁₀ and CHex ₂₇ -HA-
187	C ₁₀ , the MGlu or CHex unit contents might be insufficient to destabilize the liposomal
188	membrane fully via hydrophobic interactions. MGlu57-HA-C10 and CHex50-HA-C10 also

189	only slightly affected the pyranine release at neutral pH (Figures 5A and 5B), but they
190	exhibited significant content release at acidic pH within 5 min (Figures 5C and 5D).
191	Considering the protonation curves of HA derivatives (Figure 4), more than 80% of
192	carboxyl groups might be protonated at pH 5.1 or 5.7, where significant content release
193	was induced respectively by MGlu ₅₇ -HA-C ₁₀ or CHex ₅₀ -HA-C ₁₀ (Figure 5E). After
194	protonation of most carboxyl groups, these polymers might become hydrophobic and
195	destabilize liposomal membrane within a few minutes. Results show that side chain
196	structures and their contents can control the interaction of HA derivatives with
197	liposomes. MGlu ₂₀ -HA-C ₁₀ and CHex ₂₇ -HA-C ₁₀ had pKa values of 5.4-6.4 (Table S1)
198	but could not induce content release, whereas MGlu ₅₇ -HA-C ₁₀ or CHex ₅₀ -HA-C ₁₀ ,
199	which have pKa values of 6.1-6.7 (Table S1), showed significant contents release.
200	Relatively high pKa values and high MGlu/CHex contents might be required for
201	efficient destabilization of liposomal membranes.

Figure 5. Time-dependence (A-D) and pH-dependence (E) of pyranine release from egg yolk phosphatidylcholine liposomes induced by various HA derivatives. Percent release at neutral pH (A, B) and acidic pH (C, D) and release of pyranine after 30 minincubation (E) were shown. Polymer and lipid concentrations were 0.1 mg/mL and 2.0 × 10^{-5} M, respectively. Each point is the mean \pm SD (n = 3).

209 Preparation of Hyaluronic Acid Derivative-Modified Liposomes. HA

213	of liposomes were investigated (Table 3 and Figure S1). All liposomes had narrow size
214	distribution and average sizes were 130–200 nm, which is a suitable size for cellular
215	uptake. HA derivative-modified liposomes showed more negative zeta potentials than
216	those of unmodified liposomes or HA-C ₁₀ -modified liposomes, indicating the
217	modification of carboxylated HA derivatives onto the liposome surface. Pyranine-
218	loaded liposomes were used to evaluate pH-responsive content release for liposomes
219	(Figure 6). As shown in Figures 6A and 6B, all liposomes retained their contents at
220	neutral pH, whereas MGlu ₅₇ -HA-C ₁₀ -modified liposomes and CHex ₅₀ -HA-C ₁₀ -modified
221	liposomes induced content release within 10 min at acidic pH (Figures 6C and 6D),
222	similarly to the results depicted in Figure 5. Figure 6E represents the pH-dependence of
223	pyranine release from liposomes. Liposomes modified with HA-C ₁₀ or HA derivatives
224	having low MGlu/CHex units showed only slight content release under experimental
225	conditions. In contrast, liposomes modified with HA derivatives having high
226	MGlu/CHex units showed remarkable content release. Especially, CHex ₅₀ -HA-C ₁₀ -
227	modified liposomes induced content release at a higher-pH region than that of MGlu57-
228	HA-C ₁₀ -modified liposomes, probably because intracellular compartments have weakly
229	acidic pH (endo/lysosome). Therefore, CHex ₅₀ -HA-C ₁₀ -modified liposome is expected
230	to respond to intracellular pH after internalization to cells.

Table 3. Particle Sizes and Zeta Potentials of Liposomes

Liposome	Size (nm)	PdI	Zeta potential (mV)
Unmodified	193.5 ± 26.7	0.160 ± 0.107	-4.6 ± 0.3
HA-C ₁₀	160.9 ± 14.7	0.179 ± 0.071	-3.1 ± 0.3
MGlu ₂₀ -HA-C ₁₀	191.5 ± 3.8	0.256 ± 0.030	-47.2 ± 0.4
MGlu57-HA-C10	144.8 ± 8.5	0.282 ± 0.007	-40.7 ± 2.1
CHex ₂₇ -HA-C ₁₀	128.6 ± 6.1	0.133 ± 0.029	-46.7 ± 1.0
CHex ₅₀ -HA-C ₁₀	140.8 ± 8.5	0.148 ± 0.019	-37.8 ± 1.9

233

235 Figure 6. pH-Sensitive contents release behaviors of HA derivative-modified

- after 30 min-incubation (E) of pyranine release from liposomes modified with or
- 238 without HA derivatives were shown. Lipid concentrations were 2.0 \times 10⁻⁵ M. Each

239 point is the mean \pm SD (n = 3).

241	Interaction of Hyaluronic Acid Derivative-Modified Liposomes with Cells.
242	Next, interaction of HA derivative-modified liposomes with cells was investigated.
243	CD44 protein on the cell surface might affect cellular association of HA derivative-
244	modified liposomes. Therefore, CD44 expression in various cells was evaluated using
245	fluorescence-labeled antibody for CD44. As shown in Figure S2, HeLa cells and
246	colon26 cells showed higher expression of CD44 than either MCF-7 cells or NIH3T3
247	cells. Considering these results, HeLa cells and colon26 cells were used respectively as
248	CD44 ^{high} human-derived cells or mouse-derived cells, whereas MCF-7 cells and
249	NIH3T3 cells were used respectively as CD44 ^{low} human-derived cells or mouse-derived
250	cell in the following experiments. After these cells were treated with DiI-labeled
251	liposomes modified with or without HA derivatives, their cellular fluorescence intensity
252	was ascertained using flow cytometric analysis. In the case of CD44 ^{high} cells,
253	modification of HA- C_{10} to EYPC liposomes increased the cellular association of
254	liposomes twice (Figures 7A and 7C), whereas cellular association of HA-C ₁₀ -modified
255	liposomes was identical to that of unmodified liposomes in the case of $CD44^{low}$ cells
256	(Figures 7B and 7D). These results indicate that HA on the liposome surface was

257	recognized by CD44 on HeLa cells or colon26 cells and that internalization of
258	liposomes were promoted. MGlu-HA-C ₁₀ -modified liposomes exhibited almost equal or
259	less cellular association than that of unmodified liposomes, irrespective of the CD44
260	expression on the cells (Figure 7). This equivalence suggests that introduction of MGlu
261	groups to HA interferes with the interaction of HA derivatives with CD44 protein.
262	Alternatively, the negative charge of MGlu-HA-C ₁₀ -modified liposomes (Table 3)
263	suppressed cellular association of liposomes. By contrast, CHex-HA-C ₁₀ -modified
264	liposomes showed much higher cellular uptake by CD44 ^{high} cells alone than by
265	unmodified liposomes (Figures 7A and 7C). Particularly, three-times-higher
266	fluorescence intensity was observed from CHex-HA-C ₁₀ -modified liposome-treated
267	HeLa cells than from HA-C ₁₀ -modified liposomes (Figure 7A). According to our earlier
268	report, CHex unit-introduced dextran derivatives exhibited much higher cellular
269	association than MGlu unit-introduced dextran because of its hydrophobic spacer
270	structure. ³³ However, in the case of HA derivatives, introduction of CHex units to HA
271	showed enhanced cellular association to $CD44^{high}$ cells but no effect to $CD44^{low}$ cells
272	(Figure 7). Hydrophobicity of CHex units might be suppressed by hydrophilic HA
273	backbone compared with dextran. These results suggest that not hydrophobic interaction
274	but interaction via CD44 contributes to the cellular association of CHex-HA-C ₁₀ -

Figure 7. Fluorescence intensity for HeLa cells (A), MCF-7 cells (B), Colon26 cells
(C), and NIH3T3 cells (D) treated with DiI-labeled EYPC liposomes modified with or
without HA derivatives. Cells were incubated with liposomes (lipid concentration: 0.5
mM) for 4 h at 37 °C in serum free medium. Cellular auto fluorescence was corrected.

282	To elucidate the uptake mechanism of HA derivative-modified liposomes,
283	competition assay was applied (Figure 8). HeLa cells were treated with HA-C ₁₀ -
284	modified liposomes or $CHex_{27}$ -HA- C_{10} -modified liposome in the presence of various
285	inhibitors. Cellular association of HA-C ₁₀ -modified liposomes was suppressed strongly
286	in the presence of free HA, which indicates that HA-C ₁₀ -modified liposomes were
287	surely taken up via CD44 on HeLa cells. Cellular association of CHex ₂₇ -HA-C ₁₀ -
288	modified liposomes was also suppressed by free HA, indicating that these liposomes
289	were also recognized by CD44 and that introduction of CHex units did not interfere
290	with the interaction with CD44. For the case in which that CHex ₂₇ -HA without decyl
291	groups were used as an inhibitor, cellular association of HA-C ₁₀ -modified liposomes
292	decreased slightly but that of CHex ₂₇ -HA-C ₁₀ -modified liposome was reduced
293	considerably. These results suggest that not only CD44 recognition but also CHex
294	groups contribute to the cellular association of CHex ₂₇ -HA-C ₁₀ -modified liposomes. To
295	evaluate the effects of CHex groups on cellular association, CHex group-introduced
296	dextran (CHex ₄₀ -Dex) ³³ was used for comparison. Results show that CHex ₄₀ -Dex did
297	not affect the cellular association of CHex ₂₇ -HA-C ₁₀ -modified liposome to any great
298	degree. The same tendency was obtained when using colon 26 cells (Figure S3).
299	Therefore, both CHex group and HA backbone might be necessary to enhance the

300	cellular association of liposomes to CD44-expressing cells. CHex units might promote
301	the binding of HA backbone to CD44 proteins via hydrophobic interaction or
302	cyclohexyl structure itself, which is the same backbone structure with polysaccharides.
303	These results suggest that the introduction of CHex groups to HA is effective for
304	promoting liposome uptake by CD44-expressing cells.

Figure 8. Inhibition of cellular association of HA-C₁₀-modified liposomes (open bars)
 and CHex₂₇-HA-C₁₀-modified liposomes (closed bars) by various inhibitors. HeLa cells

were pre-incubated with various inhibitors for 1 h before liposome treatment. Relative

310 fluorescence intensity was calculated as the ratios of the amount of association in the 311 presence of inhibitor to that in the absence of inhibitor.

312

313	Intracellular Delivery of Anticancer Drugs by Hyaluronic Acid Derivative-
314	Modified Liposomes. Finally, the intracellular distribution of liposomes was examined.
315	DiI-labeled liposomes were applied to HeLa cells. Then DiI fluorescence in the cells
316	were detected using confocal laser scanning microscopy (Figure 9). For cells treated
317	with unmodified liposomes and MGlu57-HA-C10-modified liposomes, most DiI
318	fluorescence was observed from the periphery of cells (Figures 9A and 9C). In the cases
319	of HA-C ₁₀ -modified liposomes and CHex ₅₀ -HA-C ₁₀ -modified liposomes, DiI
320	fluorescence was found to exist not only at the cellular periphery but also inside of the
321	cells as punctate fluorescence (Figures 9B and 9D). These results indicate that the
322	recognition of HA-C ₁₀ -modified liposomes and CHex ₅₀ -HA-C ₁₀ -modified liposomes by
323	CD44 better promote the internalization of liposomes than the recognition of other
324	liposomes. Intracellular distribution of liposomes were further analyzed by staining of
325	intracellular acidic compartments (endosomes and lysosomes) (Figure S4). Liposome-
326	derived fluorescence dots inside of cells were overlapped with fluorescence derived
327	from LysoTracker, which indicates that liposomes were trapped in endosome or

328 lysosomes after internalization to the cells.

Figure 9. Confocal laser scanning microscopic (CLSM) images of HeLa cells treated
with DiI-labeled EYPC liposomes modified without (A) or with HA-C₁₀ (B), MGlu₅₇HA-C₁₀ (C) and CHex₅₀-HA-C₁₀ (D) for 4 h at 37 °C in serum-free medium. Bar
represents 20 μm.

340	CHex $_{50}$ -HA-C $_{10}$ -modified liposomes (Table S2). This result might derive from slight
341	destabilization of liposomal membrane during the preparation of $MGlu_{57}$ -HA-C ₁₀ - or
342	CHex ₅₀ -HA-C ₁₀ -modified liposomes because the lipid membrane was dispersed in pH
343	6.0 aqueous solution for preparing pH gradient to encapsulate DOX. However, these
344	liposomes retained nanometer size and negative zeta potentials after DOX loading
345	(Figure S5 and Table S2). HeLa cells were incubated with DOX-loaded liposomes.
346	Then the intracellular distribution of DOX was detected using CLSM (Figure 10). For
347	cells treated with unmodified liposomes, DOX fluorescence was observed from the cell
348	periphery as with Figure 9 (Figure 10A). In the case of HA-C ₁₀ -modified liposome-
349	treated cells, dotted DOX fluorescence was observed from the periphery and inside of
350	the cells (Figure 10B). This observation suggests that HA-C ₁₀ -modified liposomes were
351	taken up by cells, but they were trapped in endo/lysosomes because of their pH-
352	insensitive properties. By contrast, cells treated with HA derivative-modified liposomes
353	showed punctate fluorescence within cells and diffused fluorescence in the nucleus
354	(Figures 10C and 10D). Particularly, CHex ₅₀ -HA-C ₁₀ -modified liposomes exhibited
355	high performance to deliver DOX into the nucleus. These results reflect the pH-
356	responsive membrane disruptive ability (Figures 5 and 6) and high cellular association
357	(Figure 7) of HA derivatives. Results show that HA-derivative-modified liposomes

358	were internalized to cells and were trapped in endo/lysosomes (Figure S4).
359	Subsequently, HA derivatives might become hydrophobic responding to acidic pH in
360	endo/lysosomes and might destabilize liposomes and endo/lysosomal membrane,
361	leading to delivery of DOX into cytosol and accumulation of DOX into the nucleus,
362	whereas DiI fluorescence was observed from the same location with endo/lysosomes
363	because of its hydrophobic property (Figure S4). Compared with MGlu ₅₇ -HA-C ₁₀ -
364	modified liposomes, CHex ₅₀ -HA-C ₁₀ -modified liposomes better induced content release
365	in a high-pH region (Figure 6). Therefore, CHex ₅₀ -HA-C ₁₀ -modified liposomes might
366	respond to pH decrease in endosomes with earlier timing and might show higher
367	intracellular delivery performance than MGlu ₅₇ -HA-C ₁₀ -modified liposomes show.
368	Consequently, liposomes modified with HA derivatives, particularly CHex group-
369	introduced HA derivatives, might be effective as intracellular drug delivery carriers to
370	CD44-expressing cancerous cells. To elucidate DDS performance of CHex group-
371	introduced HA derivative-modified liposome, cytotoxicity against HeLa cells was
372	investigated (Figure S6). Compared with DOX-loaded liposomes without HA
373	derivatives, DOX-loaded CHex ₅₀ -HA-C ₁₀ -modified liposomes exhibited strong
374	cytotoxicity, which is comparable with free DOX. These results reflect the efficient
375	DOX delivery to nucleus by CHex ₅₀ -HA-C ₁₀ -modified liposomes (Figure 10D).

388	only to a	slight	degree b	by CD44-lov	/ cells.	These	liposomes	can	deliver	anticancer	drugs
-----	-----------	--------	----------	-------------	----------	-------	-----------	-----	---------	------------	-------

- to the interior of cells via pH-responsive membrane disruptive ability in
- 390 endo/lysosomes. Therefore, pH-sensitive hyaluronic acid derivative-modified liposomes
- are promising as CD44-positive cell-specific intracellular drug delivery systems.

393 Materials and Methods

394 **Materials.** Egg yolk phosphatidylcholine (EYPC) was kindly donated by NOF Co.

- 395 (Tokyo, Japan). 3-Methylglutaric anhydride, 1,2-cyclohexanedicarboxylic anhydride
- and *p*-xylene-bis-pyridinium bromide (DPX) were purchased from Sigma (St. Louis,
- MO.). Hyaluronic acid potassium salt (Mw:8,000-50,000), 1-aminodecane, pyranine
- and Triton X-100 were obtained from Tokyo Chemical Industries Ltd. (Tokyo, Japan).
- 4-Dimethylaminopyridine (DMAP) was obtained from nacalai tesque (Kyoto, Japan). 4-

400 (4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl morpholinium chloride (DMT-MM) was

- 401 from Wako Pure Chemical Industries Ltd. (Osaka, Japan). 1,1'-Dioctadecyl-3,3,3',3'-
- 402 tetramethylindocarbocyanine perchlorate (DiI) was from Life technologies. pH-sensitive
- 403 dextran derivative (CHex₄₀-Dex) was prepared as previously reported.³³ Doxorubicin

404 (DOX) was kindly donated by Kyowa Hakko Kirin Co. Ltd. (Tokyo, Japan).

- 407 converted to free acidic form by addition of hydrochloric acid (pH 2.0) and
- 408 subsequently lyophilized. 3-Methyl-glutarylated hyaluronic acid (MGlu-HA) and 2-
- 409 carboxycyclohexane-1-carboxylated hyaluronic acid (CHex-HA) were prepared by
- 410 reaction of hyaluronic acid with 3-methylglutaric anhydride and 1,2-

411	cyclohexanedicarboxylic anhydride, respectively. A given amount of dimethyl sulfoxide
412	(DMSO) was added to hyaluronic acid and stirred at 90 °C for 30 min under argon
413	atmosphere. After cooling to room temperature, DMAP and dicarboxylic anhydrides
414	were added to DMSO solution of HA. The mixed solution was kept at a given
415	temperature for 24 h with stirring under argon atmosphere. Then, saturated sodium
416	hydrogen carbonate aqueous solution was added to the reaction mixture for
417	neutralization and the reaction mixture was dialyzed against water for 3 days. The
418	product was recovered by freeze-drying. ¹ H NMR for MGlu-HA (400 MHz,
419	D ₂ O+NaOD): δ 0.9 (s, -CO-CH ₂ -CH(CH ₃)-CH ₂ -), 1,9 – 2.3 (br, -CO-CH ₂ -CH(CH ₃)-
420	CH ₂ -, -NH-CO(CH ₃)), 3.3 – 4.0 (br, glucose 2H, 3H, 4H, 5H, 6H), 4.6-4.8 (br, glucose
421	1 <i>H</i>). ¹ H NMR for CHex-HA (400 MHz, D ₂ O+NaOD) : δ 1.3-2.2 (m, -cyclo-CH ₂ , -NH-
422	CO(CH ₃)), 2.6-3.0 (m, cyclo-CH), 3.3 – 4.0 (br, glucose 2H, 3H, 4H, 5H, 6H), 4.6 – 4.8
423	(br, glucose 1 <i>H</i>).
424	As anchor moieties for fixation of MGlu-HA, CHex-HA and HA onto
425	liposome membranes, 1-aminodecane was combined with carboxyl groups of MGlu-
426	HA, CHex-HA and HA. Each polymer was dissolved in water around pH 7.4, and 1-
427	aminodecane (0.1 equiv. to hydroxyl group of polymer) was reacted to carboxyl groups
428	of the polymer using DMT-MM (0.1 equiv. to hydroxyl group of polymer) at room

429	temperature for 10-23 h with stirring. The obtained polymers were purified by dialysis
430	in water. The compositions for polymers were estimated using ¹ H NMR. ¹ H NMR for
431	MGlu-HA-C ₁₀ (400 MHz, D ₂ O+NaOD) : δ 0.9 (s, -CO-CH ₂ -CH(CH ₃)-CH ₂ -, -CO-NH-
432	CH ₂ -(CH ₂) ₈ -CH ₃), 1.2 – 1.4 (br, -CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 1.9 – 2.3 (br, -CO-CH ₂ -
433	CH(CH ₃)-CH ₂ -, -NH-CO(CH ₃)), 2.5 (br, -CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 3.3 – 4.0 (br,
434	glucose 2 <i>H</i> , 3 <i>H</i> , 4 <i>H</i> , 5 <i>H</i> , 6 <i>H</i>), 4.6-4.8 (br, glucose 1 <i>H</i>). ¹ H NMR for CHex-HA-C ₁₀
435	(400 MHz, D ₂ O+NaOD) : δ 0.9 (br, -CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 1.3-2.2 (m, -cyclo-
436	CH ₂ , -CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃ , -NH-CO(CH ₃)), 2.6-3.0 (m, cyclo-CH), 3.2 (br, -CO-
437	NH-CH ₂ -(CH ₂) ₈ -CH ₃), 3.3 – 4.0 (br, glucose 2H, 3H, 4H, 5H, 6H), 4.6 – 4.8 (br,
438	glucose 1 <i>H</i>). ¹ H NMR for HA-C ₁₀ (400 MHz, D ₂ O+NaOD) : δ 0.9 (br, -CO-NH-CH ₂ -
439	(CH ₂) ₈ -CH ₃), 1.2-1.4 (m, -CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃) 1.9-2.0 (s, -NH-CO(CH ₃)), 2.5
440	(br, -CO-NH-CH ₂ -(CH ₂) ₈ -CH ₃), 3.3 – 4.0 (br, glucose 2H, 3H, 4H, 5H, 6H), 4.6 – 4.8
441	(br, glucose 1 <i>H</i>).
442	
443	Titration. To 40 mL of an aqueous solution of each polymer (carboxylate

concentration: 3.0×10^{-4} M) was added an appropriate amount of 0.1 M NaOH solution 444

- to make pH 11.0. The titration was carried out by the stepwise addition of 0.01 M HCl 445
- solution at 25 °C, and pH and conductivity of the solution were monitored. 446

448	Cell Culture. Human cervix adenocarcinoma-derived HeLa cell, human breast cancer-
449	derived MCF-7 cell and murine embryo fibroblast-derived NIH3T3 cell were grown in
450	DMEM supplemented with 10% FBS (MP Biomedical, Inc.) and antibiotics at 37 °C.
451	Murine colon adenocarcinoma-derived Colon-26 cell was grown in RPMI-1640
452	supplemented with 10% FBS and antibiotics at 37 °C.
453	
454	Preparation of Liposomes. To a dry, thin membrane of EYPC (10 mg) was dispersed
455	in aqueous 35 mM pyranine, 50 mM DPX, and 25 mM phosphate solution (pH 7.4, 1.0
456	mL). The liposome suspension was further hydrated by freezing and thawing, and was
457	extruded through a polycarbonate membrane with a pore size of 100 nm. The liposome
458	suspension was purified with ultracentrifugation for 2 h at 4 °C twice. Polymer-
459	modified liposomes were also prepared according to the above procedure using dry
460	membrane of a lipid mixture with polymers (lipids/polymer = $7/3$, w/w). For
461	encapsulation of DOX, dry membrane of a lipid mixture with polymers was dispersed in
462	300 mM ammonium sulfate (pH 6.0). The obtained liposome suspension was extruded
463	through a polycarbonate membrane with a pore diameter of 100 nm and outer phase of
464	liposome was substituted to PBS (pH 7.4) for formation of pH gradient. Then aqueous

465	DOX solution (10 mg/mL) was added to the liposome suspension at DOX/lipid (g/mol)
466	ratio of 75 and the mixed solution was incubated for 1 h at 30 °C. Free DOX was
467	removed from the liposome suspension by ultracentrifugation for 2 h at 4 $^{\circ}$ C.
468	Encapsulation efficiency of DOX by liposomes was estimated from absorbance of DOX
469	at 499 nm for the DOX-loaded liposomes dissolved in 0.3 M HCl (50%) –ethanol (50%)
470	before and after purification with ultracentrifugation.
471	
472	Dynamic Light Scattering and Zeta Potential. Diameters and zeta potentials of the
473	liposomes (0.2 mM of lipid concentration) were measured using a Zetasizer Nano ZS
474	ZEN3600 (Malvern Instruments Ltd, Worcestershire, UK). Data was obtained as an
475	average of more than three measurements on different samples.
476	
477	Release of Pyranine from Liposome. Release of pyranine from liposome was
478	measured as previously reported. ^{29-33,44} To a suspension of pyranine-loaded EYPC
479	liposomes (lipid concentration 2.0×10^{-5} M) in PBS of varying pHs was added varying
480	HA derivatives dissolved in the same buffer. For evaluation of polymer-modified
481	liposomes, pyranine-loaded liposomes (lipid concentration: 2.0×10^{-5} M) were added
482	to PBS of varying pH at 37 °C and fluorescence intensity (512 nm) of the mixed

suspension was followed with excitation at 416 nm using a spectrofluorometer (Jasco 483FP-6500, FP-6200). The percent release of pyranine from liposomes was defined as 484Release (%) = $(F_t - F_i) / (F_f - F_i) \times 100$ 485where F_i and F_t mean the initial and intermediary fluorescence intensities of the 486 liposome suspension, respectively. $F_{\rm f}$ is the fluorescent intensity of the liposome 487suspension after the addition of TritonX-100 (final concentration: 0.1%). 488 489**Immunostaining of CD44 on cells.** Cells $(2 \times 10^5 \text{ cells})$ cultured for overnight in 35-490 491mm glass-bottom dishes were washed with PBS, and then incubated in phenol red-free DMEM containing 10% FBS and 1% BSA (1 mL). PE-labeled anti-human CD44 492antibody (10 µL, BD Biosciences) was added gently to the cells and incubated for 4 h at 493 494 37 °C. After the incubation, the cells were washed with PBS three times. Confocal laser scanning microscopic (CLSM) analysis of these cells was performed using LSM 5 495EXCITER (Carl Zeiss Co. Ltd.). For flow cytometric analysis, cells $(1 \times 10^6 \text{ cells})$ were 496 suspended in PBS containing 2% FBS (100 µL). Subsequently, PE-labeled anti-human 497 CD44 antibody (10 µL, BD Biosciences) or anti-mouse CD44 antibody (0.2 µg/µL, 1 498499µL, BD Biosciences) was added gently to the cells and incubated for 30 min at 4 °C in the dark. The cells were washed with PBS containing 0.1% BSA three times. 500

Fluorescence intensity of these cells was determined by a flow cytometric analysis
(CytoFlex, Beckman Coulter, Inc.). Cellular auto fluorescence was subtracted from each
data.

505	Cellular Association of Liposomes and Inhibition Assay. Liposomes containing Dil
506	were prepared as described above except that a mixture of polymer and lipid containing
507	DiI (0.1 mol%) was dispersed in PBS. Cells (5×10^4 cells) cultured for overnight in 24-
508	well plates were washed with PBS, and then incubated in serum-free DMEM (0.25 mL).
509	The DiI-labeled liposomes (0.5 mM lipid concentration, 0.25 mL) were added gently to
510	the cells and incubated for 4 h at 37 °C. After the incubation, the cells were washed with
511	PBS three times. Fluorescence intensity of these cells was determined by a flow
512	cytometric analysis (CytoFlex, Beckman Coulter, Inc.). Cellular auto fluorescence for
513	each cell was subtracted from each data. Dil fluorescence of each liposome was
514	measured and cellular fluorescence shown in Figure 7 was corrected using liposomal
515	fluorescence intensity. For inhibition assay, free HA (10 mg/mL), CHex-HA (1 mg/mL)
516	and CHex-Dex (1 mg/mL) were pre-incubated to cells for an hour before the incubation
517	of DiI-labeled liposomes for 4 h.

Intracellular Behavior of Liposomes. Cells (2×10^5 cells) cultured for overnight in 35-mm glass-bottom dishes were washed with PBS, and then incubated in serum-free DMEM (1 mL). The DiI-labeled liposomes (1 mM lipid concentration, 1 mL) or DOXloaded liposomes (4 µg/mL DOX concentration, 1 mL) were added gently to the cells and incubated for 4 h at 37 °C. After the incubation, the cells were washed with PBS three times. CLSM analysis of these cells was performed using LSM 5 EXCITER (Carl Zeiss Co. Ltd.).

526 Associated conte	nt
----------------------	----

527 Supporting information

- 528 The Supporting Information is available free of charge on the ACS Publications website
- 529 at DOI: XXX.

530	Figures and Tables showing the pKa of HA derivatives, size distribution of
531	liposomes, CD44 expression in various cells, inhibition assay for colon 26
532	cells, intracellular distribution of liposomes, characterization of DOX-loaded

- 533 liposomes and cytotoxicity of liposomes.
- 534

535 Author information

536 **Corresponding author:**

- 537 *E-mail: yuba@chem.osakafu-u.ac.jp. Phone: +81-722-54-9913. Fax: +81-722-54-
- 538 **9330**.
- 539
- 540 **ORICD**
- 541 Eiji Yuba: 0000-0003-4984-2113
- 542
- 543 **Notes**

544 The authors declare no competing financial interest.

546	Acknowledgments
547	This work was supported by JSPS KAKENHI Grant number (15H03024) and
548	the Kao Foundation for Arts and Sciences.
549	
550	Abbreviations
551	HA, hyaluronic acid; DOX, doxorubicin; MGlu, 3-methyl glutarylated; CHex, 2-
552	carboxycyclohexane-1-carboxylated; EYPC, egg yolk phosphatidylcholine; Dex,
553	dextran; CLSM, confocal laser scanning microscopy

555 **References**

- Duncan, R. (2003) The dawning era of polymer therapeutics. *Nat. Rev. Drug Discov.* 2, 347–360.
- Mura, S., Nicolas, J., Couvreur, P. (2013) Stimuli-responsive nanocarriers for drug
 delivery. *Nat. Mater.* 12, 991–1003.
- 560 3. Stewart, M. P., Sharei, A., Ding, X., Sahay, G., Langer, R., Jensen, K. F. (2016) In
- vitro and ex vivo strategies for intracellular delivery. *Nature 538*, 183–192.
- 4. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K. (2000) Tumor vascular
- 563 permeability and the EPR effect in macromolecular therapeutics: a review. J.
- 564 *Control. Release 65*, 271–284.
- 565 5. Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M.,
- 566 Terada, Y., Kano, M. R., Miyazono, K., Uesaka, M., et al. (2011) Accumulation of
- sub-100 nm polymeric micelles in poorly permeable tumours depends on size. *Nat.*
- 568 *Nanotechnol.* 6, 815–823.
- 569 6. Barenholz, Y. (2012) Doxil® the first FDA-approved nano-drug: lessons learned.
- 570 *J. Control. Release 160*, 117–134.
- 571 7. Iyer, A. K., Singh, A., Ganta, S., Amiji, M. M. (2013) Role of integrated cancer
- nanomedicine in overcoming drug resistance. *Adv. Drug Deliv. Rev.* 65, 1784–1802.

574		strategies for selective delivery of therapeutics and imaging agents to the tumour
575		vasculature. Drug Resist. Updat. 8, 381–402.
576	9.	Song, Z., Lin, Y., Zhang, X., Feng, C., Lu, Y., Gao, Y., Dong, C. (2017) Cyclic
577		RGD peptide-modified liposomal drug delivery system for targeted oral apatinib
578		administration: enhanced cellular uptake and improved therapeutic effects. Int. J.
579		Nanomedicine 12, 1941–1958.
580	10	. Sriraman, S. K., Salzano, G., Sarisozen, C., Torchilin, V. (2016) Anti-cancer
581		activity of doxorubicin-loaded liposomes co-modified with transferrin and folic
582		acid. Eur. J. Pharm. Biopharm. 105, 40–49.
583	11	. Kono, K., Takashima, M., Yuba, E., Harada, A., Hiramatsu, Y., Kitagawa, H., Otani,
584		T., Maruyama, K., Aoshima, S. (2015) Multifunctional liposomes having target
585		specificity, temperature-triggered release, and near-infrared fluorescence imaging
586		for tumor-specific chemotherapy. J. Control. Release 216, 69-77.
587	12	. Wang, M., Li, J., Li, X., Mu, H., Zhang, X., Shi, Y., Chu, Y., Wang, A., Wu, Z.,
588		Sun, K. (2016) Magnetically and pH dual responsive dendrosomes for tumor
589		accumulation enhanced folate-targeted hybrid drug delivery. J. Control. Release.
590		232, 161–174.

573 8. Temming, K., Schiffelers, R. M., Molema, G., Kok, R. J. (2005) RGD-based

591	13. Kono, K., Ozawa, I., Yoshida, I., Ozaki, F., Ishizaka, Y., Maruyama, K., Kojima, C.,
592	Harada, A., Aoshima, S. (2010) Highly temperature-sensitive liposomes based on a
593	thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 31,
594	7096–7105.
595	14. Guo, Y., Zhang, Y., Ma, J., Li, Q., Li, Y., Zhou, X., Zhao, D., Song, H., Chen, Q.,
596	Zhu, X. (2017) Light/magnetic hyperthermia triggered drug released from multi-
597	functional thermo-sensitive magnetoliposomes for precise cancer synergetic
598	theranostics. J. Control. Release in press.
599	15. Matsuki, D., Adewale, O., Horie, S., Okajima, J., Komiya, A., Oluwafemi, O.,

~

-

т 1 •

17 17

г

- 600 Maruyama, S., Mori, S., Kodama, T. (2017) Treatment of tumor in lymph nodes
- 601 using near-infrared laser light-activated thermosensitive liposome-encapsulated
- 602 doxorubicin and gold nanorods. J. Biophotonics in press.

* 7

- 603 16. Yan, F., Duan, W., Li, Y., Wu, H., Zhou, Y., Pan, M., Liu, H., Liu, X., Zheng, H.
- 604 (2016) NIR-laser-controlled drug release from DOX/IR-780-loaded temperature-
- sensitive-liposomes for chemo-photothermal synergistic tumor therapy.
- 606 *Theranostics* 6, 2337–2351.

- - 1

10 17

607	17. Li, T., Amari, T., Semba, K., Yamamoto, T., Takeoka, S. (2017) Construction and
608	evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer
609	drug to ErbB2 over-expressing breast cancer cells. Nanomedicine 13, 1219–1227.
610	18. Vila-Caballer, M., Codolo, G., Munari, F., Malfanti, A., Fassan, M., Rugge, M.,
611	Balasso, A., de Bernard, M., Salmaso, S. (2016) A pH-sensitive stearoyl-PEG-
612	poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein
613	delivery: An application for bladder cancer treatment. J. Control. Release 238, 31-
614	42.
615	19. Zhao, Y., Ren, W., Zhong, T., Zhang, S., Huang, D., Guo, Y., Yao, X., Wang, C.,
616	Zhang, W. Q., Zhang, X., et al. (2016) Tumor-specific pH-responsive peptide-
617	modified pH-sensitive liposomes containing doxorubicin for enhancing glioma
618	targeting and anti-tumor activity. J. Control. Release 222, 56-66.
619	20. Dai, M., Wu, C., Fang, H. M., Li, L., Yan, J. B., Zeng, D. L., Zou, T. (2017)
620	Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug
621	delivery. J. Microencapsul. 34, 408–415.
622	21. Luo, L., Bian, Y., Liu, Y., Zhang, X., Wang, M., Xing, S., Li, L., Gao, D. (2016)
623	Gold nanoshells: combined near infrared photothermal therapy and chemotherapy
624	using gold nanoshells coated liposomes to enhance antitumor effect. Small 12, 4102.

625	22. Swenson, C. E., Haemmerich, D., Maul, D. H., Knox, B., Ehrhart, N., Reed, R. A.
626	(2015) Increased duration of heating boosts local drug deposition during
627	radiofrequency ablation in combination with thermally sensitive liposomes
628	(ThermoDox) in a porcine model. PLoS One 10, e0139752.
629	23. Mikhail, A. S., Negussie, A. H., Pritchard, W. F., Haemmerich, D., Woods, D.,
630	Bakhutashvili, I., Esparza-Trujillo, J., Brancato, S. J., Karanian, J., Agarwal, P. K.,
631	et al. (2017) Lyso-thermosensitive liposomal doxorubicin for treatment of bladder
632	cancer. Int. J. Hyperthermia 1–8.
633	24. Dou, Y., Hynynen, K., Allen, C. (2017) To heat or not to heat: Challenges with
634	clinical translation of thermosensitive liposomes. J. Control. Release 249, 63-73.
635	25. Ellens, H., Bentz, J., Szoka, F. C. (1984) pH-Induced destabilization of
636	phosphatidylethanolamine-containing liposomes: role of bilayer contact.
637	<i>Biochemistry 23</i> , 1532–1538.
638	26. Seki, K., Tirrell, D. A. (1984) pH-Dependent complexation of poly(acrylic acid)
639	derivatives with phospholipid vesicle membrane. Macromolecules 17, 1692–1698.
640	27. Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S., Hoffman, A. S. (1999)

- 641 The design and synthesis of polymers for eukaryotic membrane disruption. J.
- 642 *Control. Release 61*, 137–143.

- 643 28. Kono, K., Igawa, T., Takagishi, T. (1997) Cytoplasmic delivery of calcein mediated
- by liposomes modified with a pH-sensitive poly(ethylene glycol) derivative.
- 645 Biochim. Biophys. Acta 1325, 143–154.
- 646 29. Sakaguchi, N., Kojima, C., Harada, A., Kono, K. (2008) Preparation of pH-sensitive
- 647 poly(glycidol) derivatives with varying hydrophobicities: their ability to sensitize
- stable liposomes to pH. *Bioconjug. Chem.* 19, 1040–1048.
- 649 30. Yuba, E., Harada, A., Sakanishi, Y., Kono, K. (2011) Carboxylated hyperbranched
- 650 poly(glycidol)s for preparation of pH-sensitive liposomes. *J. Control. Release, 149*,
- 651
 72-80.
- 652 31. Yuba, E., Tajima, N., Yoshizaki, Y., Harada, A., Hayashi, H., Kono, K. (2014)
- 653 Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy.
- 654 *Biomaterials 35*, 3091–3101.
- 655 32. Yuba, E., Yamaguchi, A., Yoshizaki, Y., Harada, A., Kono, K. (2017) Bioactive
- 656 polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and
- activation of antigen-specific immunity. *Biomaterials* 120, 32–45.
- 658 33. Yuba, E., Uesugi, S., Miyazaki, M., Kado, Y., Harada, A., Kono, K. (2017)
- 659 Development of pH-sensitive dextran derivatives with strong adjuvant function and
- their application to antigen delivery. *Membranes* 7, 41.

661	34. Cosco, D., Tsapis, N., Nascimento, T. L., Fresta, M., Chapron, D., Taverna, M.,
662	Arpicco, S., Fattal, E. (2017) Polysaccharide-coated liposomes by post-insertion of a
663	hyaluronan-lipid conjugate. Colloids Surf. B Biointerfaces 158, 119–126.
664	35. Mattheolabakis, G., Milane, L., Singh, A., Amiji, M. M. (2015) Hyaluronic acid
665	targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J.
666	Drug Target. 23, 605–618.
667	36. Zhang, Y., Chan, J. W., Moretti, A., Uhrich, K. E. (2015) Designing polymers with
668	sugar-based advantages for bioactive delivery applications. J. Control. Release 219,
669	355–368.
670	37. Kang, B., Opatz, T., Landfester, K., Wurm, F. R. (2015) Carbohydrate nanocarriers
671	in biomedical applications: functionalization and construction. Chem. Soc. Rev. 44,

- 8301-8325. 672
- 38. Miyazaki, M., Yuba, E., Harada, A., Kono, K. (2015) Hyaluronic acid derivative-673
- modified liposomes as pH-sensitive anticancer drug delivery system. J. Control. 674
- 675 Release 213, e73-e74.
- 39. Weissmann, B., Meyer, K. (1954) The structure of hyalobiuronic acid and of 676
- hyaluronic acid from umbilical cord. J. Am. Chem. Soc. 27, 1753-1757. 677
- 40. Platt, V. M., Szoka, F. C. Jr. (2008) Anticancer therapeutics: targeting 678

680	Mol. Pharm. 5, 474–486.
681	41. Hyukijin, L., Kyuri, L., Tae, G. P. (2008) Hyaluronic acid-paclitaxel conjugate
682	micelles: synthesis, characterization, and antitumor activity. Bioconjug. Chem. 19,
683	1319–1325.
684	42. Magnani, A., Silvestri, V., Barbucci, R. (1999) Hyaluronic acid and sulfated
685	hyaluronic acid in aqueous solution: effect of the sulfation on the protonation and
686	complex formation with Cu^{2+} and Zn^{2+} ions. <i>Macromol. Chem. Phys.</i> 200, 2003–
687	2014.
688	43. Lewrick, F., Süss, R. (2010) Remote loading of anthracyclines into liposomes.
689	Methods Mol. Biol. 605, 139–145.
690	44. Daleke, D. L., Hong, K., Papahadjopoulos, D. (1990) Endocytosis of liposomes by
691	macrophages: binding, acidification and leakage of liposomes monitored by a new

macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor.

fluorescence assay. *Biochim. Biophys. Acta 1024*, 352–366.

693

Table of content:

697	Supp	orting	infor	mation
	$\sim - p p$	5		

698	
699	Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific
700	intracellular drug delivery systems
701	
702	Maiko Miyazaki ¹ , Eiji Yuba ^{1, *} , Hiroshi Hayashi ² , Atsushi Harada ¹ , and Kenji Kono ¹
703	
704	¹ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture
705	University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
706	² Science Lin, 1-1-35 Nishiawaji, Higashiyodogawa-Ku, Osaka, Osaka 533-0031, Japan
707	
708	*Corresponding authors: Eiji Yuba
709	Tel: +81-722-54-9913; Fax: +81-722-54-9330; yuba@chem.osakafu-u.ac.jp

Table S1. pKa of HA derivatives

Polymer	pKa
MGlu10-HA	5.37 ± 0.16
MGlu43-HA	6.01 ± 0.04
MGlu52-HA	6.13 ± 0.02
CHex18-HA	6.33 ± 0.05
CHex34-HA	6.37 ± 0.03
CHex60-HA	6.70 ± 0.01

Figure S1. Size distribution of liposomes modified with or without HA derivatives.

Figure S2. Confocal laser scanning microscopic (CLSM) images for HeLa cells (A) or MCF-7 (B) cells treated with anti-human PE-CD44 antibody for 4 h at 37 °C in phenol red-free 10% FBS medium. Scale bar represents 20 μ m. (C, D) Fluorescence intensity for human cell lines treated with anti-human PE-CD44 antibody (C) or mouse cell treated

- 721 with anti-mouse PE-CD44 antibody (D). Cellular auto fluorescence was corrected.
- 722

Figure S3. Inhibition of cellular association of HA-C₁₀-modified liposomes (open bars) and CHex₂₇-HA-C₁₀-modified liposomes (closed bars) by various inhibitors. Colon26 cells were pre-incubated with various inhibitors for 1 h before liposome treatment. Relative fluorescence intensity was calculated as the ratios of the amount of association in the presence of inhibitor to that in the absence of inhibitor.

Figure S4. CLSM images of HeLa cells treated with DiI-labeled liposomes with or
without HA derivatives for 4 h. Intracellular acidic organelle was stained by LysoTracker
Green. Scale bars represent 20 µm. Line profiles of fluorescence intensity in merged
images were also shown.

Liposome	Encapsulation efficiency (%)	Z-average (nm)	PdI	Zeta potential (mV)
Unmodified	99.7 ± 3.5	138.4 ± 1.2	0.096 ± 0.023	-8.2 ± 0.8
HA-C ₁₀	97.9 ± 9.6	137.3 ± 2.8	0.103 ± 0.011	-8.8 ± 0.2
MGlu57-HA-C10	73.3 ± 12.6	122.2 ± 2.0	0.167 ± 0.038	-36.7 ± 1.3
CHex ₅₀ -HA-C ₁₀	79.5 ± 6.8	131.9 ± 12.2	0.153 ± 0.055	$\textbf{-39.8}\pm0.1$

Table S2. Particle Sizes and Zeta Potentials of DOX-Loaded Liposomes

737

Figure S6. Cell viability of HeLa cells treated with free DOX or DOX-loaded liposomes

741 modified with or without CHex50-HA as indicating DOX concentrations for 24 h.