

学術情報リポジトリ

Carboxylated phytosterol derivative-introduced liposomes for skin environment-responsive transdermal drug delivery system

メタデータ	言語: eng
	出版者:
	公開日: 2019-01-25
	キーワード (Ja):
	キーワード (En):
	作成者: Yamazaki, Naoko, Yamakawa, Satoshi,
	Sugimoto, Takumi, Yoshizaki, Yuta, Teranishi, Ryoma,
	Hayashi, Takaaki, Kotaka, Aki, Shinde, Chiharu, Kumei,
	Takayuki, Sumida, Yasushi, Shimizu, Toru, Ohashi,
	Yukihiro, Yuba, Eiji, Harada, Atsushi, Kono, Kenji
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/16173

1	Carboxylated phytosterol derivative-introduced liposomes for skin
2	environment-responsive transdermal drug delivery system
3	
4	Naoko Yamazaki ^{a,b} , Satoshi Yamakawa ^c , Takumi Sugimoto ^b , Yuta Yoshizaki ^b , Ryom
5	Teranishi ^b , Takaaki Hayashi ^b , Aki Kotaka ^a , Chiharu Shinde ^a , Takayuki Kumei ^a , Yasush
6	Sumida ^a , Toru Shimizu ^c , Yukihiro Ohashi ^c , Eiji Yuba ^{b,*} , Atsushi Harada ^b , and Kenji Kono
7	
8	^a Research Institute, Fancl Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama
9	Kanagawa, Japan
10	^b Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture
11	University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
12	^c Cosmetic Ingredients Laboratory, Nippon Fine Chemical Corporation, 1-1, 5-Chome
13	Umei, Takasago, Hyogo 676-0074, Japan
14	
15	*Corresponding author: Eiji Yuba
16	Department of Applied Chemistry, Graduate School of Engineering,
17	Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
18	Tel.: +81-722-54-9913; Fax: +81-722-54-9330; yuba@chem.osakafu-u.ac.jp
19	

20 Abstract

21 Transdermal drug delivery systems are a key technology for skin-related diseases and for 22 cosmetics development. The delivery of active ingredients to an appropriate site or target 23 cells can greatly improve the efficacy of medical and cosmetic agents. For this study, liposome-based transdermal delivery systems were developed using pH-responsive 24 25 phytosterol derivatives as liposome components. Succinvlated phytosterol (Suc-PS) and 26 2-carboxy-cyclohexane-1-carboxylated phytosterol (CHex-PS) were synthesized by esterification of hydroxy groups of phytosterol. Modification of phytosterol derivatives on 27 28 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes was confirmed by 29 negatively zeta potentials at alkaline pH and the change of zeta potentials with decreasing pH. In response to acidic pH and temperatures higher than body temperature, 30 31 Suc-PS-containing and CHex-PS-containing liposomes exhibited content release at 32 intracellular acidic compartments of the melanocytes at the basement membrane of the skin. 33 Phytosterol-derivative-containing liposomes were taken up by murine melanoma-derived 34 B16-F10 cells. These liposomes delivered their contents into endosomes and cytosol of 35 B16-F10 cells. Furthermore, phytosterol-derivative-containing liposomes penetrated the 36 3D skin models and reached the basement membrane. Results show that pH-responsive

- 37 phytosterol-derivative-containing DMPC liposomes are promising for use in transdermal
- 38 medical or cosmetic agent delivery to melanocytes.
- 39
- 40 Keywords:
- 41 liposome / phytosterol / pH-sensitive / transdermal delivery / cosmetics
- 42

43 Introduction

44 Transdermal drug delivery has been regarded as an alternative to intravenous or oral drug administration. The delivery of cosmetic agents by transdermal routes is 45 46 particularly attractive in the cosmetic field to improve skin condition for beauty care or 47 anti-aging (Cevc et al., 1996). To achieve transdermal drug delivery, active agents such as 48 antioxidants or UV-protective compounds must penetrate into skin and be delivered to target 49 cells such as melanocytes existing in the basement membrane of skin (Shindo et al., 1993). 50 However, penetration of these agents into skin is difficult because the skin surface is covered 51 with the stratum corneum, which comprises ordered keratinocytes and intercellular lipids 52 (Dayan, 2005). To improve the skin penetration of active agents, various transdermal drug delivery systems (TDDS) have been studied using physical techniques (electroporation, 53 54 iontophoresis, and microneedles) and nanocarrier-based techniques (polymeric micelle, 55 liposome, nanogel, etc.) (Barry et al., 1987; Cevc et al., 2002; Damme et al., 2009; 56 Elsabahy et al., 2012; Junginger et al., 1991; Lasch et al., 1996; Shah et al., 2012; Verma et al., 2003; Yamazaki et al., 2016). Among them, liposome-based systems have been 57 58 regarded as attractive TDDS because liposomes are composed mainly of phospholipids, 59 which are compounds found in skin, able to encapsulate both hydrophilic and hydrophobic 60 active agents. They can be functionalized easily by the introduction of functional materials.

61	The skin surface is weakly acidic and about 30 °C, whereas the deep site of skin is
62	35–37 °C, with neutral pH (Abe et al., 1980; Behne et al., 2002; Fox et al., 1973; Harrison et
63	al., 1986). Moreover, after internalization to melanocytes in the basement membrane,
64	liposomes are exposed to acidic environments inside of cells (endosome and lysosome) at
65	35–37 °C. Considering such environmental differences that occur with skin penetration, the
66	introduction of stimuli (pH and temperature)-responsive functions is necessary to produce
67	more efficient liposome-based TDDS.
68	Generally, two strategies are used for the introduction of stimuli-responsive
69	functions to liposomes: the modification of liposomes with stimuli-sensitive polymers or
70	the use of stimuli-sensitive lipids as liposome components. For polymer modification,
71	poly(carboxylic acid)s such as poly(acrylic acid) derivatives, carboxylated poly(glycidol)s
72	or polysaccharides are used for pH-sensitization of liposomes (Kono et al., 1994; Qiu et al.,
73	2014; Seki and Tirrell, 1984; Yuba et al., 2014). Liposomes modified with poly(carboxylic
74	acid)s exhibited content release in response to the pH decrease. These hydrophilic
75	polymers take a random coil structure at neutral pH, but they become hydrophobic and
76	form a globular structure after protonation of carboxy groups at acidic pH, which strongly
77	destabilizes the liposomal membrane via hydrophobic interaction (Kono et al., 1994;
78	Murthy et al., 1999; Yuba et al., 2011). However, polymers generally have molecular

weight distribution. Therefore, precise control of responsiveness to complex externalenvironments such as skin is difficult.

As another strategy for the preparation of pH-sensitive liposomes, the mixture of 81 82 non-bilayer forming lipids such as dioleoylphosphatidylethanolamine (DOPE) and 83 pH-sensitive amphiphiles such as cholesteryl hemisuccinate (CHEMS), ester of cholesterol and succinic acid, has been reported (Hafez et al., 2000; Slepushkin et al., 1997). The 84 85 mixture of DOPE and CHEMS forms a bilayer at neutral pH by hydration of carboxylates 86 of CHEMS, whereas the mixture takes a hexagonal II phase derived from DOPE after 87 protonation of carboxylates of CHEMS at acidic pH, engendering the induction of membrane fusion. CHEMS-based pH-sensitive liposomes are useful as intracellular 88 89 delivery systems for drugs of various kinds, responding to weakly acidic pH in endosomes. However, the use of non-bilayer forming lipid (DOPE) has shortcomings from the 90 91 perspective of liposome stability. In addition, plant-derived sterol, phytosterol, has gained 92 much attention as a crude material for cosmetic additives as alternatives for cholesterol, which is derived from animal organs (Pola Chemical Industry Inc., 2007; The Procter & 93 Gamble Company, 2005; Teshigawara et al., 2009). Although the introduction of 94 95 phytosterol to liposomes or cosmetics has increased the colloidal stability of liposomes

96 (Pola Chemical Industry Inc., 2007; The Procter & Gamble Company, 2005; Muramatsu et 97 al., 1994), these liposomes or formulations have no stimuli-responsive property as TDDS. 98 For this study, the development of skin environment-responsive liposome-based 99 TDDS that can promote the penetration of liposomes to basement membrane and which 100 can achieve controlled release of active ingredients inside of melanocytes was attempted. 101 For pH-sensitization of liposomes, phytosterol derivatives having pH-sensitive function 102 were designed (Fig. 1). Esters of phytosterol with succinic acid or cyclohexanedicarboxylic 103 acid were synthesized via reaction of phytosterol with corresponding dicarboxylic acid 104 anhydrides. Phytosterol derivatives introduced to were 105 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based liposome, which is a 106 bilayer-forming lipid with a gel-to-liquid crystalline transition temperature of 23-24 °C 107 (Needham et al., 1988; Taylor et al., 1995). Therefore, liposome composed of phytosterol 108 derivatives/DMPC is expected to respond to both weakly acidic pH at skin surface or 109 endo/lysosome in melanocytes and temperature during skin penetration (25–37 °C). This 110 study was conducted to characterize phytosterol derivatives, pH-/temperature-sensitivity of 111 phytosterol derivative-introduced liposomes, interaction with melanocytes, and penetration 112 of skin models.

114 Materials and methods

115 Materials

116	Succinic anhydride and 1,2-cyclohexanedicarboxylic acid anhydride were
117	obtained from New Japan Chemical Co., Ltd. (Tokyo, Japan). DMPC was obtained from
118	NOF Corp. (Tokyo, Japan). Calcein was from Sigma-Aldrich Corp. (St. Louis, MO, USA).
119	Lissamine rhodamine B-sulfonylphosphatidylethanolamine (Rh-PE) was purchased from
120	Avanti Polar Lipids Inc. (Birmingham, AL, USA). Triton X-100 was obtained from Tokyo
121	Chemical Industry Co. Ltd. (Tokyo, Japan). Phytosterol was provided from TAMA
122	Biochemical Co., Ltd. (Tokyo, Japan). Its composition was ascertained using gas
123	chromatography as β -sitosterol 46%, campesterol 25%, stigmasterol 21%, brassicasterol
124	3%, and other sterols 5%.
125	
126	Cell culture
127	B16-F10 melanoma cells obtained from Tohoku University (Sendai, Japan) were
128	grown at 37 °C in DMEM containing 10% FBS and antibiotics in a humidified atmosphere
129	containing 5% CO ₂ .

130

131 Synthesis of phytosterol derivatives

132	Phytosterol derivatives were synthesized by the reaction of phytosterol (PS) with
133	various dicarboxylic acid anhydrides. For succinylated phytosterol (Suc-PS), phytosterol
134	(73.6 g, 0.18 mol) and succinic anhydride (20.0 g, 0.20 mol) were dissolved in 190 mL of
135	toluene. Then the solution was stirred with reflux for 8 h under N_2 atmosphere.
136	Subsequently, methyl ethyl ketone (12.6 mL) and purified water (65.0 mL) were added to
137	the reaction solution, which was then kept at 60 °C for 1 h with stirring. Then, the reaction
138	mixture was washed with purified water until the pH of aqueous phase became neutral.
139	Organic phase was concentrated under vacuum and Suc-PS was recrystallized from
140	heptane as a white powder. The yield was 65.4 g (71.4%).
141	2-Carboxy-cyclohexane-1-carboxylated phytosterol (CHex-PS) was synthesized using the
142	same procedure, except that 1,2-cyclohexanedicarboxylic acid anhydrides were used. The
143	yield of CHex-PS was 54.3 g (59.5%). Phytosterol derivatives were characterized using ¹ H
144	NMR, ¹³ C NMR (Figs. S1–S6, JNM-AL-300; JEOL), and FT-IR (Figs. S7–S9,
145	FTIR-8400S; Shimadzu).

Preparation of calcein-loaded liposomes

The given amounts of chloroform/methanol solution of DMPC and phytosterol
derivatives were added to a flask (38 μmol, DMPC/phytosterol derivative = 6/4, mol/mol).

150	Then the solvent was evaporated. After the obtained thin film was dried further overnight
151	under vacuum, it was dispersed in 2 mL of aqueous calcein solution (63 mM, pH 7.4) at
152	90 °C to peel the thin film from the flask completely. The liposome suspension was
153	extruded through a polycarbonate membrane with 100 nm pore diameter at 50 °C, which is
154	a much higher temperature than the liquid-gel crystalline temperature of DMPC (23 $^{\circ}$ C).
155	The free calcein was removed using a column (Sephadex G-50; GE Healthcare UK Ltd.,
156	Buckinghamshire, UK) at 4 °C in a 10 mM phosphate and 137 mM NaCl solution at pH
157	9.0. The lipid concentration was determined using Test-Wako-C (Wako Pure Chemical
158	Industries Ltd., Osaka, Japan). The liposome size and zeta potential were evaluated using
159	dynamic light scattering (ELS-8000 and ELS-Z 1000; Otsuka Electronics Co. Ltd., Tokyo,
160	Japan) in Dulbecco's phosphate buffered saline (PBS) with various pH at 25 °C.
161	Transmission electron microscopy (TEM, JEM-2000FEX II; JEOL Ltd., Tokyo, Japan)
162	with carbon-coated copper grids was used for analysis of the liposomes stained with
163	phosphotungstic acid solution.

165 Calcein release from liposomes

Liposome suspension was added to PBS (4.0 mL) at various pH (pH 4.0–7.4) and
temperatures (25–55 °C). The final concentrations of lipid and calcein were 0.02 mM and

168 0.05 μM, respectively. Calcein fluorescence at 520 nm with excitation at 490 nm was 169 measured using spectrophotofluorimetry (FP-6200, FP-6500, FP-8500S, FP-8600S; Jasco 170 Corp., Spectra Max Gemini EM; Molecular Devices Corp., MT, USA). The incubation 171 time for fluorescence measurements was set to 30 min for analysis of pH-dependence and 172 10 min for analysis of temperature dependence because calcein fluorescence tended to 173 decrease at high temperatures. The percent release of calcein from liposome was defined as 174

175 % Release =
$$(F - F_0)/(F_{100} - F_0) \times 100$$

176

177 where F_0 and F respectively denote the initial and intermediary fluorescence intensities of 178 the liposome suspension at 5 °C. F_{100} is the fluorescence intensity of the liposome 179 suspension after the addition of Triton X-100 (final concentration, 0.2 wt%).

180

181 **Confocal laser scanning microscopic observation**

Liposomes containing Rh-PE were prepared as described above, except that a mixture of DMPC and phytosterol derivatives containing 0.2 mol% of Rh-PE was dispersed in the calcein solution. B16-F10 cells (2.0×10^5 cells) cultured for 24 h in 35 mm glass bottom dishes were washed with PBS containing Ca²⁺ and Mg²⁺ (PBS(+)). Then

186	they were incubated in serum-free DMEM (1 mL). The Rh-PE-labeled and calcein-loaded
187	liposomes (0.4 mM lipid concentration, 1 mL) were added gently to the cells and were
188	incubated for 3 h at 37 °C. After the cells were washed with PBS(+), they were observed
189	using confocal laser scanning microscopy (LSM 5 Exciter; Carl Zeiss Inc., Oberkochen,
190	Germany).
191	
192	Flow cytometry
193	After the B16-F10 cells (5.0×10^4 cells) cultured for 24 h in 24-well plates were
194	washed with PBS(+), they were incubated in serum-free DMEM (0.5 mL). The
195	Rh-PE-labeled and calcein-loaded liposomes (1.0 mM lipid concentration, 0.5 mL) were
196	added gently to the cells and were incubated for 3 h at 37 °C. The cells were washed with
197	PBS(+). The fluorescence intensity of cells detached by trypsin was ascertained using flow
198	cytometric analysis (CytoFlex; Beckman Coulter Inc., Fullerton, CA, USA).
199	
200	Penetration behavior of liposomes in skin models
201	3D skin models (LabCyte EPI-Model; Japan Tissue Engineering Co., Ltd., Aichi,
202	Japan) were used to evaluate liposome penetration. 3D skin models were treated with 0.2
203	mol% Rh-PE-labeled liposomes containing calcein (1 mM lipid and 25.2 μM calcein

204	concentrations) for 24 h in PBS. After removal of the supernatant, 3D skin models were
205	frozen immediately after embedding in Tissue-Tek O.C.T. Compound (Sakura Finetek
206	Japan Co., Ltd., Tokyo, Japan). Skin models were sectioned into 10 μ m slices using a
207	cryomicrotome (CM1520; Leica) and were mounted on glass slides. Confocal laser
208	scanning microscopic (CLSM) analysis of these slides was conducted using an LSM 5
209	Exciter.
210	
211	Statistical analysis
212	Student's <i>t</i> -test was performed in the statistical evaluation of the results (Figs.
213	5, 6 and 8).

215 **Results and Discussion**

216 Characterization of phytosterol derivatives

217 Phytosterol derivatives of two kinds, succinylated phytosterol (Suc-PS) and 2-carboxy-cyclohexane-1-carboxylated phytosterol (CHex-PS), were synthesized by 218 219 reaction of phytosterol with various dicarboxylic acid anhydrides according to an earlier 220 report of the literature (Sakaguchi et al., 2008) (Fig. 2). Because the phytosterol used for 221 this study is a mixture of various sterol derivatives such as β -sitosterol, stigmasterol, 222 campesterol, brassicasterol, and other sterols as described in *Materials*, the introduction of the ester groups to phytosterol was evaluated through comparison of ¹H NMR and ¹³C 223 NMR spectra for the parent phytosterol (Figs. S1 and S4) and for phytosterol derivatives 224 (Figs. S2, S3, S5, and S6). The existence of new peaks corresponding to each dicarboxylic 225 226 acid ester group and the shift of peak corresponding to proton next to sterol hydroxy group (from 3.5 ppm to 4.6 ppm in ¹H NMR and from 71.7 ppm to 74.5 ppm in ¹³C NMR) 227 228 confirmed the complete conversion of sterol hydroxy groups to carboxylic acid ester 229 groups. Introduction of the ester groups was confirmed further by the existence of asymmetric vibration bands corresponding C=O of ester group at around 1700 cm⁻¹ in 230 231 FT-IR spectra (Figs. S8 and S9) compared with the parent phytosterol (Fig. S7).

233 Preparation of phytosterol derivative-containing liposomes

234 Phytosterol derivative-containing liposomes were prepared by the dispersion of mixed thin film composed of DMPC and phytosterol derivatives. Liposome suspension 235 236 was extruded further through a polycarbonate membrane with pore size of 100 nm and was 237 purified using a gel permeation chromatography (GPC) column. In the absence of 238 phytosterol derivatives, the size distribution of DMPC liposomes was too broad and was 239 unstable under experimental conditions (data not shown). In contrast, phytosterol 240 derivative-containing DMPC liposomes showed a narrow size distribution (PDI < 0.20) 241 and size of 100 nm, which corresponds to the pore size diameter during extrusion (Table 1). 242 Reportedly, the introduction of soybean-derived sterol or cholesterol increased the stability of liposomes by adjusting membrane fluidity (Muramatsu et al., 1994). Therefore, the 243 244 introduction of phytosterol or phytosterol derivatives to DMPC liposomes might also 245 increase the liposomal membrane stability. Figure 3 depicts TEM analysis of phytosterol 246 derivative-containing DMPC liposomes. Irrespective of the structure of phytosterol derivatives, 100-200 nm vesicular particles were observed, which is typical for the 247 248 liposome morphology (Di Marzio et al., 2008). These results indicate that the mixture of 249 phytosterol or phytosterol derivative and DMPC can take a stable lamellar phase and can 250 form stable liposomes.

251	To confirm the modification of carboxylated phytosterols onto the liposome, zeta
252	potentials of liposome at various pH were evaluated (Fig. 4). Parent phytosterol-containing
253	liposomes (PS liposomes) showed almost neutral zeta potentials at pH 5-9, indicating that
254	the polar head groups of phytosterol and DMPC did not change the charged state in this pH
255	region. In contrast, phytosterol derivative-containing DMPC liposomes showed negative
256	zeta potentials at pH 9 (-25 - 30 mV). Zeta potentials of these liposomes increased
257	concomitantly with decreasing pH. They became almost neutral at pH 5. These results
258	indicate that deprotonated carboxy groups of phytosterol derivatives were presented onto
259	liposomal membrane at alkaline pH and that these carboxy groups were protonated with
260	decreasing pH. The same tendency was described for DMPC/CHEMS liposomes in earlier
261	reports of the literature (Di Marzio et al., 2008). The zeta potentials of DMPC/CHEMS
262	liposomes in 10 mM Hepes buffer were -82 mV at pH 7.4 and -35 mV at pH 5.5, whereas the
263	zeta potentials of DMPC/cholesterol liposomes changed only slightly at pH 7.4 (-23 mV)
264	and pH 5.5 (-18 mV). Such charge conversion during alkaline pH to weakly acidic pH in
265	phytosterol derivative-containing liposomes might alter the interaction of phytosterol
266	derivatives with lipid membranes. Compared with Suc-PS-containing liposomes,
267	CHex-PS-containing liposomes showed higher zeta potentials at the neutral and weakly
268	acidic pH region, although zeta potentials of these liposomes were almost identical at pH 9.

269	Protonation of carboxy groups was affected strongly by the chemical structure next to the
270	carboxy group. The more hydrophobic structure promotes the protonation of carboxy
271	group, as described for poly(glycidol) derivatives having various side chain structures
272	(Sakaguchi et al., 2008). CHex-PS has a more hydrophobic cyclohexane structure than that
273	of Suc-PS. Therefore, the protonation of carboxy groups in CHex-PS might be promoted
274	compared with Suc-PS. Although we were unable to ascertain the pKa values of PS
275	derivatives by titration because of their insolubility in water and interruption by turbidity,
276	the hydrophobic structure of CHex-PS might increase the protonation degree of carboxy
277	group on liposome surface compared with Suc-PS, leading to the increased pKa value.
278	
279	Stimuli-sensitive properties of phytosterol derivative-containing liposomes

Zeta potentials of phytosterol derivative-containing DMPC liposomes changed depending on the environmental pH (Figure 4). Therefore, pH-responsive drug release behaviors of these liposomes were evaluated using fluorescence dye calcein-loaded liposomes. Figure 5 depicts the pH-dependence of calcein release from liposomes after 30 min incubation at 25 °C and 35 °C: the latter corresponds to the temperature at the deep site of skin (Fox et al., 1973). Under the temperatures and pH region used for experiments, PS liposome showed no calcein release, which indicates that this liposome is quite stable

287	under these conditions. In contrast, phytosterol derivative-containing liposomes exhibited
288	content release at low pH, which is the same result as that obtained in the case of
289	DMPC/CHEMS liposomes (Di Marzio et al., 2008). At neutral pH, carboxylates on the
290	liposome surface might suppress the destabilization of liposomal membrane via
291	electrostatic repulsion. However, protonated carboxy groups at low pH might form
292	hydrogen bonds with phosphate groups of DMPC and might destabilize the lipid
293	membrane via hydrophobic interaction (Kono et al., 1994; Sakaguchi et al., 2008; Seki and
294	Tirrell, 1984). The carboxylic acid ester structure affected the pH at which the content
295	release occurred. At 35 °C, Suc-PS liposomes induced content release below pH 5.5,
296	whereas CHex-PS liposomes induced content release below pH 7.0 (Figure 5b). The more
297	hydrophobic structures of CHex-PS promoted protonation of carboxy groups and
298	interaction with lipid membrane, resulting in content release at higher pH than that of
299	Suc-PS as reported earlier in the literature (Sakaguchi et al., 2008). Compared with the case
300	at 25 °C (Figure 5a), phytosterol derivative-containing liposomes exhibited high release
301	properties at 35 °C (Figure 5b). This result reflects that the high temperature might
302	increase the fluidity of liposomal membrane and promote drug release at low pH.
303	To verify the temperature-sensitive drug release properties of liposomes, calcein

304 release from liposomes was examined at various temperatures (Figure 6). At neutral pH, no

305	liposome showed content release from 25 °C to 55 °C after 10 min incubation. At pH 7.4,
306	most carboxy groups on Suc-PS or CHex-PS liposome surface are deprotonated, which
307	suppresses interaction with lipid membrane by electrostatic repulsion. Therefore, no release
308	was observed for any PS derivative-containing liposomes at least during 10 min incubation.
309	At pH 5.0, both PS liposomes and Suc-PS liposomes retained their contents at all examined
310	temperatures. In contrast, CHex-PS liposomes showed greater than 50% content release at
311	temperatures higher than 30 °C. These results indicate that CHex-PS liposomes can
312	efficiently destabilize liposomal membrane within 10 min at low pH and high temperatures.
313	Consequently, CHex-PS liposome retained their contents at neutral pH and at any
314	temperatures, while inducing content release at low pH and 35 °C, which corresponds to
315	skin temperature and intracellular acidic compartments such as lysosomes (Fox et al., 1973;
316	Mukherjee et al., 1997). Therefore, CHex-PS liposome is anticipated for use as a skin
317	environment-responsive liposome.
318	
319	Interaction of phytosterol derivative-containing liposomes with cells

To investigate the function of phytosterol derivative-containing liposomes as 320 intracellular delivery vehicles, intracellular distributions of liposomes and contents were 321 322 observed using CLSM. Calcein-loaded and rhodamine lipid-labeled liposomes were

323	applied to murine melanoma-derived B16F10 cells, a melanocyte model. In the case of PS
324	liposome-treated cells, red and green fluorescent dots were observed from the periphery of
325	cells and near the nucleus (Figure 7a). These results indicate that PS liposomes were taken
326	up by cells via endocytosis and were trapped in early endosomes (periphery) and/or late
327	endosomes/lysosomes (near nucleus) (Straubinger et al., 1983; Düzgünes and Nir 1999;
328	Huth et al., 2006). Green fluorescence near nucleus was stronger than the cellular periphery.
329	Considering that calcein fluorescence is quenched when calcein molecules are retained
330	inside of liposomes at high concentrations (Allen and Cleland, 1980; Shimanouchi et al.,
331	2009), green fluorescent dots near the nucleus indicate the release of calcein molecules
332	from liposomes. Actually, PS liposomes have no pH-responsive properties at 37 °C
333	(Figures 5 and 6); the calcein and Rh fluorescence near the nucleus were almost
334	overlapped. Therefore, PS liposomes might be degraded by lysosomes; the leakage of
335	calcein molecules inside of lysosome was observed as green fluorescent dots near the
336	nucleus. In the case of Suc-PS liposome-treated cells, red fluorescent dots were observed
337	inside the cells but green dots were not (Figure 7b). The pH-sensitivity of Suc-PS
338	liposomes at weakly acidic pH is low (Figures 5b and 6b). Therefore, Suc-PS might be
339	unable to induce content release within cells. Furthermore, rhodamine fluorescence of
340	Suc-PS liposome-treated cells was lower than that of PS liposome-treated cells. The

341	fluorescence intensity of liposome-treated cells was found using flow cytometric analysis
342	(Figures S10 and 8). Compared with PS liposome-treated cells, Suc-PS liposome-treated
343	cells showed low calcein and rhodamine fluorescence intensity, which is consistent with
344	the results of CLSM images. Negatively charged carboxylates on Suc-PS liposome might
345	suppress the interaction of liposome with cells. The rhodamine fluorescence of CHex-PS
346	liposome-treated cells was also lower than that of PS liposomes (Figures 7c and 8a). In the
347	case of CHex-PS liposome-treated cells, both red and green fluorescent dots were observed
348	within cells. Calcein fluorescence was observed not only from near the nucleus but also
349	from the cellular periphery, unlike the case of PS liposomes. Furthermore, not only
350	yellow dots, denoting the colocalization of liposome and released calcein molecules in
351	endo/lysosomes; green dots were also observed, indicating that calcein molecules might
352	escape from endo/lysosomes. Although cellular association of CHex-PS liposomes was
353	low compared with PS liposomes, CHex-PS liposomes might destabilize and release
354	calcein responding to acidic pH and cultural temperature (37 °C), as presented in Figures
355	5b and 6b, after internalization to early endosomes and late endosomes/lysosomes.
356	CHex-PS became hydrophobic at low pH and might further interact with endosomal
357	membrane, which promoted the escape of calcein molecules from endo/lysosomes. Such
358	an intracellular release property of CHex-PS liposomes was confirmed further by the

calculation of calcein fluorescence per rhodamine fluorescence, which indicates the release
efficacy of calcein per endocytosed liposomes. As portrayed in Figure 8b, CHex-PS
liposomes showed a three-times-higher calcein/rhodamine ratio than those of PS liposome
and Suc-PS liposome. Therefore, CHex-PS liposomes are efficient intracellular delivery
carriers responding to both low pH and skin temperature.

364

365 Transdermal delivery

366 Finally, transdermal delivery of liposome and contents were investigated using 3D 367 skin models (LabCyte EPI Model), which are generally used models for drug penetration 368 experiments in the cosmetic field instead of animal-derived skins (Hikima et al., 2012; 369 Yamazaki et al., 2017). Three-dimensional skin models were incubated with calcein-loaded and Rh-PE-labeled liposomes for 24 h. After the skin models were sectioned, their 370 371 cross-sections were observed using CLSM (Figure 9). Strong green and red fluorescence 372 was observed from the surface of liposome-treated skin models, which corresponds to the 373 stratum corneum. This result indicates that most liposomes absorbed to the stratum corneum 374 even after 24 h-incubation. Weak green and red fluorescence was detected from underlayers 375 of the stratum corneum. Some fluorescence reached the basement membrane, as indicated by arrowheads. Especially, Suc-PS liposome and CHex-PS liposome exhibited higher 376

377 fluorescence intensity than that of PS liposomes at the basement membrane. Moreover, both lipid-derived and calcein-derived fluorescence were detected from the same location in the 378 379 basement membrane. These results suggest two possibilities: after destabilization of 380 liposomes in the stratum corneum, calcein and Rh-PE reached the basement membrane 381 independently, or calcein-loaded liposomes reached the basement membrane. Controversial 382 reports of transdermal penetration of liposomes have failed to clarify whether liposomes 383 retain their structure, or not (Dreier et al., 2016; Wang et al., 2013; Park et al., 2013). In our 384 case, considering that the free calcein solution was unable to penetrate and reach the 385 basement membrane under the same conditions (data not shown) and considering that these 386 liposomes showed lower interaction with cells than that of PS liposome (Figure 8a), one 387 might infer that phytosterol derivatives enhance the penetration of liposomes by affecting 388 the intercellular lipids of skin models. Further investigation must be undertaken to elucidate 389 the penetration mechanisms of phytosterol derivative-containing liposomes from the stratum 390 corneum to the basement membrane. Phytosterol derivative-containing liposomes, 391 especially CHex-PS liposomes, might be taken up by melanocytes in the basement 392 membrane and might release their contents into cytosol in response to body temperature and 393 low pH in endo/lysosomes of melanocytes. Now we are conducting safety assessments of these liposomes for application to cosmetics. At least, the treatment of carboxylated 394

395 sterol-containing liposomes did not affect the morphology of cell and 3D skin model under 396 experimental conditions (Figures 7 and 9). Therefore, we believe that carboxylated 397 sterol-containing liposomes are safe and that they produce no skin irritation.

398

399 Conclusion

400 For this study, pH-responsive phytosterol esters were newly synthesized. 401 Carboxylated phytosterol-containing liposomes triggered content release responding to 402 acidic pH and temperatures higher than body temperature, which corresponds to a skin 403 environment or intracellular acidic compartments of melanocytes. In addition, these liposomes achieved penetration into skin model basement membranes. Therefore, these 404 405 liposomes are demonstrated as useful for the delivery of active ingredients to melanocytes existing in deep skin tissues, which provides highly protective effects against the production 406 407 of melanin and freckles.

408

409 Acknowledgments

This work was supported by a Grant-in-aid for Scientific Research from the
Ministry of Education, Culture, Sports, Science, and Technology in Japan (26242049).

413 **Declaration of interest**

414 The authors have no conflict of interest, financial or otherwise, related to this

415 study.

417 **References**

- 418 Abe T, Mayuzumi J, Kikuchi N et al. (1980). Seasonal variations in skin temperature, skin
- 419 pH, evaporative water loss and skin surface lipid values on human skin. Chem Pharm
 420 Bull 28:387–92.
- 421 Allen TM, Cleland LG. (1980). Serum-induced leakage of liposome contents. Biochim
 422 Biophys Acta 597:418–26.
- Barry BW. (1987). Mode of action of penetration enhancers in human skin. J Control
 Release 6:85–97.
- 425 Behne MJ, Meyer JW, Hanson KM et al. (2002). NHE1 regulates the stratum corneum
- 426 permeability barrier homeostasis microenvironment acidification assessed with
- 427 fluorescence lifetime imaging. J Biol Chem 277:47399–406.
- 428 Cevc G, Blume G, Schätzleina A et al. (1996). The skin: a pathway for systemic treatment
- 429 with patches and lipid-based agent carriers. Adv Drug Deliver Rev 1:349–78.
- 430 Cevc G, Schätzlein A, Richardsen H et al. (2002). Ultradeformable lipid vesicles can
- 431 penetrate the skin and other semi-permeable barriers unfragmented. Evidence from
- 432 double label CLSM experiments and direct size measurements. Biochim Biophys
- 433 Acta 1564:21–30.

434	Damme PV, Oosterhuis-Kafeja F, Wielen MV et al. (2009). Safety and efficacy of a novel
435	microneedle device for dose sparing intradermal influenza vaccination in healthy
436	adults. Vaccine 14:454–9.
437	Dayan N. (2005). Pathways for skin penetration. Cosmet Toiletries 120:67-76.
438	Di Marzio L, Marianecci C, Cinque B et al. (2008). pH-sensitive non-phospholipid vesicle
439	and macrophage-like cells: Binding, uptake and endocytotic pathway. Biochim
440	Biophys Acta 1778: 2749–56.
441	Dreier J, Sørensen JA, Brewer JR. (2016). Superresolution and fluorescence dynamics
442	evidence reveal that intact liposomes do not cross the human skin barrier. PLoS One
443	11:e0146514.
444	Düzgünes N, Nir S. (1999). Mechanisms and kinetics of liposome-cell interactions. Adv
445	Drug Deliv Rev 40:3–18.
446	Elsabahy M, Wooley KL. (2012). Design of polymeric nanoparticles for biomedical
447	delivery applications. Chem Soc Rev 41:2545–61.
448	Fox RH, Solman AJ, Isaacs R et al. (1973). A new method for monitoring deep body
449	temperature from the skin surface. Clin Sci 44:81–6.
450	Hafez IM, Ansell S, Cullis PR. (2000). Tunable pH-sensitive liposomes composed of
451	mixtures of cationic and anionic lipids. Biophys J 79:1438-46.

452	Harrison DK, Spence VA, Beck JS et al. (1986). pH changes in the dermis during the
453	course of the tuberculin skin test. Immunology 59:497–501.
454	Hikima T, Kaneda N, Matsuo K et al. (2012). Prediction of percutaneous absorption in
455	human using three-dimensional human cultured epidermis LabCyte EPI-MODEL.
456	Biol Pharm Bull 35:362–8.
457	Huth US, Schubert R, Peschka-Süss R. (2006). Investigating the uptake and intracellular
458	fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control
459	Release 110:490–504.
460	Junginger HE, Hofland HE, Bouwstra JK. (1991). Liposomes and niosomes: interaction
461	with human skin. Cosmet Toiletries 106:45–50.
462	Kono K, Zenitani K, Takagishi T. (1994). Novel pH-sensitive liposomes: liposomes
463	bearing a poly(ethylene glycol) derivative with carboxyl groups. Biochim Biophys
464	Acta 1193:1–9.
465	Lasch J, Laub R, Wohlrab W. (1996). How deep do intact liposomes penetrate into human
466	skin? J Control Release 38:267–74.
467	Mukherjee S, Ghosh RN, Maxfield FR. (1997). Endocytosis. Physiol Rev 77:759-803.

468	Muramatsu K, Maitani Y, Machida Y et al. (1994). Effect of soybean-derived sterol and its					
469	glucoside mixtures on the stability of dipalmitoylphosphatidylcholine and					
470	dipalmitoylphosphatidylcholine/cholesterol liposomes. Int J Pharm 107:1-8.					
471	Murthy N, Robichaud JR, Tirrell DA et al. (1999). The design and synthesis of polymer					
472	for eukaryotic membrane disruption. J Control Release 61:137–43.					
473	Needham D, Evans E. (1998). Structure and mechanical properties of giant lipid (DMPC)					
474	vesicle bilayers from 20 °C below to 10 °C above the liquid crystal-crystalline phase					
475	transition at 24 °C. Biochemistry 27:8261–9.					
476	Park SI, Lee EO, Yang HM et al. (2013). Polymer-hybridized liposomes of poly(amino					
477	acid) derivatives as transepidermal carriers. Colloids Surf B Biointerfaces 110:333-8.					
478	Pola Chemical Industries Inc., 2007. Skin external preparation in the form of water-in-oil					
479	emulsion comprising ceramide. European patent application 2088986 A1.					
480	2009-08-19.					
481	The Procter & Gamble Company, 2005. Regulation of mammalian keratinous tissue using					
482	N-acyl amino acid compositions. International Patent application 011627 A2.					
483	2005-02-10.					

484	Qiu L, Li Z, Qiao M et al. (2014). Self-assembled pH-responsive hyaluronic
485	acid-g-poly(L-histidine) copolymer micelles for targeted intracellular delivery of
486	doxorubicin. Acta Biomater 10:2024–35.
487	Sakaguchi N, Kojima C, Harada et al. (2008). Preparation of pH-sensitive poly(glycidol)
488	derivatives with varying hydrophobicities: their ability to sensitize stable liposomes to
489	pH. Bioconjug Chem 19:1040–8.
490	Seki K, Tirrell DA. (1984). pH-Dependent complexation of poly(acrylic acid) derivatives
491	with phospholipid vesicle membrane. Macromolecules 17:1692-8.
492	Shah PP, Desai PR, Patel AR et al. (2012). Skin permeating nanogel for the cutaneous
493	co-delivery of two anti-inflammatory drugs. Biomaterials 33:1607–17.
494	Shimanouchi T, Ishii H, Yoshimoto N et al. (2009). Calcein permeation across
495	phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size,
496	and immobilization. Colloids Surf B Biointerfaces 73:156–60.
497	Shindo Y, Witt E, Han D et al. (1993). Antioxidant defense mechanisms in murine
498	epidermis and dermis and their responses to ultraviolet light. J Invest Dermatol
499	100:260–5.

500	Slepushkin VA, Simões S, Dazin P et al. (1997). Sterically stabilized pH-sensitive					
501	liposomes intracellular delivery of aqueous contents and prolonged circulation in vivo.					
502	J Bio Chem 272:2382–8.					
503	Straubinger RM, Hong K, Friend DS et al. (1983). Endocytosis of liposomes and					
504	intracellular fate of encapsulated molecules: encounter with a low pH compartment					
505	after internalization in coated vesicles. Cell 32:1069–79.					
506	Taylor KMG, Morris RM. (1995). Thermal analysis of phase transition behaviour in					
507	liposomes. Thermochim Acta 248:289–301.					
508	Teshigawara T, Miyahara R, Fukuhara T et al. (2009). Development of novel cosmetic					
509	base using sterol surfactant. II. Solubilizing of sparingly soluble ultraviolet ray					
510	absorbers. J Oleo Sci 58:27–36.					
511	Verma DD, Verma S, Blume G et al. (2003). Liposomes increase skin penetration of					
512	entrapped and non-entrapped hydrophilic substances into human skin: a skin					
513	penetration and confocal laser scanning microscopy study. Eur J Immunol 55:271–7.					
514	Wang Y, Su W, Li Q et al. (2013). Preparation and evaluation of lidocaine					
515	hydrochloride-loaded TAT-conjugated polymeric liposomes for transdermal delivery.					
516	Int J Pharm 441:748–56.					

517	Yamazaki N, Kumei K, Shinde C et al. (2016). Research on membrane-fluidity and					
518	stratum corneum penetration of liposomes made of phospholipid with different acyl					
519	groups. J Soc Cosmet Chem Jpn 50:25–32.					
520	Yamazaki N, Sugimoto T, Fukushima M et al. (2017). Dual-stimuli responsive liposomes					
521	using pH- and temperature-sensitive polymers for controlled transdermal delivery.					
522	Polym Chem 8:1507–18.					
523	Yuba E, Harada A, Sakanishi Y et al. (2011). Carboxylated hyperbranched poly(glycidol)s					
524	for preparation of pH-sensitive liposomes. J Control Release 149:72-80.					
525	Yuba E, Tajima N, Yoshizaki Y et al. (2014). Dextran derivative-based pH-sensitive					
526	liposomes for cancer immunotherapy. Biomaterials 35:3091–101.					
527						

529 Figures

531 Figure 1. Phytosterol derivative-introduced liposomes for transdermal drug delivery that

532 respond to skin temperature and acidic pH of endosome lumen of melanocytes at the

533 basement membrane.

Figure 2. Synthesis of phytosterol derivatives.

537 Figure 3. TEM images of liposomes composed of DMPC and phytosterol derivatives.

538 Scale bars represent 100 nm.

Table 1. Size of Liposome

Liposome	Size (nm)	Polydispersity index
PS ¹	105.7 ± 1.3	0.20 ± 0.03
Suc-PS ²	103.8 ± 1.4	0.08 ± 0.02
CHex-PS ³	104.5 ± 0.8	0.11 ± 0.05

 $^{1}n = 5$, $^{2}n = 2$, $^{3}n = 8$.

544 Figure 4. pH dependence of zeta potentials of liposomes containing PS (diamonds),

Figure 5. pH dependence of calcein release after 30 min-incubation from liposomes containing PS (diamonds), Suc-PS (circles) and CHex-PS (squares) at 25°C (a) or 35°C (b). p < 0.05 and ** p < 0.01 for other groups.

Figure 6. Temperature dependence of calcein release after 10 min-incubation from liposomes containing PS (diamonds), Suc-PS (circles) and CHex-PS (squares) at pH 7.4 (a) or 5.0 (b). * p < 0.05 and ** p < 0.01 for other groups.

554

555 Figure 7. Confocal laser scanning microscopic (CLSM) images of B16-F10 melanoma

556 cells treated with calcein-loaded, rhodamine-lipid-labeled liposomes containing PS (a),

557 Suc-PS (b), and CHex-PS (c) for 3 h. Scale bar represents 10 µm.

558

Figure 8. (a) Fluorescence intensity for B16-F10 melanoma cells treated with calcein-loaded, Rh-PE-lipid-labeled liposomes containing PS (open bars), Suc-PS (gray bars), and CHex-PS (closed bars) for 3 h. ** p < 0.01 for other groups. (b) Ratio of fluorescence intensity of calcein/Rh.

Figure 9. CLSM images of 3D skin model treated with PBS (a), calcein-loaded,
Rh-PE-labeled liposomes containing PS (b), Suc-PS (c) and CHex-PS (d) for 24 h.
Arrowheads indicate the basement membrane.

568 Supporting Information

569	Carboxylated	phytosterol	derivative-introduced	liposomes	for	skin	
570	environment-resj	ponsive transde	ermal drug delivery system	1			
571							
572	Naoko Yamazaki	^{a,b} , Satoshi Yar	nakawa ^c , Takumi Sugimot	o ^b , Yuta Yosh	izaki ^b , F	₹yoma	
573	Teranishi ^b , Takaaki Hayashi ^b , Aki Kotaka ^a , Chiharu Shinde ^a , Takayuki Kumei ^a , Yasushi						
574	Sumida ^a , Toru Shimizu ^c , Yukihiro Ohashi ^c , Eiji Yuba ^{b,*} , Atsushi Harada ^b , and Kenji Kono ^b						
575							
576	^a Research Institu	ute, Fancl Cor	poration, 12-13 Kamishin	ano, Totsuka-k	xu, Yoko	hama,	
577	Kanagawa, Japan						
578	^b Department of A	Applied Chemis	try, Graduate School of Er	ngineering, Ost	aka Pref	ecture	
579	University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan						
580	^c Cosmetic Ingredients Laboratory, Nippon Fine Chemical Corporation, 1-1, 5-Chome,						
581	Umei, Takasago, I	Hyogo 676-0074	4, Japan				
582							
583	*Corresponding	author: Eiji Yu	lba				
584	Department of Ap	plied Chemistry	, Graduate School of Engine	eering,			
585	Osaka Prefecture	University, 1-1	Gakuen-cho, Naka-ku, Saka	i, Osaka 599-8:	531, Japa	ın	

Fig. S3. ¹H NMR spectrum of CHex-phytosterol (300 MHz, CDCl₃).

Fig. S5. ¹³C NMR spectrum of Suc-phytosterol (75.45 MHz, CDCl₃).

Fig. S7. IR spectrum of phytosterol. 1382 cm⁻¹: δ (CH₃), 1462 cm⁻¹: δ _{as}(CH₂, CH₃), 607 2868/2953 cm⁻¹: v_{s+as} (CH₂, CH₃), 3273 cm⁻¹: v(OH). v, stretching mode; δ, bending in 608 plane; s, symmetric vibration; as, asymmetric vibration.

610

611 612 **Fig. S8.** IR spectrum of Suc-phytosterol. 1180 cm⁻¹: ν(C-O-C) for ester, 1377 cm⁻¹: 613 δ (CH₃), 1462 cm⁻¹: δ _{as}(CH₂, CH₃), 1710/1722 cm⁻¹: ν _{as}(C=O) for ester, 2868/2953 614 cm⁻¹: ν _{s+as} (CH₂, CH₃). ν, stretching mode; δ, bending in plane; s, symmetric 615 vibration; as, asymmetric vibration.

Fig. S9. IR spectrum of CHex-phytosterol. 1180 cm⁻¹: v(C-O-C) for ester, 1379 cm⁻¹: δ(CH₃), 1454 cm⁻¹: δ_{as}(CH₂, CH₃), 1705/1732 cm⁻¹: ν_{as}(C=O) for ester, 2868/2958 cm⁻¹: v_{s+as} (CH₂, CH₃). v, stretching mode; δ , bending in plane; s, symmetric vibration; as, asymmetric vibration.

Relative fluorescence intensity (a.u.)

626 Fig. S10. Histograms of calcein (a) or rhodamine (b) fluorescence intensity for cells

treated with calcein-loaded, Rh-PE-lipid-labeled liposomes containing PS (black lines),

628 Suc-PS (blue lines), and CHex-PS (red lines) for 3 h. Fluorescence intensity for

629 untreated cells (gray line) was also shown as a negative control.

630