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Abstract

Resolved large eddy simulations (LESs) of turbulent conjugate heat transfer

in porous media are performed by the lattice Boltzmann method (LBM) for

modelling turbulent and dispersion heat flux terms of the double-averaged

energy equation. The considered porous structures are square rod arrays,

staggered cube arrays and body centred cubic foam. In the LBM, the

double-distribution function method which solves the distribution functions

for the velocity and the internal energy is used. For the velocity and ther-

mal fields, the D3Q27 multiple-relaxation-time method and the regularized

D3Q19 single-relaxation-time method are applied, respectively. A priori tests

using the LES data suggest that the trends of the sum of the dispersion and

volume-averaged turbulent heat fluxes can be well captured by the second

order gradient diffusion model.
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1. Introduction

Porous media are widely applied to engineering devices because they may

lead to high heat and mass transfer performance of the devices. Although

analysing detailed heat and mass transfer rates is required to develop such

devises it is usually difficult to measure them inside porous media. Hence,

numerical analyses by the volume averaging theory (VAT) of Whitaker (1986,

1996) are usually attempted by engineering researchers. Since flows inside

porous media are known to be turbulent at the pore Reynolds number of a

few hundred (Jolls and Hanratty, 1966; Dybbs and Edwards, 1984), compu-

tation applying the Reynolds averaging coupled with the VAT is common

for porous medium turbulence. However, many unknown terms appear in

the double-averaged governing equations. They are the volume-averaged

Reynolds stress, the dispersive covariance (or dispersion stress) and the drag

force term for the momentum equation, and the volume-averaged turbulent

heat flux, the dispersion heat flux (or thermal-dispersion), the tortuosity and

the wall heat transfer terms for the energy equation. Accordingly, modelling

those terms is necessary to close the equation (see Whitaker, 1996; de Lemos,

2006).

In the literature, although almost all models for the double-averaged tur-

bulent flows have been based on the eddy viscosity model (e.g., Nakayama

and Kuwahara, 1999, 2008; Pedras and de Lemos, 2001; Foudhill et al., 2005),

Ayotte et al. (1999) applied the second-moment closure of Launder et al.

(1975) to vegetated flows. The study of Souliotis and Prinos (2011) showed

that this second moment closure was better than the k−ε two-equation eddy
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viscosity models of Pedras and de Lemos (2001) and Foudhill et al. (2005) for

vegetated flows. The present authors (Kuwata and Suga, 2013a) extended

the more advanced two-component-limit second moment closure of Craft and

Launder (1996) for porous medium flows adding an extra transport equation

of the micro-scale turbulent kinetic energy. Kuwata and Suga (2015c) later

refined this model referring to the detailed data of the resolved large eddy

simulations of Kuwata and Suga (2013b, 2015a). They showed the superi-

ority of their approach by comparing the model of Ayotte et al. (1999) and

popular k−ε models (Pedras and de Lemos, 2001; Nakayama and Kuwahara,

2008) for the double-averaged system.

For the thermal field, models in porous media are categorized into the

local equilibrium and non-equilibrium models. Since the local thermal equi-

librium model assumes equality between the solid and fluid temperatures and

becomes inadequate in many occasions (e.g., Kaviany, 1995; Quintard and

Whitaker, 1993, 1995), more common models are the non-equilibrium mod-

els which require macroscopic two-energy equations for the solid and fluid

phases. In energy equations for the solid and fluid phases, the tortuosity and

wall heat transfer (or interfacial heat transfer) terms appear as interfacial

transport terms. Many studies (e.g., Amiri and Vafai, 1994; Hsu et al., 1995;

Kuwahara et al., 2001; Nakayama et al., 2001; Yang and Nakayama, 2010)

discussed on modelling the tortuosity and wall heat transfer terms.

As for turbulent thermal fields, Saito and de Lemos (2006, 2010) applied

the eddy viscosity (diffusivity) model (EVM) and the tensorial gradient dif-

fusion model to the volume-averaged turbulent heat flux (turbulent heat flux

plus turbulent thermal dispersion in their notation) and the dispersion heat
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flux (thermal dispersion), respectively. For the thermal dispersion, they em-

ployed the thermal dispersion tensor of Kuwahara et al. (1996) which was

numerically obtained for two-dimensional square rod flows. As Pedras and

de Lemos (2008) calculated the thermal dispersion tensor for elliptic rod

flows, this tensorial gradient diffusion model requires specific tensor coef-

ficients for each porous medium. A more general approach may be seen

in Kuwata and Suga (2015b) who applied the generalized gradient diffu-

sion hypothesis (GGDH) of Daly and Harlow (1970) to the volume-averaged

turbulent heat flux for square rod array flows. Although they evaluated the

model performance comparing the resolved large eddy simulation (LES) data

of Sakurai et al. (2014), the porous structure was limited in the square rod

arrays. Accordingly, in this study modelling heat flux terms is discussed for

two more different porous media such as staggered cube arrays and body

centred cubic foam in addition to the square rod arrays. When porous media

are applied to heat exchangers, the actual phenomenon should be conjugate

heat transfer with at least spanwise heat flux. Correspondingly, flows with

a constant spanwise mean temperature gradient illustrated in Fig.1 are con-

sidered.

To provide reference data for turbulent and dispersion heat fluxes, re-

solved LESs of conjugate heat transfer are performed. Using the LES data,

algebraic models of the heat flux terms are discussed through a priori tests.

Due to the simplicity of the wall treatment and high computational efficiency

with the recent graphical processing unit (GPU) programming, the lattice

Boltzmann method (LBM) is very suitable for porous medium flows (e.g.,

Hatiboglu and Babadagli, 2008; Suga et al., 2009; Suga and Nishio, 2009;
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Beugre et al., 2010; Parmigiani et al., 2011; Chukwudozie and Tyagi, 2013;

Li et al., 2013; Huang et al., 2015). Since the strategies to perform LES by

the LBM have been well established (e.g., Suga et al., 2015; Kuwata and

Suga, 2015a), the present study applies the LBM coupled with the wall-

adapting local eddy-viscosity (WALE) sub-grid-scale (SGS) model of Nicoud

and Ducros (1999). In the LBM, the double-distribution function method

which solves the distribution functions for the velocity and the energy density

is used. For the velocity and thermal fields, the D3Q27 multiple relaxation

time method of Suga et al. (2015) and the regularized D3Q19 single relax-

ation time method are applied, respectively.

Nomenclature

cp : specific heat

E : dissipation rate of K

f , fα : particle distribution function

gα : internal energy distribution function

Hi : volume-averaged turbulent heat flux: ⟨u′
iT

′⟩f

Hi : dispersion heat flux (thermal-dispersion): ⟨ ¯̃ui
¯̃T ⟩

f

k : turbulent kinetic energy

K : dispersive kinetic energy

T : temperature
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Tf : fluid temperature

Ts : solid temperature

Ub : bulk velocity

ui : velocity

⟨u′
iu

′
j⟩

f
: volume-averaged Reynolds stress

⟨ ¯̃ui
¯̃uj⟩

f
: dispersive covariance (dispersion stress)

ε : dissipation rate of k

φ : porosity

Γ : thermal diffusivity

∆+ : normalized lattice spacing

∆T : imposed temperature difference

ν : kinematic viscosity

ρ : density

ϕ : Reynolds-averaged value of ϕ

ϕ′ : fluctuation of ϕ : ϕ− ϕ

[ϕ] : plane-averaged value of ϕ

⟨ϕ⟩ : superficial-averaged value of ϕ

⟨ϕ⟩f : intrinsic (fluid phase)-averaged value of ϕ
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ϕ̃ : dispersion of ϕ : ϕ− ⟨ϕ⟩f

Acronyms

BCC : body centred cubic

D3Q19 : three-dimensional 19 discrete velocity

D3Q27 : three-dimensional 27 discrete velocity

EVM : eddy viscosity model

GGDH : generalized gradient diffusion hypothesis

HOGGDH : higher order generalized gradient diffusion hypothesis

LBM : lattice Boltzmann method

LES : large eddy simulation

MRT : multiple-relaxation time

REV : representative elementary volume

SCA : staggered cube arrays

SRA : square rod arrays

SRT : single-relaxation time

VAT : volume averaging theory

WALE : wall-adapting local eddy-viscosity

WET : wealth ∝ earnings × time
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2. Numerical Scheme of LES

2.1. Flow fields

In this study, the D3Q27 multiple-relaxation time LBM (MRT-LBM)

(Suga et al., 2015) is applied to the flow fields. The lattice Boltzmann equa-

tion is

| f(x+ ξαδt, t+ δt)⟩− | f(x, t)⟩ =

−M−1Ŝ {| m(x, t)⟩− | meq(x, t)⟩}− | F(x, t)⟩, (1)

where δt is the time step, f is the particle distribution function and notations

such as |f⟩ is |f⟩ = (f0, f1, · · · , f26)T . See Table 1 for the components of the

discrete velocity ξα and other parameters. The term F denotes the external

force. The matrix M is a 27 × 27 matrix which linearly transforms f to

the moments |m⟩ = M |f⟩. The equilibrium moment meq is obtained as

|meq⟩ = M|f eq⟩ with

f eq
α = wα

(
ρ+ ρ0

[
ξα · u
c2s

+
(ξα · u)2 − c2s|u|2

2c4s

])
, (2)

where u is the fluid velocity and density ρ is expressed as the sum of constant

and fluctuation values: ρ = ρ0 + δρ (He and Luo, 1997). The sound speed cs

is c/
√
3 where c = ∆/δt with the lattice spacing ∆. See Suga et al. (2015) for

the details of the equilibrium moments meq and the transformation matrix.

The collision matrix Ŝ is diagonal:

Ŝ ≡ diag(0, 0, 0, 0, s4, s5, s5, s7, s7, s7, s10,

s10, s10, s13, s13, s13, s16, s17, s18, s18, s20,

s20, s20, s23, s23, s23, s26). (3)
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Following Suga et al. (2015), the relaxation parameters applied are

s4 = 1, 15, s7 = s5, s10 = 1.5, s13 = 1.83,

s16 = 1.4, s17 = 1.61, s18 = s20 = 1.98,

s23 = s26 = 1.74. (4)

The macroscopic variables such as ρ, the momentum ρu and the pressure p

are ρ =
∑

α fα, ρu =
∑

α ξαfα and p = c2sρ, respectively.

The presently applied SGS model is the WALEmodel (Nicoud and Ducros,

1999):

νSGS = Cw∆
2

(
Sd
ijS

d
ij

)3/2
(SijSij)

5/2 +
(
Sd
ijS

d
ij

)5/4 ,
Sij =

1

2

(
∂⟨ui⟩
∂xj

+
∂⟨uj⟩
∂xi

)
,

Sd
ij =

1

2

{
g2ij + g2ji

}
− δij

3
g2kk, gij =

∂⟨ui⟩
∂xj

,

(5)

where ⟨ui⟩ is the filtered (or volume-averaged) velocity, and g2ij = gikgkj. In

the present study, the SGS eddy viscosity coefficient applied is Cw = 0.1

(Fröhlich et al., 2005). The sum of the kinematic viscosity ν and the SGS

eddy viscosity νSGS is related with the relaxation parameter s5, which is the

components of the collision matrix Ŝ, as

ν + νSGS = c2s

(
1

s5
− 1

2

)
δt. (6)

To consider the effect of kSGS, it is added in the external force term in

Eq.(1) as

Fα =
ρwαδt

c2s
ξα ·

(
−2

3
∇kSGS

)
. (7)
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The SGS turbulent energy is estimated by the Simpson method (Inagaki

et al., 2010) as

kSGS = Ckes

3∑
i=1

(⟨ui⟩ − ⟨⟨ui⟩⟩)2 , (8)

where ⟨⟨ui⟩⟩ is the double filtered velocity and the model constant is Ckes = 1.

The estimation procedure for ⟨⟨ui⟩⟩ is expressed as

⟨⟨ui⟩⟩ =
1

2
⟨ui⟩+

⟨uE
i ⟩+ ⟨uW

i ⟩+ ⟨uN
i ⟩+ ⟨uS

i ⟩+ ⟨uT
i ⟩+ ⟨uB

i ⟩
12

, (9)

where ⟨uE
i ⟩, ⟨uW

i ⟩, · · · are the velocity components of the neighbouring nodes

of node i. (It is recognizable that the extra computational cost for kSGS is

marginal.)

2.2. Thermal fields

For the thermal fields, the regularized D3Q19 single-relaxation time LBM

(SRT-LBM) is applied. (For the D3Q19 SRT-LBM, see a review paper (e.g.,

Suga, 2013).) The SRT lattice Boltzmann equation is

gα(x+ ξαδt, t+ δt)− gα(x, t) = − 1

τg
(gα(x, t)− geqα (x, t)) , (10)

where gα is the internal energy distribution function and τg is the relaxation

time. Temperature T and the equilibrium part of the distribution function

geqα are

T =
∑
α

gα, (11)

and

geqα = wαT [1 + 3ξα · u] , (12)

respectively.
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To stabilize the calculation, the regularization process (Latt and Chopard,

2006) is introduced as

gα(x+ ξαδt, t+ δt) = geqα (x, t) +

(
1− 1

τg

)
ĝ′α(x, t), (13)

where ĝ′α is the regularized non-equilibrium part of the distribution function

g′α:

ĝ′α = wα

N∑
n=0

{
1

n!
C(n)H(n) (ξα/cs)

}
. (14)

For the D3Q19 model, the Hermite expansion coefficients C(n) and the Her-

mite polynomial H(n) are

C(n) =
∑
α

g′αH
(n) (ξα/cs) , (15)

H(0) (ξα/cs) = 1, (16)

H
(1)
i (ξα/cs) =

1

cs
ξαi, (17)

H
(2)
ij (ξα/cs) =

ξαiξαj
c2s

− δij. (18)

From the energy conservation, C(0) =
∑

α g
′
α = 0 and thus

ĝ′α =
wα

c2s
ξαi
∑
β

g′βξβi +
1

2

wα

c4s

(
ξαiξαj − c2sδij

)∑
β

g′β
(
ξβiξβj − c2sδij

)
. (19)

The total thermal diffusivity is related to the relaxation time τg as

Γ = Γf + ΓSGS = c2s

(
τg −

1

2

)
δt, (20)

where Γf is the thermal diffusivity of the fluid and

ΓSGS = νSGS/PrSGS, (21)

with a constant value of the SGS turbulent Prandtl number of PrSGS = 0.7.
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2.3. Boundary conditions

At the wall boundaries, the usual half-way bounce-back method is used

for the non-slip velocity condition. With the half-way bounce back method,

since the fluid-solid interface is located at the middle of fluid and solid node

points, any special treatment is not needed for the conjugate heat transfer

(Wang et al., 2007). Thus, between the interfaces

gfluid(x+ ξαδt, t+ δt) = gsolid(x, t), (22)

gsolid(x+ ξαδt, t+ δt) = gfluid(x, t), (23)

can be applied.

For adiabatic thermal boundaries, since the internal energy distribution

function may be written as

gα = gγ, (24)

where α and γ satisfy the relation ξγ = ξα − 2(ξα · n)n.

For the isothermal boundary condition, following Yoshino and Inamuro

(2003),

gα = wα

(
TBC −

∑
k(ξk·n≤0)

gk∑
k(ξk·n>0)

wk

)
, (25)

is applied with a prescribed boundary temperature TBC .

3. Results and discussions

Fig.2 illustrates the presently considered porous media. They are square

rod arrays (SRA), staggered cube arrays (SCA) and body centred cubic

(BCC) foam as in Kuwata and Suga (2015a). Computational domains, co-

ordinate systems and the representative elementary volumes (REVs) which
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are used for the discussion of the volume averaging are also shown. Table

2 lists the Reynolds number, domain size, grid node numbers, porosity φ

and normalized grid spacing ∆+ in the present computations. The Reynolds

number applied in this study is Re = hUb/ν in cases SRA and SCA whilst

Re = DUb/ν for case BCC, where h is the spacing between obstacles, D is

the pore diameter and Ub = ⟨ū⟩f is the bulk velocity which corresponds to

the streamwise fluid phase double-averaged velocity. The Reynolds numbers

considered are Re=1000 and 3000 for cases SRA and SCA while Re=475 and

700 for case BCC. The larger Reynolds numbers are set to be comparable

to those of Kuwata and Suga (2015a) though slightly smaller Re (=700) is

chosen for case BCC because of the limitation of the computer resources.

The grid resolutions and domain sizes were previously confirmed to be sat-

isfactory by grid sensitivity tests in Suga and Kuwata (2014); Kuwata and

Suga (2015a). Porosities of φ ≥ 0.5 are considered, and thus φ = 0.52−0.90,

φ = 0.48− 0.71 and φ = 0.76− 0.91 are discussed for cases SRA, SCA and

BCC, respectively. For case SCA, higher porosity cases are not considered

since the interconnected structure cannot be maintained at φ > 0.75, while

for case BCC lower porosity cases are not considered because all pores be-

come isolated at φ < 0.68. As shown in Table 2, the lattice (grid) spacing

∆+ based on the averaged friction velocity ranges from 1.6 to 10.6 depending

on the Reynolds number and the porosity of each case. The grid resolutions

are in the similar range to those used in Kuwata and Suga (2015a). Note

that the wall adjacent node points are situated at ∆/2 from the walls.

Between the upper (z/H = 2) and the lower (z/H = 0) faces, a constant

temperature difference condition is imposed for the solid phase while the
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adiabatic condition is applied to the fluid phase. For the flow fields, a slip

boundary condition is applied to the upper and lower faces. With these

boundary conditions, a fully developed flow with a constant spanwise mean

temperature gradient can be achieved inside the REV if its region is defined

properly. Indeed, such flow and thermal conditions are confirmed later with

Figs.4 and 5.

Periodic boundary conditions are applied to the other faces of the flow

and thermal fields. On the solid wall surfaces, the half-way bounce-back

boundary condition of the velocity fields is applied for non slip walls. For the

conjugate heat transfer at the wall surfaces, any special thermal boundary

treatment is unnecessary as aforementioned. The fluid is driven by a constant

pressure difference in the streamwise (x) direction. The fluid Prandtl number

is set to Pr = 0.71. The ratio of the thermal diffusivity between the solid

and fluid phases is Γs/Γf = 4.4 which corresponds to the ratio of aluminium

and air.

3.1. Statistical field quantities

To provide a general idea of the simulated thermal fields, Fig.3 shows

examples of instantaneous temperature fields. The temperatures are nor-

malized by the temperature difference ∆T between the upper and lower face

temperatures. It is seen that the unsteady seamless temperature distribu-

tions are produced between the solid-fluid interfaces. This confirms that the

present conjugate heat transfer simulations are reasonably performed. For

the statistical fields, simulations are continued for 30 turnover times. Fig.4

shows the plane-averaged mean temperature ([T̄ ]s, [T̄ ]f ) distributions of the

solid and fluid phases in the spanwise (z) direction. Superscripts s and f
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denote solid and fluid phase values, respectively. Due to the slip boundary

condition the velocity near the boundaries of z/H =0.0 and 2.0 has non-

monotonic profiles leading to slightly non-monotonic temperature distribu-

tions near the boundaries. Accordingly, the fluid phase temperature profiles

of Fig.4 may not look flat in the vicinity of the boundaries. However, it is

confirmed that the temperature gradients vanish at the boundaries corre-

sponding to the adiabatic thermal boundary condition. For cases SRA, SCA

and BCC, the plane-averaged mean temperature distributions of φ = 0.90

at Re=3000, φ = 0.71 at Re=3000 and φ = 0.91 at Re=700 are shown, re-

spectively. It is seen that almost linear temperature distributions exist in the

region of 0.5 ≤ z/H ≤ 1.5. 1 For the corresponding flow fields, Fig.5 shows

the plane-averaged Reynolds normal stress distributions. Although bound-

ary effects are seen near the spanwise boundary at z/H = 0.0 and 2.0, all

the stress components distribute periodically and the boundary effects can

be ignored in the region of 0.5 ≤ z/H ≤ 1.5. Accordingly, fully developed

flows in homogeneous porous media with constant spanwise mean tempera-

ture gradients can be assumed when the range is set to 0.5 ≤ z/H ≤ 1.5 for

the REVs. Notice that because of the periodic thermal boundary condition,

mean temperatures are constant in the streamwise (x) and y directions.

1Since the thermal diffusivity ratio between the solid and fluid phases is quite high,

the temperature fluctuation inside the solid-phase is much smaller than that of the fluid-

phase. This suggests that almost the same thermal fields may be obtained with a constant

spanwise-temperature-gradient condition for the solid-phase.
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3.2. Double-averaged energy equation

The double averaging (Whitaker, 1986, 1996) consists of the Reynolds and

volume averaging. The volume-averaged value ⟨ϕ⟩ is called the superficial-

averaged value while ⟨ϕ⟩f is the fluid phase-averaged value of a variable ϕ

defined as

⟨ϕ⟩ = 1

∆V

∫
∆Vf

ϕdv, (26)

⟨ϕ⟩f =
1

∆Vf

∫
∆Vf

ϕdv. (27)

Between them, the relation ⟨ϕ⟩ = φ⟨ϕ⟩f exists with the porosity φ of the

porous medium. The dispersion is defined as ϕ̃ = ϕ − ⟨ϕ⟩f . The Reynolds-

averaged and fluctuation values are ϕ and ϕ′, respectively. In the double

averaging, the order of the volume and the Reynolds averaging operators are

interchangeable and the resultant forms are the same (Pedras and de Lemos,

2000).

The double-averaged energy equations for the fluid and solid phases are

derived as follows.
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For the fluid phase:

∂φ⟨Tf⟩f

∂t
+ φ⟨ūi⟩f

∂⟨Tf⟩f

∂xi

=
∂

∂xi

(
Γf

∂φ⟨Tf⟩f

∂xi

)
︸ ︷︷ ︸
viscous diffusion:Dν

f

− ∂

∂xi

φ ⟨u′
iT

′
f⟩

f︸ ︷︷ ︸
volume-averaged

turbulent heat flux:Hi

+φ ⟨ ¯̃ui
¯̃Tf⟩f︸ ︷︷ ︸

dispersion heat flux:Hi


+

∂

∂xi

(
1

∆V

∫
A

niΓfTfdA

)
︸ ︷︷ ︸

tortuosity:STf

+
1

∆V

∫
A

niΓf
∂Tf

∂xi

dA︸ ︷︷ ︸
wall heat transfer:SWf

, (28)

and for the solid phase

∂ (1− φ) ⟨Ts⟩s

∂t
=

∂

∂xi

(
Γs

∂ (1− φ) ⟨Ts⟩s

∂xi

)
︸ ︷︷ ︸

viscous diffusion:Dν
s

− ∂

∂xi

(
1

∆V

∫
A

niΓsTsdA

)
︸ ︷︷ ︸

tortuosity:STs

− 1

∆V

∫
A

niΓs
∂Ts

∂xi

dA︸ ︷︷ ︸
wall heat transfer:SWs

,

(29)

where ni is the wall normal unit vector and the subscript or the superscript f

denotes the fluid phase while s denotes the solid phase. The surface integral

terms ST and SW work as energy exchange terms at the interface between

the fluid and solid phases. The volume-averaged turbulent heat flux Hi and

the dispersion heat flux Hi in Eq.(28) are unknown second moments. Note

that Hi is decomposed into two parts as

Hi = ⟨u′
iT

′
f⟩

f
= ⟨u′

i⟩
f⟨T ′

f⟩
f + ⟨ũ′

iT̃
′
f⟩

f

, (30)
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where ⟨u′
i⟩

f⟨T ′
f⟩

f and ⟨ũ′
iT̃

′
f⟩

f

are namely macro- and micro-scale turbulent

heat fluxes, respectively. Note that they were respectively named turbulent

heat flux and turbulent thermal-dispersion in some other studies (e.g., Saito

and de Lemos, 2006, 2010). With the same mean temperature distributions

in both solid and fluid phases, the wall heat transfer terms SW ’s vanish in

the present REVs for the fully developed porous medium flows. Although

tortuosity terms ST ’s themselves also vanish, the terms inside the differenti-

ation:

1

∆V

∫
A

niΓfTfdA, (31)

− 1

∆V

∫
A

niΓsTsdA, (32)

work as extra heat fluxes and are called “tortuosity heat fluxes” hereafter.

Fig.6 shows the spanwise superficial-averaged turbulent heat flux and

the dispersion heat flux versus the porosity φ at the higher Re cases. The

corresponding values of the tortuosity heat flux in the fluid phase are also

plotted. They are normalized by the macroscopic heat flux in the spanwise

direction of the REV:

qREV = − λ

H

(
⟨T̄f⟩fz=1.5H − ⟨T̄f⟩fz=0.5H

)
, (33)

where λ is the thermal conductivity of the fluid. Accordingly, the normalized

superficial-averaged values are defined as

H∗
z = φ

ρfcpfHz

qREV

, (34)

H ∗
z = φ

ρfcpfHz

qREV

, (35)

S∗
Tz = − ρfcpf

qREV∆V

∫
A

nzΓfTfdA, (36)
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where ρf and cpf are the fluid density and specific heat, respectively. Note

that the streamwise (x) and the lateral (y) components of the heat fluxes do

not exist in the present REVs. As seen in Fig.6, the tortuosity heat flux in

case BCC has the opposite sign to those in cases SRA and SCA due to the

difference in the porous structures. (BCC consists of pores (void elements)

but SRA and SCA consist of rods and cubes (solid elements), respectively.)

In any case, the tortuosity heat flux is always smaller than the dispersive heat

flux by two to three orders of magnitude and thus its influence is marginal

in this study.

Although the structure of case SRA does not change in the spanwise

direction, the spanwise dispersive velocity ¯̃uz sometimes exists due to the

occasional secondary flows as pointed out by Kuwata and Suga (2015a).

Hence, as seen in Fig.6(a), H ∗
z is not always zero though the level of H ∗

z

is significantly low compared with that of H∗
z . In Fig.6(b), for case SCA

H∗
z and H ∗

z are comparable at low porosities. Although H∗
z increases and

becomes dominant, H ∗
z does not change very much as the porosity increases.

In Fig.6(c), it is seen that H ∗
z of case BCC always maintains a considerable

level compared with H∗
z in the simulated range of φ. It is thus confirmed

that the level of the dispersion heat flux significantly changes depending on

the porous structure.

As seen Fig.6(a), in case SRA H∗
z increases as the increase of the porosity

up to φ ≃ 0.7 and then decreases. Corresponding to the porosities, the trends

of cases SCA and BCC are generally consistent with this trend. The general

trend of the dispersion heat flux seems to follow the trend of the turbulent

heat flux though it is not clear in case SCA. Since any superficial-averaged
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fluid variable becomes zero at φ=0 at which there is no fluid phase, the

superficial-averaged turbulent heat flux H∗
z becomes smaller at the smaller

porosities. Also it becomes smaller if the porosity becomes too high since

the flow obstacles, which enhance turbulence, shrink in the porous structure.

This is also confirmed in Fig.7 that shows the distribution of the superficial-

averaged turbulent kinetic energy. (As reported in Kuwata and Suga (2015a),

there is the second peak in case SRA at φ ≃ 0.82 that corresponds to a large-

scale perturbation regime by the vortex shedding.)

As for the turbulence quantities such as the Reynolds stress, since the

detailed profiles were already reported in Kuwata and Suga (2015a), the

present study does not repeat the discussion.

3.3. Production terms of heat fluxes

For the discussion on the second moment modelling, it is useful to see the

production terms of the volume-averaged turbulent heat flux and the disper-

sion heat flux. In the fully developed porous medium flows, the production

term of Hi may be written as

PHi
=
⟨
ũiũ′

j

⟩f ∂
⟨
T ′
f

⟩f
∂xj

+
⟨
T̃ f ũ′

j

⟩f ∂ ⟨u′
i⟩

f

∂xj︸ ︷︷ ︸
−P t

iθ

−

⟨(
ũ′
iũ

′
j + ũ′

i

⟨
u′
j

⟩f) ∂T̃ f

∂xj

⟩f

−
⟨(

T̃ ′
f ũ

′
j + T̃ ′

f

⟨
u′
j

⟩f) ∂ũi

∂xj

⟩f

︸ ︷︷ ︸
P d
iθ

−
⟨
u′
iu

′
j

⟩f ∂
⟨
T f

⟩f
∂xj︸ ︷︷ ︸

PT
iθ

−
⟨
T ′
fu

′
j

⟩f ∂ ⟨ui⟩f

∂xj︸ ︷︷ ︸
PU
iθ

. (37)
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For Hi, the production term is derived as

PHi
= −

⟨
ũiũ′

j

⟩f ∂
⟨
T ′
f

⟩f
∂xj

−
⟨
T̃ f ũ′

j

⟩f ∂ ⟨u′
i⟩

f

∂xj︸ ︷︷ ︸
P t
iθ

+

⟨(
ũ′
iũ

′
j + ũ′

i

⟨
u′
j

⟩f) ∂T̃ f

∂xj

⟩f

+

⟨(
T̃ ′
f ũ

′
j + T̃ ′

f

⟨
u′
j

⟩f) ∂ũi

∂xj

⟩f

︸ ︷︷ ︸
−P d

iθ

−
⟨
ũiũj

⟩f ∂
⟨
T f

⟩f
∂xj︸ ︷︷ ︸

PT
iθ

−
⟨
T̃ f ũj

⟩f ∂ ⟨ui⟩f

∂xj︸ ︷︷ ︸
PU

iθ

. (38)

In fully developed flows in porous media, as reported by Kuwata and Suga

(2015a) macro-scale Reynolds stress ⟨u′
i⟩

f⟨u′
j⟩

f becomes negligible. Corre-

spondingly, its counterpart in the energy equation: ⟨u′
i⟩

f⟨T ′⟩f , which is the

macro-scale turbulent heat flux, becomes negligible. Hence, as shown in Ap-

pendix A, P t
iθ that is a component of the production term of ⟨u′

i⟩
f⟨T ′⟩f is

considered to vanish in the fully developed porous medium flows. Indeed, in

the present simulations, P t
iθ is always negligibly small. Furthermore, since

there is no mean shear in fully developed flows in homogeneous media, PU
iθ

and PU
iθ do not exist. In the present flow conditions, the streamwise (x) and

the lateral (y) components of the dispersion and volume-averaged turbulent

heat fluxes do not exist. Accordingly, the remaining terms are

PHz = P d
3θ + P T

3θ, (39)

PHz = −P d
3θ + PT

3θ. (40)

Fig.8 presents P d
3θ, P

T
3θ and PT

3θ distribution profiles. In case SRA, P T
3θ is

dominant in the simulated porosity range. Since Hz in case SRA tends to
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vanish as in Fig.6(a), its production terms P d
3θ and PT

3θ accord this trend as

shown in Fig.8(a). In case SCA shown in Fig.8(b), P T
3θ is always dominant,

and P d
3θ is found to have some influence on the generation of the dispersion

heat flux because |P d
3θ| exceeds PT

3θ at φ ≥ 0.58. In case BCC in Fig.8(c),

P d
3θ, P

T
3θ and PT

3θ are all comparable. Notably the sign of P d
3θ is positive which

is opposite to that of case SCA. The term P d
iθ is produced by the complex

correlation between turbulence and dispersion that is strongly affected by

the structure. Thus, due to the similar structural reason to that for the

tortuosity heat flux, it is considered that the positive sign appears for P d
3θ in

case BCC. To support this, the sign of P d
3θ in case SRA at lower porosities

is the same (negative) as that for case SCA as seen in Fig.8(a). Since P d
3θ

exchanges energy between spanwise turbulent and dispersion heat fluxes, the

observed phenomenon suggests that energy is transferred from the turbulent

to dispersion heat fluxes in a solid elements oriented porous structure such

as case SCA while the reverse energy flow occurs in a void elements oriented

one like case BCC. In any case, from the levels of the profiles, it is confirmed

that the effect of each term cannot be negligible in general.

3.4. Heat flux modelling

In the double-averaged energy equation: Eq.(28), what one needs to close

the equation is the sum of the heat flux terms: Hi + Hi. Hence, modelling

those terms altogether is desirable since P d
iθ and P t

iθ are energy exchange

terms between Hi and Hi.

From the WET hypothesis (Launder, 1988), the value of a second moment

may be proportional to the product of the generation rate of the second
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moment and its time-scale. Accordingly,

Hi + Hi ∝ (PHi
+ PHi

)× (τ + T ) , (41)

if the joint time-scale is expressed simply as the sum of each time-scale. The

time-scales for Hi and Hi are considered as τ = ⟨k⟩f/⟨ε⟩f and T = K/E ,

respectively. Here, ⟨k⟩f , ⟨ε⟩f , K and E are the volume-averaged turbulent

kinetic energy, its dissipation rate, dispersive kinetic energy and its dissipa-

tion rate, respectively. Therefore, in the fully developed turbulent porous

medium flows, the WET model of Hi + Hi may be written as

Hi + Hi = −cθ

(
⟨u′

iu
′
j⟩f

∂
⟨
Tf

⟩f
∂xj

+ ⟨ ¯̃ui
¯̃uj⟩f

∂
⟨
Tf

⟩f
∂xj

)(
⟨k⟩f

⟨ε⟩f
+

K
E

)
, (42)

where ⟨u′
iu

′
j⟩

f
and ⟨ ¯̃ui

¯̃uj⟩
f
are the volume-averaged Reynolds stress and the

dispersion stress, respectively. Fig.9 compares the simulation data and eval-

uated values of the WET model by a priori manner using the simulation

data. The model coefficient of cθ = 0.05 is applied to all the cases. Although

the general trend seems to be captured, it looks difficult to obtain good pre-

diction for all the cases with a single coefficient. Notice that although the

above model form is an explicit expression for heat fluxes, in the condition

where mean shear exists and thus PU
iθ and PU

iθ are non-negligible, an implicit

expression is derived by the WET hypothesis. This implies that the present

form may degrade performance further in the region where mean shear exists.

Hence, it would be worth discussing on such an implicit algebraic heat flux

model in sheared flows.

When the cross correlation between the dispersion and the turbulence
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fluctuation is assumed to be weak, the WET model may be rewritten as

Hi + Hi

= −cθ
⟨k⟩f

⟨ε⟩f
⟨u′

iu
′
j⟩f

∂
⟨
Tf

⟩f
∂xj

− c′θ
K
E
⟨ ¯̃ui

¯̃uj⟩f
∂
⟨
Tf

⟩f
∂xj

, (43)

with coefficients cθ and c′θ. Consequently, Eq.(43) becomes the sum of the

GGDH models for Hi and Hi. Fig.10 compares the simulation data and

evaluated values by the GGDH model with cθ = 0.3 and c′θ = 0.08. It is seen

that the prediction becomes slightly better than that by the WET model.

Although the agreement in higher porosity cases becomes better in all cases,

it is still difficult to obtain satisfactory prediction for all the cases with a

single set of coefficients. In particular, case BCC seems to be difficult to

predict. In case BCC, compared with the other cases, Hz and thus PT
3θ are

significantly larger and their levels are quite similar to those of Hz and P T
3θ,

respectively, as seen in Figs.6(c) and 8(c). This implies that the coefficient

c′θ for the dispersion part in Eq.(43) needs to be larger for case BCC though

it should be relatively small compared with cθ to obtain reasonable levels

for cases SRA and SCA. This suggests that for improving the prediction

performance, further tensorial expressions for the coefficients are required.

Hence, an expanded version of the GGDHmodel which is the second order

GGDH model (Suga and Abe, 2000; Abe and Suga, 2001), is considered. This

model expresses the heat fluxes as

Hi + Hi

= −cθ
⟨k⟩f

⟨ε⟩f
⟨u′

iu
′
l⟩f⟨u′

lu
′
j⟩f

⟨k⟩f
∂
⟨
Tf

⟩f
∂xj

− c′θ
K
E
⟨ ¯̃ui

¯̃ul⟩f⟨ ¯̃ul
¯̃uj⟩f

K
∂
⟨
Tf

⟩f
∂xj

. (44)

For this higher order GGDH model (HOGGDH), the model coefficients cθ =
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0.5 and c′θ = 0.3 are applied. From Fig.11, it is confirmed that the gen-

eral agreement is improved very much, particularly in case BCC. Indeed,

although the GGDH model predicts 45% lower for case BCC of φ = 0.76 at

Re=700, which is the worst prediction case, the HOGGDH improves it to

12% underprediction. Overall, it can be confirmed that the general trends

of the sum of the dispersion and volume-averaged turbulent heat fluxes can

be well captured by the second order HOGGDH in all the test cases. Note

that for the WET, GGDH and HOGGDH models, a second moment closure

for porous medium flows such as Kuwata and Suga (2015c) is necessary since

they require each component of the Reynolds and dispersion stresses.

The standard model for the turbulent heat flux may be the EVM, which

is a kind of reduced version of the GGDH model, the form

Hi + Hi = −cθ
⟨k⟩f

⟨ε⟩f
⟨k⟩f

∂
⟨
Tf

⟩f
∂xi

− c′θ
K
E
K
∂
⟨
Tf

⟩f
∂xi

, (45)

is thus finally examined. Fig.12 compares the simulation data and evaluated

values of the EVM with cθ = 0.2 and c′θ = 0.002. It is confirmed that the

general agreement becomes worse than that by the WET model.

Although they are not shown here, the preliminary model computations

by the discussed heat flux models coupled with the second-moment closure of

Kuwata and Suga (2015c) show the same trends as those of the a priori tests

depending on the heat flux models. This supports the present discussions.

4. Conclusions

To discuss modelling the volume-averaged turbulent heat flux and the

dispersion heat flux inside porous media, resolved LESs of conjugate heat
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transfer in square rod arrays, staggered cube arrays and body centred cubic

foam are performed by the LBM. Since the production terms of the volume-

averaged turbulent heat flux and the dispersion heat flux include mutual

energy exchange terms, it is shown that applying the WET hypothesis to

the sum of those fluxes leads to a simple model form. By modifying this

WET model, the GGDH and HOGGDH models are derived. From a priori

tests using the LES data, it is found that the HOGGDH model performs

well for all the tested cases. Although the GGDH model slightly improves

the results by the WET model, the WET and GGDH models are not always

good enough, particularly in the body centred cubic foam. From further tests

with the EVM, it is confirmed that the EVM deteriorates the prediction of

the WET model.
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Appendix A

The production term for the macro-scale turbulent heat flux:⟨u′
i⟩

f⟨T ′
f⟩

f ,

may be written as

PM
Hi

=
⟨
ũiũ′

j

⟩f ∂
⟨
T ′
f

⟩f
∂xj

+
⟨
T̃ f ũ′

j

⟩f ∂ ⟨u′
i⟩

f

∂xj︸ ︷︷ ︸
−P t

iθ

−⟨u′
i⟩

f⟨u′
j⟩

f ∂
⟨
T f

⟩f
∂xj

− ⟨u′
i⟩

f⟨T ′
f⟩

f ∂ ⟨ui⟩f

∂xj

, (46)

while for the micro-scale turbulent heat flux: ⟨ũ′
iT̃

′
f⟩

f

,

Pm
Hi

= −

⟨(
ũ′
iũ

′
j + ũ′

i

⟨
u′
j

⟩f) ∂T̃ f

∂xj

⟩f

−
⟨(

T̃ ′
f ũ

′
j + T̃ ′

f

⟨
u′
j

⟩f) ∂ũi

∂xj

⟩f
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P d
iθ

−⟨ũ′
iũ

′
j⟩

f ∂
⟨
T f

⟩f
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f ∂ ⟨ui⟩f

∂xj

, (47)

is derived.
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Table 1: Parameters of the discrete velocity models.

Model cs/c ξα/c wα

D3Q19 1/
√
3 (0, 0, 0) 1/3(α = 0)

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/18(α = 1, · · · , 6)

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/36(α = 7, · · · , 18)

D3Q27 1/
√
3 (0, 0, 0) 8/27(α = 0)

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27(α = 1, · · · , 6)

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54(α = 7, · · · , 18)

(±1,±1,±1) 1/216(α = 19, · · · , 26)

Table 2: Computational domains and grid node numbers for LESs.

case Re domain Node numbers φ ∆+

x× y × z x× y × z

SRA 1000 4H ×H × 2H 321× 81× 160 0.52–0.9 2.9–5.9

3000 4H ×H × 2H 321× 81× 160 0.52–0.9 4.9–10.3

SCA 1000 4H × 2H × 2H 320× 160× 160 0.48–0.71 4.2–5.9

3000 4H × 2H × 2H 320× 160× 160 0.48–0.71 7.3–10.6

BCC 475 2H × 2H × 2H 200× 200× 200 0.76–0.91 1.6–2.4

700 2H × 2H × 2H 200× 200× 200 0.76–0.91 2.0–2.9
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Figure 2: Model geometries and computational domains of porous media: (a) square rod

arrays (SRA), (b) staggered cube arrays (SCA), (c) body centred cubic (BCC) foam.
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Figure 3: Instantaneous temperature distributions of fluid and solid phases: (a) case SRA

of φ = 0.82 at Re=3000, (b) case SCA of φ = 0.71 at Re=3000, (c) case BCC of φ = 0.84

at Re=475.
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Figure 4: Plane-averaged mean temperature distributions in the spanwise (z) direction:

(a) case SRA of φ = 0.90 at Re =3000, (b) case SCA of φ = 0.71 at Re=3000, (c) case

BCC of φ = 0.91 at Re=700.
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Figure 5: Plane-averaged Reynolds stress distributions in the spanwise (z) direction: (a)

case SRA of φ = 0.90 at Re=3000, (b) case SCA of φ = 0.71 at Re=3000, (c) case BCC

of φ = 0.91 at Re=700; R11 = [u′u′]f , R22 = [v′v′]f ,R33 = [w′w′]f .
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Figure 6: Normalized superficial-averaged spanwise heat fluxes: (a) case SRA at Re=3000

(b) case SCA at Re=3000, (c) case BCC at Re=700; normalized turbulent heat flux: H∗
z =

φρfcpfHz/qREV , normalized dispersion heat flux: H ∗
z = φρfcpfHz/qREV , normalized

tortuosity heat flux: S∗
Tz = −ρfcpf

∫
A
nzΓfTfdA/(qREV ∆V ).
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Figure 7: Superficial-averaged turbulent kinetic energy of cases SRA and SCA at Re=3000.
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Figure 8: Production terms of the spanwise heat fluxes: (a) case SRA at Re=3000, (b)

case SCA at Re=3000, (c) case BCC at Re=700.
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Figure 9: Spanwise heat fluxes and the estimated values by the WET model versus poros-

ity: (a) case SRA, (b) case SCA, (c) case BCC.
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Figure 10: Spanwise heat fluxes and the estimated values by the GGDH model versus

porosity: (a) case SRA, (b) case SCA, (c) case BCC.
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Figure 11: Spanwise heat fluxes and the estimated values by the HOGGDH model versus

porosity: (a) case SRA, (b) case SCA, (c) case BCC.
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Figure 12: Spanwise heat fluxes and the estimated values by the EVM model versus

porosity: (a) case SRA, (b) case SCA, (c) case BCC.
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