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Abstract

Space antennas for space exploration misssions using high frequency wave require the precious struc-
tural surface shape that will not allow even thermal deformation on orbit. One design candidate to meet
such severe design requirements is a smart structural system which the structural shape is actively con-
trolled by actuators. For accurate and flexible shape control, the larger number of actuators is desired.
However, as the number of actuators increases, the weight and the required power increase. This study
investigates effects of the number of the actuators on the deformation error for a simple circular plate
fixed at the center and deformed into the desired shape by the arranged point actuators on the plate. The
actuator layout problem is formulated as the optimization problem in terms of the actuator positions and
the actuator force that gives the concentrated forcein out-of-plane direction. The deformation is evalu-
ated based on Kirchhoff-Love plate theory. Through the optimization results for some optimum actuator
layout designs, efficient actuator layout design strategy is discussed. Then, the optimum design obtained
through the FEM model using shell elements is investigated for the modeling verification.

1 INTRODUCTION

Space antennas for space exploration missions require a large aperture areas and high surface shape
accuracy as well as light weightness. Generally, the required RMS (root mean square) error of the
surface shape is said to about 1/10∼ 1/20 of the wavelength of the observation electromagnetic wave.
The observation frequency about the extremely high-frequency (EHF) band (30-300GHz) will not allow
even thermal deformation on orbit.

One of design candidates to meet the severe design requirement is a smart structure system which can
adjust the surface shape by the implemented actuators on orbit. Recently, several studies have developed
the smart space reflectors. For example, Fang et al. developed an engineering model of a membrane
antenna of 2.4m diameter with adaptive surface control system [1]. The engineering model equips 168
polyvinylidene fluoride (PVDF) actuators to control the surface shape. Since an independent actuator
control is impractical for the control system with such many actuators, the actuators are controlled with
several groups that are arranged by a group optimization method [2]. Bradford et al. developed the active
composite reflector panel with macro fiber composite (MFC) actuators to control the wavefront errors in
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Figure 1. High-accuracy antenna system with a smart reconfigurable reflector.

the reflector [3]. The system uses 37 actuators in each hexagonal panel with an isogrid array. Datashvili
et al. developed laboratory models of reconfigurable reflectors that employed a carbon fiber-reinforced
silicon (CFRS) surface with 91 actuators to control the surface shapes [4].

Since such systems with many actuators require more electric power and more complicated control
strategy, and hence, reduce the reliability. Tanaka et al., one of the authors, has proposed the different
space antenna system that the secondary mirror has the actuators as illustrated in Fig. 1(a) [5]. The
smart secondary mirror will adjust the signal error caused by the surface error of a main reflector. As the
secondary mirror is sufficient small, the required power of the actuators can be significantly reduced as
well as weight.

In order to validate the strategy, the prototype of 200mm diameter secondary mirror with six Piezo
actuators as shown in Fig. 1(b) has developed to demonstrate the efficiency through several measure-
ment experiments [5]. However, the number of the actuator and the actuator layout were not optimally
determined yet. In addition, the six thin slits introduced to reduce the deformation errors should have
been avoided to yields some ill effects such as stress concentration.

Final objective of this study is to reduce the required number of actuators that satisfy the deforma-
tion error criteria and to obtain the optimum actuator layout with the smart reflector. As the first step,
effects of the number of the actuators that give the out-of-plane concentrated force to the structure on
the shape accuracy are investigated for the basic structural element through the optimization methods.
In previous study, we investigated the required number of the actuators and the optimum layout for the
simple cantilever beam deformed to the ideal deformation shape [6,7]. In the study, it was found that the
two actuators are sufficient to deform into the parabola by arranging the both actuators at the free edge
and applying the same magnitude force to the both actuators in the opposite bending direction. That is
reasonable for the cantilever problem, because the resultant actuator force is equivalent to the bending
moment at the edge.

This study investigate the effects to the circular plate fixed at the center. The optimization problem
is defined as minimization of the RMS error between the ideal shape and deformed shape in terms of
the actuator position and the actuator force. At first, the axial symmetry condition is considered, that
is equivalent to the infinite number of the actuators arranged in the circumferential direction. Then,
consider the finite number of the actuator arranged at regular intervals in the circumferential direction
and the effect of the number of the actuators is investigated on the RMS error.
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(a) Single type (b) Double type

Figure 2. Circular plate fixed at the center and actuators arranged on concentric circle

As a next step, the strategy is adopted to the FEM model using linear shell element to validate the
optimization results between the theoretical model and the numerical model. In the FEM model, the
actuators are located at the node that are treated as discrete design variables. On the other hand, the
actuator force is modeled as a continuous design variable. For the mixed design variable problem, the
evolutionary optimization method (Covariance Matrix Adaptation Evolution Strategy: CMA-ES) [8] is
adopted.

Through comparison of the results between the two approaches, efficient actuator layout design is
discussed. In addition, numerical result of the nonlinear FEM analysis is compared with that of the
linear FEM analysis.

2 PROBLEM FORMULATION FOR BASIC PLATE THEORY

A circular plate with radiusr is assumed to be fixed at the small center circle of radiusa and free at
the edge. Then,n actuators are allocated atn equally divided points on the concentric circle of the radius
s1 and applied the out-of-plane loadq1 as the concentrated load as shown in Fig. 2 (a). The bending
deformation is evaluated based on Kirchhoff-Love plate theory [9]. For the optimum actuator layout
design, the actuator positions1 and the applied loadq1 are treated as design variables.

We will discuss the design problem with double circles illustrated in Fig. 2 (b) later. The bending
deformation for such actuator allocations can be obtained by superposition of the two single type defor-
mations under the linear deformation assumption. Though the following explanation is limited based on
the single type case, it is easily extended to the double type problem.

The desired deformation shapewI by actuators is set as a paraboloid shape as follows:

wI(s, θ) = aIs
2 (0 ≤ s ≤ r, 0 ≤ θ < 2π) (1)
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where(s, θ) indicate the polar coordinates.aI is a coefficient, where the maximum deformation is
determined from the design requirement. In this study, it is set as 0.01 times of the plate radius as the
small deformation.

2.1 Kirchhoff-Love Plate Theory

When the deformation is small, the plate deformationw by the actuator force is obtained based on
Kirchhoff-Love plate theory as follows [9]:

w(s1, q1; s, θ) = R0(s) +
∞∑

m=1

Rm(s) cos(mθ), (a ≤ s ≤ r, 0 ≤ θ < 2π) (2)

The series termsRi(s), (i = 0, · · · ,m) are defined as follows.

R0(s) = A0 +B0s
2 + C0 log s+D0s

2 log s (3)

R1(s) = A1s+B1s
3 + C1s

−1 +D1s log s (4)

Rm(s) = Amsm +Bms−m + Cmsm+2 +Dms−m+2, (m = 2, · · · ,∞) (5)

whereAi, Bi, Ci, andDi (i = 0, · · · ,∞) are determined from the boundary conditions [9].
Obviously, as the number of actuators increases, the deformation can approach the desired defor-

mation shape. When the number of the actuators increase to infinity, the actuator load is modeled as
the distributed load along the concentric circle of radiuss1. In such a case, the deformationw can be
obtained through an axial symmetry model as follows [9]:

win(s1, q1; s, θ) =
q1s

2

8πD
(log

s

s1
− 1)− c1s

2

4
− c2 log

s

s1
+ c3, (a ≤ s ≤ s1 ≤ r, 0 ≤ θ < 2π)

wout(s1, q1; s, θ) = −c4s
2

4
− c5 log

s

r
+ c6, (a ≤ s1 ≤ s ≤ r, 0 ≤ θ < 2π) (6)

wherewin is the deformation inside of the actuator positions1, wout is that outside of the actuator
position andq1 is the total applied load. The coefficientc1 to c6 are determined from the boundary
conditions.

2.2 Finite Element Method Model

The finite element model using linear shell elements as shown in Fig. 3 is introduced to validate
the actuator layout optimization. Because the numerical model will be required for development of the
actual smart reflector. The FEM model consists of 3072 elements, where the plate is equally divided into
96 pieces in the angular direction and unequally into 32 pieces in the radius direction to set the element
aspect ratio properly. In this study, a semi-commercial code FEAP (Finite Element Analysis Program)
[10] is adopted in this study. As the actuator can be allocated on the node, the optimization problem will
be formulated as mixed design variable problem, where the actuator force is set as a continuous design
variable.

2.3 Optimum Design Problem

In this study, the optimum actuator layout design problem is formulated to minimize the RMS error
between the desired shape and the deformed shape in terms of the actuator positions1 and the actuator
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GiDFigure 3. Finite element model of the circular plate

forceq1. The objective function is defined as the normalized RMS error as follows:

minimize : fD(s1, q1) =
frms(s1, q1)

fI
(7)

where : frms(s1, q1) =

(
1

π(r2 − a2)

∫ 2π

0

∫ r

a
(w(s1, q1; s, θ)− wI(s, θ))

2s ds dθ

)1/2

(8)

fI =

(
1

π(r2 − a2)

∫ 2π

0

∫ r

a
wI(s, θ)

2s ds dθ

)1/2

(9)

wherefrms is the RMS error between the desired and the deformed shapes, that we would like to mini-
mize.fI in Eq. (9) is the normalized factor that the RMS error between the desired and the undeformed
shapes. Therefore, the objective function value approaches zero as the deformation approaches the de-
sired shape. On the other hand, the value is one for the undeformed plate.

In addition, following constraint is imposed such that the actuator should be located on the plate:

a ≤ s1 ≤ r (10)

For the FEM model, the RMS error is evaluated by transforming the integral to the summation with
respect to the node as follows:

frms(s1, q1) =

(
1∑Nn

k=1 ui

Nn∑
k=1

ui(wk − wI)
2

)1/2

(11)

whereNn indicatesthe number of the nodes andwk corresponds to the out-of-plane deformation of the
kth node. The area around the nodeui depends on the radial position as shown in Fig. 4. That is defined
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Figure 4. Area ui around the node.

Table 1 Plate and load parameters
Plate size Desired deformation Plate stiffness Actuator load

a r aI D ν κ q p∗

0.05 1 0.01 1 0.3
5

6

p

p∗
0.03165

asfollows:

u1 =

(
r2 − r1

2

)(
3r1 + r2

4

)
dθ (12)

ui =

(
ri+1 − ri−1

2

)(
ri−1 + 2ri + ri+1

4

)
dθ (i = 2, . . . , 32) (13)

u33 =

(
r33 − r32

2

)(
3r32 + r33

4

)
dθ (14)

whereri is the radial position of the node as shown in Fig. 4.

3 NUMERICAL INVESTIGATION AND DISCUSSION

The circular plate and the applied load are modeled as dimensionless form. The radius of the plate is
set asr = 1 and the hole is set asa = 0.05. As the maximum direction of the desired shape is set as 0.01
times of the plate radius, the coefficient in Eq. (1) is set asaI = 0.01. The plate bending stiffness is set
asD = 1, the Poisson’s ratio is set as0.3 and the shear correction factor is set asκ = 5/6. The applied
load is also normalized by the load applied at the edge pointp∗ that gives the maximum deformation
0.01 asaI . These parameter values are summarized in Table 1.

3.1 Actuator Layout for Basic Plate Model

3.1.1 Actuator Layout on Single Concentric Circle

Consider the case that the actuators are allocated equally divided position on the single concentric
circle as shown in Fig. 2(a).
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Table 2 Optimal layout for actuator allocation on single concentric circle

Number of Actuators 2 3 4 5 6 8 10 12 ∞
Arranged radius s1 0.26 0.81 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Normalized load q1 2.0 2.3 1.5 1.2 0.98 0.74 0.59 0.49 0.93
Normalized RMS error 0.499 0.184 0.114 0.101 0.0985 0.0978 0.0976 0.0976 0.0971
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Figure 5. Optimum RMS error for actuator layout in single concentric circle

(a) n = 6 (b) n = ∞ (axial symmetry)

Figure 6. Deformation shape in optimal design in case of single concentric circle

For the deformation evaluation, the series terms in Eq. (2) is set asm = 15, because higher terms
have found to be negligible. For the integration for evaluating the RMS error in Eqs. (8) and (9), the
Gauss-Legendre integration is adopted, where the number of evaluation points is set to 20 in the radius
direction and 15 in the angular direction after several preliminary calculations.

The optimization is performed by sequential quadratic method (SQP). The optimal actuator layout
designs for several numbers of actuators are compared in Table 2 and Fig. 5, wheren = ∞ corresponds
to the case for the equally distributed load on the circle that is modeled as axial symmetry. As the number
of the actuator increases, the actuator position converges to the edge and the RMS error decreases to
converge to 0.097. Forn = 6, the value is almost identical to that forn = ∞.

The deformation shapes forn = 6 andn = ∞ are illustrated in Fig. 6. The deformation forn = 6
is found some bumps corresponding to the actuator locations, that is different from the deformation for
n = ∞. However, the RMS errors of both cases are almost identical with relatively large values. This
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Figure 7. Cross-sectional view of deformation shape for n = ∞ optimum design in case of
single concentric circles

Table 3 Optimal layout for actuator allocation on double concentric circles

Number of actuators 4 6 8 12 ∞
Arranged radius s1 0.590 0.788 0.860 0.924 0.874
Arranged radius s2 0.733 0.877 0.926 0.969 0.996
Normalized load q1 -9.09 -8.98 -8.97 -9.00 -8.97
Normalized load q2 8.89 9.02 9.03 9.04 9.06
Shift angle θ2 0.0 0.0 0.0 0.0 0.0
Normalized RMS error 0.883 0.0292 0.0145 0.00681 0.00398

is because the deformation curvature is opposite to the desired shape as shown in Fig. 7. That is, the
actuator allocation on the single concentric circle is not sufficient to deform into the desired shape.

3.1.2 Actuator Layout on Double Concentric Circles

As the actuator allocation on the single concentric circle is not sufficient to deform into the desired
shape, consider the next case that the actuators are allocated on the double concentric circles as shown
in Fig. 2(b).

In this problem, the same numbers of actuators are allocated in both concentric circles with equally
divided position. The actuator radial positionsi and the applied loadqi, (i = 1, 2) are treated as design
variables. Additionally, as the actuators on the outer circle can be shifted in the angular direction to those
on the inner circle, the shift angleθ2 are also treated as design variable. That is, the total number of
design variables is five. The deformation shape is evaluated as superposition of the deformations due to
the inner and the outer actuators. Each deformation is evaluated by Eq. (6).

In the optimization, the two constraints are introduced to avoid switching to the inner and the outer
circles and to limit the shifting angle as follows:

a ≤ s1 ≤ s2 ≤ r (15)

0 ≤ θ2 ≤
2π

n
(16)

As in the previous studies [6, 7], this problem have many local optima in terms of the applied load.
First of all, the optimal actuator layout designs for several numbers of actuators are compared in Table 3
and Fig. 8, wheren = ∞ corresponds to the case for the equally distributed load on the circle. The
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Figure 8. Optimum RMS error for actuator layout in double concentric circle
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Figure 9. Deformation shape in optimal design in case of double concentric circles

Figure 10. Cross-sectional view of deformation shape for n = ∞ optimum design in case of
double concentric circles

two actuator positions converge to arounds1 = 0.9 ands2 = 1.0, the applied load of the inner circle
converges to -9.0 and that of the outer circle converges to 9.0. That is, for the optimum design, the
actuators will apply the couple of force to the plate. As the single circle design shown in Fig. 7 has
the opposite bending curvature, the design with double circles changes the bending curvature by pulling
down the inner actuator.
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Table 4 Local optima in Optimization results with concentrated loads
(a) n = 6

Position Applied Load Shift Normalized
s1 s2 q1 q2 θ2 RMS Error

0.706 0.952 -3.33 3.34 0.0 0.0297
0.749 0.913 -4.94 4.97 0.0 0.0293
0.775 0.890 -6.98 7.02 0.0 0.0292
0.788 0.877 -8.98 9.02 0.0 0.0292

(b) n = ∞
Position Applied Load Normalized
s1 s2 q1 q2 RMS Error

0.763 1.00 -4.32 4.40 0.00506
0.824 1.00 -6.02 6.11 0.00415
0.845 1.00 -6.93 7.02 0.00403
0.874 0.996 -8.97 9.06 0.00398

Table 5 Optimization results of n = 6 with linear FEM model
Position Applied Load Shift Normalized
s1 s2 q1 q2 θ2 RMS Error

0.709 0.940 -3.56 3.57 0.0 0.0325

TheRMS error is converged to 0.00398. It means that difference from the desired shape is about 0.4%
of the difference between the desired shape and the initial shape. As shown in Fig. 10, the deformation
shape is almost identical to the desired shape. However, the convergence is not so good in terms of the
number of actuators.

For example, the RMS error forn = 6 is about 10 times worse than that forn = ∞, though the RMS
error value itself is small enough. This is because the effect of the deformation bump along the angular
direction is no longer negligible.

As described above, this problem has many local optima as listed in Table 4. All local design has
similar tendency that the two loads have opposite directions and the almost same magnitude. For the
actual design problem, the load magnitude constraint should be considered.

In addition, the shifting angleθ2 converged to zero for all cases. It means that the inner and the outer
actuators should arrange on the same radius vector.

3.2 Finite Element Method for Double Concentrated Circles

The optimization result using FEM model shown in Fig. 3 is compared with the theoretical model
with double concentrated circles. The parameters are set as the same values as listed in Table 1. As the
bending stiffnessD cannot set directly, Young’s modulusE and the thicknessh are set as10.92 × 106

and0.01, respectively, toD = 1.
As the actuators are put on node as discrete design variables, the CMA-ES (Covariance Matrix Adap-

tation Evolution Strategy) [8] is adopted as optimizer. The optimization result forn = 6 is listed in Table
5. This result is almost identical to that of the plated model listed in Table 4. The RMS error is about
10% worse than that of the plate model. This is because the actuator position is limited as nodal point.

The deformation of the optimum design cannot be avoided the bumps as illustrated in Fig. 11. As
shown in the previous results, such bumps around the edges cannot be avoided by the finite number of
actuators. As the bump deformation is limited to the edge, it will be a good strategy that the actuator is
arranged outside of the reflector to resolve the problem [11]. In addition, the optimization of the reflector
itself such as thickness distribution is another strategy.

10



ICAST2015: 26th International Conference on Adaptive Structures and Technologies

October 14-16th, 2015, Kobe, Japan

Figure 11. Deformation of the optimum actuator layout for n = 6

4 CONCLUSION

In this study, we consider the optimal actuator layout design that gives the out-of-plane deformation
to the circular plate as the basic study of the high-precision smart structure. The optimization problem
is defined as minimization of the RMS error between the desired shape and the deformed shape in terms
of the actuator positions and the actuator forces in out-of-plane direction. The deformation is evaluated
based on Kirchhoff-Love plate theory. Then, the optimum design for the FEM model using shell elements
required for the actual design problem is investigated for verification.

Through numerical examples, the following conclusions are remarked.

• Considering the two types of the arrangements, it is found that the actuator arrangement on the
double concentric circle is useful solution. However, for the limited number of actuators, the
deformation with bumps around the edges cannot be avoided. Therefore, other strategy including
the structural optimization or the actuator arrangement outside of the reflector should be considered
in the future.

• The optimum design using FEM is found to be almost identical to that using the plate bending
theory. This kind of structural modeling using FEM can be adopted for the future work to develop
the smart reconfigurable mirror system.

• In FEM, the actuator position is limited on the nodal position and is treated as a discrete design
variable. Therefore, the CMA-ES method is adopted as optimizer. As the evolutionary method is
time consuming in comparison with mathematical programming method, more efficient optimiza-
tion method or the surrogate modeling should be considered in the future.
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