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Chapter 1

Introduction

1.1 Research Background

The term“ small satellite”refers to a satellite of mass 500 kg or less as presented in

Table 1.1. Recently, many space missions have been using small satellites, as shown in

Fig. 1.1, because small satellites are easier and faster to develop and thereby, provide

increased launch opportunities. Some of these missions include tasks that required

agile maneuvers.

Most of the early small satellites were gravity gradient stabilized, with magnetic

torques, acting as a passive actuator. TUBSAT-A a mass of 35 kg and launched in 1991,

used magnetic torquers. Despite their low torque, momentum wheels (MWs) and

Table 1.1: Satellite classification [21]

Group Name Wet Mass Classification

Large Satellites > 1000 kg

Medium Satellites 500 - 1000 kg

Mini Satellites 100 - 500 kg

Micro Satellites 10 - 100 kg

Nano Satellites 1 - 10 kg Small Satellites

Pico Satellites 0.1 - 1 kg

Femto Satellites < 0.1 kg
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Figure 1.1: Small satellite: SOHLA-1

reaction wheels (RWs) were also used for the attitude control of small satellites. The

first small satellite known to fly a momentum exchange device (MED) is TUBSAT-B,

launched in 1994, designed by the Technical University of Berlin. SUNSAT with a mass

of 60 kg and launched in 1999, was a micro satellite designed and built by Stellenbosch

University. Figure 1.2 shows SUNSAT platform. SUNSAT used a gravity gradient

boom, magnetorquers, and four RWs for maneuvers. UoSAT-12, an earth observation

mini satellite designed by the University of Surrey with a mass of 320 kg launched in

1999 carried three RWs along with other actuators and thrusters.

In order endow small satellites with the ability to perform high-agile maneuvers,

an attitude control system (ACS) using control moment gyros (CMGs) is proposed.

In the development of small satellites, the most severe constraints are limited power,

mass, or capacity of various devices. Therefore, small-sized CMGs were developed.

The installation of small CMGs in a small satellite can provide sufficient torque, angular

momentum and slew rate, while not increasing the power consumption, mass, or

volume of the satellite.

BILSAT-1, launched in 2003, was the first small satellite that used small CMGs to

perform high agility maneuvers. The University of Surrey designed the small CMG

used in the ACS of BILSAT-1. Figure 1.3 shows BILSAT-1 platform and CMG flight

model.
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Figure 1.2: SUNSAT

(a) BILSAT-1 (b) CMG system

Figure 1.3: BILSAT-a and CMG flight model
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In the past, CMGs have been used for attitude control in large-sized satellites such

as Skylab, MIR, and the International Space Station (ISS). However, attitude control

with CMGs is also effective in small satellites, especially for high-speed or large-angle

maneuvers.

This thesis describes the development of an ACS for small satellites using a small-

sized CMG. The ACS was developed considering the following points:

• Singularity avoidance and fixed-star tracking attitude control

• Pointing attitude control of an under-actuated small satellite using only two

SGCMGs

• Attitude control using SGCMGs via linear parameter-varying (LPV) control the-

ory

In the following sections, the author describes the CMG system and describes the

main topics.
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(a) Single-gimbal CMG (b) Double-gimbal CMG

Figure 1.4: Two types of CMG system

1.2 Control Moment Gyro

A CMG is a type of a MED used for attitude control of spacecrafts. It can generate

substantially higher maximum output torque and store more angular momentum than

reaction wheels. In addition, chemical fuels are not needed as thrusters.

CMG systems can be classified as single-gimbal CMG (SGCMG), double-gimbal

CMG (DGCMG), as shown in Figure 1.4, and variable-speed CMG (VSCMG). An

SGCMG has the advantages of having a simple mechanical structure and high torque

amplification [11]. The flywheel of an SGCMG spins at a constant speed, and torquing

of the gimbal results in a precessional, gyroscopic torque, that is orthogonal to both

the spin and gimbal axes. However, an SGCMG system has the disadvantage of

singularity. The singularity problem is described in the next section. A DGCMG has

twice the degrees of freedom as that of an SGCMG, but its mechanical structure is

complex. A VSCMG can generate a torque along any direction that lies on the plane

perpendicular to the gimbal axis; this is because flywheel speed as well as gimbal rate

of the VSCMG is provided as the control input. However, continuous variation of

the flywheel speed can lead to vibration in the system; also its steering mechanism is

complex.
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(a) Three link manipulator

(b) Three SGCMG system

Figure 1.5: Example of singular state

In this thesis, an SGCMG system with a simple mechanical structure and negligible

influence of vibration, is investigated. The use of SGCMGs (instead of VSCMGs with

varying speeds) will decrease the vibration in small satellites, and thereby, lead to an

increase in the pointing accuracy of the satellites.

1.3 Singularity of CMG System

With respect to attitude control using CMGs, the major problem is to avoid singularity.

Singularity exists when there is some direction along which the array of CMGs cannot

generate torque. This happens when the gimbal angles of CMGs are aligned in a spe-

cific arrangement. Figure 1.5 demonstrates the equivalence of the singularity problem

for robotic manipulator and CMG system. In the case of manipulators, end-effector

motion is impossible in the singular direction (Fig. 1.5 (a)), whereas for CMG system
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case, torque cannot be generated along the singular direction (Fig. 1.5 (b)).

There are two types of singularities: external singularities and internal singular-

ities. External singularities represent the maximum workspace of the total angular

momentum of the CMG cluster, the so-called the angular momentum envelope. Be-

cause the external singularities are gimbal angles states that are reached at boundary

of the angular momentum envelope, the CMG system cannot generate a torque be-

yond this envelope. Internal singularities exist inside the envelope (i.e., hyperbolic

singularities and elliptic singularities).

Margulies et al. have established the mathematical analysis of an SGCMG cluster,

and identified different types of singularities [11]. Kurokawa presented the character-

istics of the singularities of SGCMGs from a geometric point of view [8]. Wie have

been presented a mathematical nature of singularities and provided a visualization of

several illustrative examples [24]. A mathematical analysis for the singularities of a

VSCMG cluster is presented by Yoon et al. in Ref. [26].

The author briefly introduces a method developed by Margulies et al. for analyzing

and visualizing the singularities of SGCMGs in Chapter 3.

1.4 Singularity Avoidance and Fixed-Star Tracking Attitude

Control

Several techniques to avoid singularity, have been developed in the past. The so-

called Singularity Robust (SR) steering law is developed by Nakamura and Hanafusa

for robotic manipulators [14]. Wie applied the SR steering law to the singularity

problem of CMG system and proposed the generalized SR steering logic [23]. These

methods generate a torque error near the singular points to avoid singularities. On

the other hand, there exists methods using null motion. Null motion is a motion

of the gimbal angles without generating output torque. However, internal elliptic

singularities cannot be escaped through null motion [2]. In addition, preferred gimbal

angle [22], global search steering method [17], and constrained steering law [7] are

proposed.

The author presents a simple method to avoid singularity in an SGCMG cluster

by applying singular value decomposition (SVD). This steering method was proposed

by Tani et al. [20, 16]. Using this method, a the direction vector perpendicular to



8

the singularities is obtained. In Chapter 3, the author considers fixed-star tracking

attitude control of a spacecraft using four SGCMGs and applies the SVD method to

avoid singularities. A numerical example of the fixed-star tracking control is provided

to demonstrate the advantage of the proposed method over conventional SR steering

method.

1.5 Pointing Attitude Control Using Two SGCMGs

The presence of singularities in the CMG system necessitates hardware redundancies

(e.g., pyramid configuration for four SGCMGs). However, in the case of smaller-sized

satellites with limited resources, hardware redundancies are not a suitable option. As

a result, attitude control using a lesser number of CMGs have received considerable

attention.

In the past, several studies on under-actuated spacecraft attitude control have been

carried out. Typically, fewer than three actuators are used to provide three-axis control

[6, 13].

Recently, Lappas et al. have addressed two parallel SGCMGs for the micro-satellite,

BILSAT-1 [9]. Han et al. have studied the under-actuated attitude control problem

of a spacecraft equipped with two parallel SGCMGs under the influence of external

disturbances [5]. Marshall et al. have addressed the angular velocity stabilization of

a spacecraft using a single VSCMG [12], while Yoon et al. [27] and Yamada et al. [25]

have provided a control algorithm for line-of-sight control of a spacecraft via a single

VSCMG.

Chapter 4 investigates the pointing control of a spacecraft using only two SGCMGs.

Because the total angular momentum of a spacecraft is conserved in the inertial frame,

the total CMG angular momentum is aligned with the total angular momentum of a

spacecraft at a final state of rest. This imposes a restriction on the feasible orientations

of the spacecraft’s resting attitude. To solve this problem, the author proposes a two-

step control strategy, i.e., nonlinear control based on the Lyapunov stability theory

for all initial conditions at large followed by the linear quadratic regulator (LQR). The

feasibility of the proposed two-step controller is verified by numerical simulation.
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1.6 Attitude Control Using SGCMGs via Linear Parameter

Varying Control Theory

In the past decades, several attempts were made to apply linear control techniques to

nonlinear systems. Particularly, the gain-scheduled (GS) control based on the linear

parameter-varying (LPV) approach has found applications in practical engineering

design.

For a robot manipulator, a GSH∞ controller, which places the closed-loop poles is

presented in Ref. [28]. Gao. et al. proposed the LPV controller for changing depth of

an underwater vehicle with velocity variation [4]. In the aerospace field, Shamma et

al. presented a gain-scheduled design for a missile longitudinal autopilot [18]. Marcos

et al. studied three LPV modeling techniques and presented their application to the

Boeing 747 longitudinal motion [10].

For attitude control of a spacecraft using SGCMGs, a new control method based on

the LPV control theory has been proposed in Chapter 5. Based on this theory, nonlinear

dynamics of the spacecraft with SGCMGs were modeled as an LPV system and a GS

controller was applied to this system. This GS controller consists of extreme controllers

designed for each of the extremities of the convex hull that covers the operating region

of the spacecraft modeled as an LPV system. In this chapter, the author describes a

GS control algorithm based on the LPV control theory. The feasibility of the proposed

control method is shown by a numerical simulation.

1.7 Outline of This Thesis

The organization of this thesis is as follows.

Chapter 2 describes the dynamics of rotational motion of a rigid spacecraft with

an SGCMG cluster. It also describes the kinematics of rotational motion of a rigid

spacecraft using several parameters to represent the attitude of a spacecraft.

Chapter 3 describes the singularities seen in a typical pyramid array of four

SGCMGs. In addition, a simple singularity avoidance method using SVD is pre-

sented in this chapter. This method is applied to the fixed-stars tracking attitude

control problem.

In Chapter 4, the author states the control objective for the pointing attitude control

using two SGCMGs and proposes a control strategy which consists of two steps for
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the control objective

For an attitude control problem of a spacecraft using SGCMGs, a new control

method via LPV control theory is proposed in Chapter 5. Based on this theory, non-

linear dynamics of the spacecraft is described as an LPV system and an interesting GS

controller is applied to this system.

Finally, Chapter 6 concludes this thesis, and provides directions for further study.
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Chapter 2

System Model

2.1 Kinematics

The attitude of a rigid body is used to describe the orientation of one reference frame

to another reference frame. In this thesis, two frames are defined as follows:

• Inertial Frame FI : An inertial frame which is represented by the orthonormal

set of unit vectors x̂I, ŷI, and ẑI is a non-rotating reference frame in fixed space.

• Body Frame FB : A body frame which is represented by the orthonormal set of

unit vectors x̂B, ŷB, and ẑB is fixed origin at a point on the spacecraft.

Many parameters can be used to represent the attitude orientations such as Euler

angles, quaternions (so-called Euler parameters), and Modified Rodrigues Parameters

(MRPs). The following subsections in this section introduce each parameters.

2.1.1 Euler Angles

Euler angles describe the attitude of a reference frame relative to the one another

through three successive rotation angles about the sequentially displaced body fixed

axes. The first rotation is about any axis. The second rotation is about either of the two

axes not used for the first rotation. The third rotation is then about either of the two

axes not used for the second rotation. Thus, Euler angles are useful for visualization

because it is intuitively easier to understand.

Consider three successive rotation that describe the orientation of a reference frame
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relative to the one another. The principal rotations are as follows:

Rx(ϕ) =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

 (2.1a)

Ry(θ) =


cosθ 0 − sinθ

0 1 0

sinθ 0 cosθ

 (2.1b)

Rz(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.1c)

Thus, a direction cosine matrix RB
I from FI to FB, in terms of the x − y − z Euler angles

is defined by

RB
I = Rx(ϕ)Ry(θ)Rz(ψ) (2.2)

2.1.2 Quaternions

The four element set of quaternions are defined by

q = [q1, q2, q3]T = η̂ sin
ϕ

2
(2.3a)

q4 = cos
ϕ

2
(2.3b)

where η̂ = [η1, η2, η3]T ∈ R3 is the principal axis vector, ϕ is the rotation angle

about principal axis. Note that the quaternions are not independent of each other, but

constrained by the following relationship

q2
1 + q2

2 + q2
3 + q2

4 = 1 (2.4)

Quaternions is widely used because it is singularity-free while it has minimum redun-

dancy of one. The kinematic differential equation in terms of the quaternions is given

by

q̇ =
1
2

(q4ω − ω×q) (2.5a)

q̇4 = −
1
2
ωTq (2.5b)
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Figure 2.1: A rigid body with a cluster of N SGCMGs

2.1.3 Modified Rodrigues Parameters

The Modified Rodrigues Parameters (MRPs) are defined by using the principal axis η

and the angle ϕ as follows:

σ = [σ1, σ2, σ3]T = η̂ tan
ϕ

4
(2.6)

The MRPs have the advantage of being well defined for the whole range for rotations,

i.e., ϕ ∈ [0, 2π), while they have no redundancy. The kinematic differential equation of

the MRPs is given by

σ̇ =
1
2

(1
2

(1 − σTσ)I3×3 + σ
× + σTσ

)
ω (2.7)

2.2 Dynamics

Consider a rigid spacecraft with a cluster of N SGCMGs, as shown in Fig. 2.1. The total

angular momentum vector of a spacecraft with an SGCMG cluster, H = [Hx, Hy, Hz]T ∈
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R3 can be expressed in the spacecraft body frame as

H = Jω + h (2.8)

where J ∈ R3×3 is the inertia matrix of the spacecraft including an SGCMG cluster,

ω = [ωx, ωy, ωz]T ∈ R3 is the angular velocity vector of the spacecraft, and h =

[hx, hy, hz]T ∈ R3 is the CMG angular momentum vector expressed in the body frame.

It is that h is the vector sum of each CMG angular momentum vectors as follows:

h = h1 + · · · + hN =

N∑
i=1

hi (2.9)

where hi is the individual angular momentum vector of the ith CMG.

Assuming that no external torque is applied to a spacecraft body, the equation of

rotational motion of a rigid spacecraft equipped with an SGCMG cluster is given by

Ḣ + ω×H = 0 (2.10)

For any vector x = [xx, xy, xz]T ∈ R3, x× ∈ R3×3 denotes the skew-symmetric matrix,

which is defined as

x× ,


0 −xz xy

xz 0 −xx

−xy xx 0

 (2.11)

By substituting Eq. (2.8) into Eq. (2.10), the following equation is obtained as

(Jω̇ + ḣ) + ω×(Jω + h) = 0 (2.12)

The CMG angular momentum vector h is a function of the gimbal angle vector

δ = [δ1, . . . , δN]T ∈ RN as follows:

h = h(δ) (2.13)

The time derivative of the CMG angular momentum vector is expressed as

ḣ = (∂h/∂δ)δ̇ , G(δ)δ̇ (2.14)

where G(δ) ∈ R3×N is the well known Jacobian matrix.

Thus, the complete equation of rotational motion of a spacecraft with an SGCMG

cluster is given by

ω̇ = −J−1ω× (Jω + h(δ)) − J−1G(δ)δ̇ (2.15)

where the gimbal rate δ̇ is the control input.
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Chapter 3

Fixed-Star Tracking Attitude

Control of Spacecraft Using

SGCMGs

3.1 Dynamics of Spacecraft with an SGCMG Cluster

Equation (2.12) can be divided into the following two equations if the internal torque

generated by CMGs is denoted as τ ∈ R3:

Jω̇ + ω×Jω = τ (3.1a)

ḣ + ω×h = −τ (3.1b)

Thus the dynamic equation of motion of a spacecraft equipped with CMGs consists

of the dynamics of the spacecraft (Eq. (3.1a)) and the dynamics of the CMG system

(Eq. (3.1b)). The desired CMG angular momentum rate for generating the spacecraft

control torque is given by

ḣ , T = −τ − ω×h (3.2)

The CMG angular momentum vector h = h(δ) is a function of the gimbal angle vector

δ ∈ RN, then the time derivative of h is obtain as

ḣ = (∂h/∂δ)δ̇ , Gδ̇ (3.3)



16

Figure 3.1: Pyramid configuration for four SGCMGs

where G = G(δ) is the 3×N Jacobian matrix, N is the number of the CMGs. The gimbal

rate command δ̇ ∈ RN is calculated as

δ̇ = G+T (3.4)

where G+ = GT(GGT)−1 is the pseudo-inverse of the matrix G.

3.2 Pyramid Array of Four SGCMGs

Setting N = 4, here we consider a pyramid array of four SGCMGs as shown in Fig.

3.1, where four SGCMGs are located on the faces of pyramid and the gimbal axes are

orthogonal to the pyramid faces. Each SGCMG has the same angular momentum and

the skew angle is chosen as β = 54.73 (deg) so that the momentum envelope becomes

nearly spherical. The angular momentum vector h is given as a function of gimbal

angle δ as follows:

h = hw


−cβ sin δ1 − cos δ2 + cβ sin δ3 + cos δ4

cos δ1 − cβ sin δ2 − cos δ3 + cβ sin δ4

sβ sin δ1 + sβ sin δ2 + sβ sin δ3 + sβ sin δ4

 (3.5)



17

where hw is the magnitude of the angular momentum of a flywheel, cβ = cos β and

sβ = sin β, and the Jacobian matrix G is given by

G = hw


−cβ cos δ1 sin δ2 cβ cos δ3 − sin δ4

− sin δ1 −cβ cos δ2 sin δ3 cβ cos δ4

sβ cos δ1 sβ cos δ2 sβ cos δ3 sβ cos δ4

 (3.6)

3.3 Singularity Analysis of CMG System

A singularity is encountered when there exists some direction for which the array of

CMGs is not capable of producing torque. This phenomenon occurs when the gimbal

angles of CMGs become some specific arrangement. The 3 ×N Jacobian matrix G is a

function of the gimbal angles and it has the maximum rank of 3. When rank(G) = 2,

all column vectors of Jacobian matrix, gi (i = 1, · · · , N) become coplanar and there

exists a unit vector us orthogonal to that coplanar plane; i.e.,

GTus = gT
i us = 0, (i = 1, · · · , N) (3.7)

Therefore, the CMG system cannot produce any momentum along the direction of

singular vector us. As shown in Eq. (3.7), there exists a vector us normal to all gi at the

singularity. Therefore, we select us as parameter and solve this equation with respect

to gi. Since gi is perpendicular to both us and gimbal axis vector ai, Eq. (3.7) can be

rewritten as

gs
i =

εi(ai × us)
|ai × us|

, (ai , us) (3.8)

where, εi = ±1, and subscript s denotes singular point. Let us be a unit vector of the

punctured unit sphere defined as

S = {us : |us| = 1} (3.9)

The angular momentum as a singular point is given by the following equation:

hs
i = gs

i × ai (3.10)

At the singular point, all hi is in the direction that is along with us or −us as close as

possible. By introducing pi,

pi = εi|ai × us|−1, (ai , us) (3.11)
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Eq. (3.8) can be rewritten as

gs
i = piai × us (3.12)

Thus, there exists singularities for arbitrary us that satisfies Eq. (3.7). If ai , us, there

are 2N combinations of εi for a cluster of N CMG system.

The singularities of the pyramid array of four SGCMGs are derived as follows.

The unit vector us is parameterized with the azimuth angle ϑ1 ∈ [0, 2π] and elevation

angle ϑ2 ∈ [0, 2π] in the spherical coordinate as follows:

us = [us
x, us

y, us
z]T = [sinϑ2, − sinϑ1 cosϑ2, cosϑ1 cosϑ2]T (3.13)

The angular momentum at the singular point, hs
i is given by Eq. (3.10). Substituting

Eq. (3.8) into Eq. (3.10),

hs
i = gs

i × ai =
εi(ai × us) × ai

|ai × us| =
1
ei

(ai × us) × ai (3.14)

where

ei = εi|ai × us| = εi
√

1 − (ai · us)2 (3.15)

For a pyramid array, ei is given as follows:

e1 = ε1

√
1 − (sβus

x + cβus
z)2 (3.16a)

e1 = ε2

√
1 − (sβus

y + cβus
z)2 (3.16b)

e1 = ε3

√
1 − (−sβus

x + cβus
z)2 (3.16c)

e1 = ε4

√
1 − (−sβus

y + cβus
z)2 (3.16d)

where sβ = sin β and cβ = cos β.

The singular surface (hs
x, hs

y, hs
z), corresponding to the singular vector us and sin-

gular gimbal angles δs, can be obtained as

hs
x =

cβ(−sβus
z + cβus

x)
e1

+
us

x

e2
+

cβ(sβus
z + cβus

x)
e3

+
us

x

e4
(3.17a)

hs
y =

us
y

e1
−

cβ(sβus
z − cβus

y)

e2
+

us
y

e3
+

cβ(sβus
z + cβus

y)

e4
(3.17b)

hs
z =

sβ(−cβus
x + sβus

z)
e1

+
sβ(sβus

z − cβus
y)

e2
+

sβ(sβus
z + cβus

x)
e3

+
sβ(sβus

z + cβus
y)

e4
(3.17c)
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The singularity surface for the pyramid array is shown in Figs. 3.2 and 3.3. Figure

3.2 shows the singularity surface when all εi have the same sign. The sphere singularity

surface represents the maximum momentum envelope and they are all sign-definite

singularity points. There are eight circular windows on the surface, which corresponds

to gimbal axes. Theses circular windows are smoothly connected to the internal

singular surface, for which one and only one of the εi is negative. This singular surface

produces a trumpet-like funnel at the circular windows, which completes the angular

momentum envelope and is shown in Fig. 3.3.
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3.4 Singularity Avoidance Using SVD

The sign-definite singular point described in the previous section is impassable and this

type of singularity cannot be escaped even by use of the SR steering logic. That is,

the sign-definite singular point has a characteristic like a wall that cannot be passed

through, and one cannot escape from this singularity by using redundancy.

In this section, the author presents a method of singularity avoidance that uses

the singular value decomposition to obtain the singular direction and output the

torque orthogonal to the singular direction for fast singularity avoidance. This steering

method is proposed by Tani et al. [20, 16]. In the following, this method is simply

called to“ proposed steering law”or“ proposed method”.

First, consider the singular value decomposition of the Jacobian matrix G. For

such G, there exist unitary matrices U ∈ R3×3 and V ∈ R4×4 such that UTU = I3 and

VTV = I4, and

G = UΣVT (3.18)

where

Σ =


σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

 (3.19)

The positive numbers, σ1 ≥ σ2 ≥ σ3 ≥ 0, are called singular values of matrix G.

From Eq. (3.18), for 1 ≤ i ≤ 3, we have

(GGT)U = U(ΣΣT) or (GGT)ui = σ
2
i ui (3.20a)

(GTG)V = V(ΣTΣ) or (GTG)vi = σ
2
i vi (3.20b)

where

U = [u1 u2 u3] (3.21a)

V = [v1 v2 v3 v4]T (3.21b)

The column vector ui and vi are the left and right singular vectors of matrix G, respec-

tively. The pseudo inverse of matrix G can be expanded with Eq. (3.18) in terms of the

singular vectors ui and vi as follows:

G+ = VΣ+UT (3.22)
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where

Σ+ =


1/σ1 0 0

0 1/σ2 0

0 0 1/σ3

0 0 0

 (3.23)

Therefore, the pseudo inverse steering law in Eq. (3.4) can be written as follows:

δ̇ = G+T =
3∑

i=1

( 1
σi

)
viuT

i T (3.24)

If σi is zero in a singularity, the gimbal rate command diverges to the infinity.

The Singularity Robust (SR) steering law is a method to avoid such a singularity

[23]. In this method, the gimbal rate command is given by the following equation:

δ̇ = G#T (3.25)

where G# is called the SR inverse given by

G# = GT(GGT + λI)−1 (3.26)

and λ is a constant positive scalar to be properly selected. Note that

G# = VΣ#UT (3.27)

where

Σ# =


σ1/(σ2

1 + λ) 0 0

0 σ2/(σ2
2 + λ) 0

0 0 σ3/(σ2
3 + λ)

0 0 0

 (3.28)

At a singular point with rank(G) = 2 and σ3 = 0, vectors u3 and v3 represent the

singular torque and the singular gimbal rate direction, respectively. Then

δ̇ =
2∑

i=1

 σi

σ2
i + λ

 viuT
i T (3.29)

Now, the author introduces an evaluation function for indicating that the system

is approaching to a singularity. The following singularity parameter κ is defined as an

index of the degree of singularity:

κ ,
σ1

σ3
(3.30)
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where σ1 and σ3 are the maximum and the minimum singular value of matrix G,

respectively. The value of κ increases, as the gimbal angles approaches to a singular

point withσ3 being a very small value. The direction of the input torque with maximum

gain, u1, is chosen to generate the torque input that is orthogonal to the critical singular

direction u3. Therefore, the direction of the command gimbal rate is selected as v1 that

corresponds to the torque input direction u1.

In this chapter, the following steering law is applied.

δ̇ =
3∑

i=1

 σi

σ2
i + λ

 viuT
i T + kSASW(κ)v1 (3.31)

where SW(κ) is a switching function defined as

SW(κ) =
1
2

(
κ − κd

| κ − κd |
+ 1

)
(3.32)

The first term in Eq. (3.31) is the same as the SR steering law in Eq. (3.25) and the

second term is added to escape from the singularities. When κ is smaller than κd, the

switching function SW(κ) = 0, and the proposed steering law in Eq. (3.31) reduces to

the conventional SR steering law in Eq. (3.25). The right singular vector v1 is employed

in the second term in order to output the maximum torque in the direction orthogonal

to the singularity surface, and to escape rapidly from the singular point.

3.5 Fixed-Star Tracking Attitude Control

In this section, the author considers fixed-star tracking attitude control of a spacecraft.

Figure 3.4 shows the configuration of fixed-stars. The line-of-sight vector of the remote

sensor is aligned along z axis of the body-fixed frame.

A coordinates transformation matrix RB
I from the inertial frame to the body-fixed

frame is defined as

RB
I =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ




cosθ 0 − sinθ

0 1 0

sinθ 0 cosθ


=


cosθ 0 − sinθ

sinϕ sinθ cosϕ sinϕ cosθ

cosϕ sinθ − sinϕ cosϕ cosθ


(3.33)
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Figure 3.4: Example of the configuration for fixed-stars

where ϕ and θ are the Euler angle about x axis and y axis of the body-fixed frame,

respectively. The direction vector of star i, for i = a, b in the body-fixed frame is defined

as sb
i = [sb

i1, sb
i2, sb

i3]T. Therefore, the following equation is obtained
sb

i1

sb
i2

sb
i3

 = RB
I


0

0

1

 =

− sinθ

sinϕ cosθ

cosϕ cosθ

 (3.34)

From Eq. (3.34), θ and ϕ are calculated as

θ = −asin
(
sb

i1

)
(3.35a)

ϕ = atan2

 sb
i2

cosθ
,

sb
i3

cosθ

 (3.35b)

A PD controller is designed as follows:

τ = −Kp


ϕ

θ

0

 − Kd


ωx

ωy

ωz

 (3.36)

where Kp ∈ R3×3, Kd ∈ R3×3 are the gain matrices.
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Table 3.1: Numerical simulation data

Symbol Value Units

J diag[10, 10, 9] kgm2

hw 0.5 Nms

β 54.73 deg

ω0 [0, 0, 0]T deg/sec

δ0 [0, 0, 0, 0]T deg

δ̇0 [0, 0, 0, 0]T rad/sec

|δ̇|max 1 rad/sec

kSA 0.01 −
κd 4.0 −
Kp diag[5, 5, 4.5] −
Kd diag[20, 20, 18] −

3.6 Numerical Simulation

In this section, the author gives the results of the numerical simulations for two cases

of the fixed-stars tracking control. The first case is the tracking attitude control for two

fixed-stars. And the second case is the tracking attitude control for four fixed-stars. In

order to compare the singularity avoidance performance, we shows the results using

both the conventional SR steering law in Eq. (3.25) and the proposed steering law in

Eq. (3.31). The spacecraft parameters, the initial condition, and the control gain are

given in Table 3.1.

In this paper, the constant positive scalar λ in Ref. [23] is chosen as

λ = 0.01 exp
(
−10 det(GGT)

)
(3.37)
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Case 1: Tracking Control for Two Fixed-Stars

The author first gives a numerical example of the tracking control for two fixed stars,

star a and star b. The direction vectors of two fixed stars in the inertial frame are given

as

sa = [0, 0, 1]T, sb = [0, 0, − 1]T (3.38)

A simulation result of the tracking control with the conventional SR steering law

in Eq. (3.25) is shown in Figs. 3.5 and 3.6, and that with the proposed steering law in

Eq. (3.31) is shown in Figs. 3.7 and 3.8. In Figs. 3.5 and 3.8, (a) shows the direction

angle; (b) the spacecraft angular velocity; (c) the gimbal rate; (d) the gimbal angle; (e)

the CMG angular momentum; and (f) the singularity parameter κ. In Figs. 3.5(a) and

3.7(a), the direction angle is given as the angle between z axis (L.O.S) of the body-fixed

frame and the line connecting two fixed stars, star a and star b in the inertial frame.

In Figs. 3.5 and 3.6 associated with the SR steering law in Eq. (3.25), the tracking

control of star a and star b is completed in about 150 sec as shown in Fig. 3.5(a).

As seen from Fig. 3.6(d), the CMG system encounters the internal singularity of

δ = [270, 0, 90, 0]T deg at about 2 sec. The singularity parameter κ becomes large at

this time as shown in Fig. 3.6(f). Figure 3.5(b) shows the spacecraft angular velocity.

When the CMG system encounters the singularity, the spacecraft angular velocity is

uncontrollable. Therefore, the star a is tracked in about 75 sec. Similarly, the singularity

of δ = [90, 0, 270, 0]T deg is encountered at about 77 sec (Fig. 3.6(d)). The star b is

tracked in about 150 sec (Fig. 3.5(a)).

In Fig. 3.7 and 3.8 associated with the proposed steering law in Eq. (3.31), a

singularity is also encountered at about 2 sec, where the CMG system is avoiding the

singularity by the output torque in the direction perpendicular to the singular direction.

For this reason, the maximum output angular momentum of the CMG system is about

1.56 Nms in the case of the proposed steering law (Fig. 3.8(e)), whereas it is only about

0.56 Nms when the SR steering law is applied (Fig. 3.6(e)).
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Figure 3.5: Simulation result: Case 1 (SR steering law)
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Figure 3.6: Simulation result: Case 1 (SR steering law)



29

0 30 60 90 120 150
0

30

60

90

120

150

180

Time (sec)

(a
) 

D
ire

ct
io

n 
A

ng
le

 (
de

g)

star a
star b

0 30 60 90 120 150
–10

–5

0

5

10

Time (sec)

(b
) 

A
ng

ul
ar

 V
el

oc
ity

 (
de

g/
se

c) ωx
ωy
ωz

0 30 60 90 120 150
–1

–0.5

0

0.5

1

Time (sec)

(c
) 

G
im

ba
l R

at
e 

(r
ad

/s
ec

)

dδ1/dt
dδ2/dt
dδ3/dt
dδ4/dt

Figure 3.7: Simulation result: Case 1 (proposed steering law)



30

0 30 60 90 120 150
0

60

120

180

240

300

360

Time (sec)

(d
) 

G
im

ba
l A

ng
le

 (
de

g)

δ1
δ2
δ3
δ4

0 30 60 90 120 150
0

0.5

1

1.5

2

Time (sec)

(e
) 

C
M

G
 M

om
en

tu
m

 (
N

m
s)

0 30 60 90 120 150
0

2

4

6

8

10

Time (sec)

(f
) 

S
in

gu
la

rit
y 

P
ar

am
et

er
 (

–)

Figure 3.8: Simulation result: Case 1 (proposed steering law)
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Case 2: Tracking Control for Four Fixed-Stars

The author gives a numerical example of the tracking control for four fixed stars, star

a, star b, star c and star d. Suppose that these fixed-stars exist at the vertex of a regular

tetrahedron as shown Fig. 3.9. Then, the direction vectors of four fixed stars in the

inertial frame are given as

sa = [0, 0, 1]T,

sb = [
√

2/3, 0, − 1/3]T,

sc = [−
√

2/3,
√

6/3, − 1/3]T,

sd = [−
√

2/3, −
√

6/3, − 1/3]T

(3.39)

Moreover, we suppose that the spacecraft locates at the center of the regular tetrahe-

dron. The tracking sequence of fixed-stars from an initial orientation/attitude of the

spacecraft is as follows:

star a→ star b→ star c→ star d

Figure 3.9: Configuration of four fixed-stars
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A simulation result of the tracking control with the conventional SR steering law

in Eq. (3.25) is shown in Figs. 3.10 and 3.11, and that with the proposed steering law

in Eq. (3.31) is shown in Figs. 3.12 and 3.13. In Figs. 3.10 and 3.13, (a) shows the

direction angle; (b) the spacecraft angular velocity; (c) the gimbal rate; (d) the gimbal

angle; (e) the CMG angular momentum; and (f) the singularity parameter κ. In Figs.

3.10(a) and 3.12(a), the direction angle is given as the angle between z axis (L.O.S) of

the body-fixed frame and the line connecting four fixed stars, star a, star b, star c and

star d in the inertial frame.

In Fig. 3.10(a), the star a tracking control with the SR steering law is 75 sec. As

seen from Fig. 3.11(d), the CMG system encounters the singularity at about 2 sec.

Moreover, the singularity parameter κ becomes large at about 2 sec as shown in Fig.

3.11(f). In Fig. 3.11(a), the star a tracking control with the proposed steering law is 45

sec.

However, it cannot be shown that the significant difference of both steering laws in

the singularity avoidance capability for tracking star b, star c and star d. For this fact, it

can be thought that external singularities (i.e., the angular momentum envelope) are

encountered while tracking each stars. As shown in Figs. 3.11(e) and 3.13(e), the CMG

angular momentum become maximum value at the external singularity.
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Figure 3.10: Simulation result: Case 2 (SR steering law)
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Figure 3.11: Simulation result: Case 2 (SR steering law)
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Figure 3.12: Simulation result: Case 2 (proposed steering law)
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Figure 3.13: Simulation result: Case 2 (proposed steering law)
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3.7 Conclusion

In this chapter, a cluster of 4-SGCMGs in pyramid type configuration has been studied

for fixed-stars tracking attitude control of small satellites. The singularities of the steer-

ing logic have been investigated to show the singularity surfaces in three-dimensional

angular momentum space.

The proposed method utilizes the singular value decomposition to obtain the sin-

gular vector and generates the command gimbal rate that keeps the command torque

in the direction orthogonal to the singular direction with maximum gain.

The result of the numerical simulation demonstrates the advantage of the proposed

method in singularity avoidance over the conventional SR steering law. The SR algo-

rithm simply utilizes an artificially perturbed command torque in order to avoid the

singularity, whereas the present method efficiently generates the command torque in

the direction orthogonal to the singular direction with a maximum gain to escape from

the singular point rapidly.
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Chapter 4

Pointing Attitude Control of

Spacecraft Using Two SGCMGs

4.1 Spacecraft Model with Twin CMG System

In this chapter, we deal with a spacecraft model as shown in Fig. 4.1. The spacecraft

model is a rigid body and has the twin CMG system, in which gimbal axes of two

SGCMGs are parallel to ẑB of the body frame FB. Therefore, the CMG angular mo-

mentum vector is produced only in the (x̂B− ŷB) plane. We assume that a camera or an

antenna is fixed on the body, and their line-of-sight is corresponding to the x̂B of the

body frame. For the twin CMG system of two SGCMGs, the CMG angular momentum

vector h is a function of the gimbal angle vector δ = [δ1, δ2]T as follows:

h(δ) = hw


cos δ1 + cos δ2

sin δ1 + sin δ2

0

 (4.1)

where hw is the magnitude of the angular momentum of the flywheel as a constant

value. From this equation, we can recall that the CMG angular momentum vector h

must be in the (x̂B − ŷB) plane.

For ease of analysis, we define a new gimbal angle vector γ = [γ1, γ2]T as follows:

γ1 ,
δ1 + δ2

2
(4.2a)

γ2 ,
δ2 − δ1

2
(4.2b)
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Figure 4.1: The rigid spacecraft model with two SGCMGs

Figure 4.2: Geometrical configuration with a new gimbal angle γ
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where γ1 and γ2 are called the rotation angle and the scissor angle, respectively [3]. It

should be noted that the direction and the magnitude of the CMG angular momentum

vector h are respectively determined by the rotation angle γ1 and the scissor angle

γ2 as shown in Fig. 4.2. By using the new gimbal angle vector γ, the CMG angular

momentum vector h(δ) in Eq. (4.1) can be rewritten as

h(γ) = 2hw


cosγ1 cosγ2

sinγ1 cosγ2

0

 (4.3)

The Jacobian matrix G(γ) ∈ R3×2 is defined by

G(γ) = 2hw


− sinγ1 cosγ2 − cosγ1 sinγ2

cosγ1 cosγ2 − sinγ1 sinγ2

0 0

 (4.4)

Thus, the dynamical equation of motion of a rigid spacecraft with two SGCMGs is

obtained as

Jω̇ = −ω×(Jω + h(γ)) − G(γ)γ̇ (4.5)

where γ̇ = [γ̇1, γ̇2]T is the control input.

For a z − x − z Euler angle, the kinematic differential equation is given by
ϕ̇

θ̇

ψ̇

 =


sinψ cosecθ cosψ cosecθ 0

cosψ − sinψ 0

− sinψ cotθ − cosψ cotθ 1



ωx

ωy

ωz

 (4.6)

where ϕ,ψ ∈ (−180◦, 180◦] and θ ∈ (0◦, 180◦).

4.2 Pointing Attitude Control Problem

Our pointing attitude control problem is to make the line-of-sight of a camera or an

antenna that is fixed on a body axis aim along a desired direction.

4.2.1 Final Attitude of Spacecraft

Due to the angular momentum conservation principle, the total angular momentum of

the spacecraft, H is conserved in the inertial frame during a maneuver. It implies that if
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Figure 4.3: Desired direction vector n̂ in the inertial frame FH. Note that this shows a

general case with θ = 90◦. Actually, ϕ f = 0◦ or 180◦ in this study.

the angular velocity of the spacecraft is zero, the total CMG angular momentum vector

h is aligned with the total angular momentum vector of the spacecraft H. Namely,

H = 2hw


cosγ1 f cosγ2 f

sinγ1 f cosγ2 f

0

 = H0


cosγ1 f

sinγ1 f

0

 (4.7)

where the subscript f denotes the final state, H0 is the magnitude of the total momen-

tum vector of the spacecraft, H, given as H0 , ∥H∥ = 2hw cosγ2 f .

To solve our pointing control problem, we define an inertial frame FH which is

represented by the orthonormal set of unit vectors x̂H, ŷH and ẑH as shown in Fig. 4.3.

The unit vector ẑH is defined as follows:

ẑH ,
H
H0

(4.8)

Given a desired direction vector n̂, which is expressed in the inertial frame FH, the

remaining unit vectors ŷH, x̂H are given by

ŷH ,
ẑH × n̂
∥ẑH × n̂∥ , x̂H , ŷH × ẑH (4.9)
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Figure 4.4: The Euler angle θ f when the spacecraft is at rest, is given by the angle

between ẑH and ẑB. Since ẑH lies in the (x̂b, ŷB) plane, θ f must be 90◦.

A spacecraft orientation can be described by the z − x − z Euler angle from the inertial

frameFH to the body frameFB. Then the coordinates transformation matrix is defined

by RB
H = Rz(ψ)Rx(θ)Rz(ϕ), that is

RB
H =


cϕcψ − sϕcθsψ sϕcψ + cϕcθsψ sθsψ

−cϕsψ − sϕcθcψ −sϕsψ + cϕcθcψ sθcψ

sϕsθ −cϕsθ cθ

 (4.10)

where cj = cos j, sj = sin j, for j = ϕ, θ, ψ. From Eqs. (4.7), (4.8) and (4.9), we obtain
cosγ1 f

sinγ1 f

0

 = RB
H


0

0

1

 =


sinθ f sinψ f

sinθ f cosψ f

cosθ f

 (4.11)

It should be noted that the Euler angle θ f is always 90◦, because cosθ f = 0 in the third

row of Eq. (4.11). It implies that if the spacecraft angular velocity is converged to zero,

the Euler angle θ is always converged to θ f = 90◦ since the CMG angular momentum

is perpendicular to ẑB as shown in Fig. 4.4. (Recall that the CMG angular momentum

vector h must be in the (x̂B − ŷB) plane.

By substituting θ f = 90◦ into the first or second rows of Eq.(4.11), the relation

between the final rotation angle γ1 f and the final Euler angle ψ f is obtained as

γ1 f = 90◦ − ψ f (4.12)
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Figure 4.5: The Euler angle ψ f when the spacecraft is at rest, is given by the angle be-

tween x̂H and x̂B. The direction of the CMG angular momentum vector h is determined

by the rotation angle γ1 f as the angle between x̂B and ẑH. Since x̂H is perpendicular to

ẑH, γ1 f is given by γ1 f = 90◦ − ψ f .

Ii implies that if the spacecraft angular velocity is converged to zero, the above relation

(4.12) holds since x̂H is perpendicular to ẑH as shown in Fig. 4.5. (Recall that the

direction of the CMG angular momentum vector h is determined by the rotation angle

γ1.) Moreover, a final scissor angle γ2 f is determined from H0 , 2hw cosγ2 f as follows:

γ2 f = cos−1
( H0

2hw

)
(4.13)

Because the domain of function“ arccos”is given by [−1, 1], we define the range of

H0/2hw ∈ [−1, 1] in this study.

Next, a desired direction vector n̂ can be expressed in the inertial frame FH as

n̂ = nxx̂H +ny ŷH +nzẑH. We examine the unit vector x̂B of the body frame FB is aligned

to a desired direction vector n̂, which is obtained as
nx

ny

nz

 = RH
B


1

0

0

 =


cosϕ f cosψ f

sinϕ f cosψ f

sinψ f

 (4.14)

The right-hand side of Eq. (4.14) is the expression of the desired direction vector n̂ in

the spherical coordinate system, as shown in Fig. 4.3. Therefore, the desired direction

vector n̂ can be expressed by the final Euler angles ϕ f , ψ f in the inertial frame FH.
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Because the desired direction vector n̂ is orthogonal to the vector ŷH from Eq. (4.9),

ny = sinϕ f cosψ f = 0. This implies that sinϕ f = 0 or cosψ f = 0. In the case of

cosψ f = 0, the desired direction vector n̂ is parallel to the total angular momentum

vector of the spacecraft H from Eq. (4.14). Such special cases are not considered in

the study. When, sinϕ f = 0, it implies that ϕ f = 0◦ or ϕ f = 180◦. From Eq. (4.14),

n̂ = [± cosψ f , 0, sinψ f ]T. Therefore, the final Euler angle ψ f is calculated as

ψ f = atan2(nz,±nx) (4.15)

This study considers only the case of ϕ f = 0.

Therefore, the control objective for pointing control of the spacecraft using two

SGCMGs are as follows:

ω→ 0 (4.16a)

γ1e , γ1 − γ1 f → 0 (4.16b)

ϕe , ϕ − ϕ f → 0 (4.16c)

where γ1e is the rotation angle error, and ϕe is the error of the Euler angle ϕ. In next

section, we design a controller for the above control objective.

4.3 Linear Controller Design

In this section, we design a controller for the control objective. First, we linearize the

nonlinear system about the equilibrium points, and then investigate the controllability

for the linearized system. Next, we design an LQR controller as a simpler method for

the linearized system.

4.3.1 Linearization of Nonlinear Spacecraft System

The nonlinear system in Eq. (4.5) can be linearized for the equilibrium points ω = 0,

γe = 0 as follows:

ω̇ = J−1h×f ω − J−1G f γ̇ (4.17)

where h×f is the skew-symmetric matrix in Eq. (4.17) for h with a final gimbal angle γ f ,

and G f is a matrix which is obtained by substituting the final gimbal angle γ f into the

Jacobian matrix G. The differential equation for the rotation angle error γ1e is given by

γ̇1e = γ̇1 = u1 (4.18)
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The differential equation for the Euler angle error ϕe in Eq. (4.6) can be linearized as

ϕ̇e = ϕ̇ = [sinψ cosecθ, cosψ cosecθ, 0]ω ≈
hT

f

h0
ω (4.19)

This is because cosecθ ≈ 1. Moreover, using the relation of Eq. (4.12), sinψ f ≈ cosγ1 f ,

cosψ f ≈ sinγ1 f about the equilibrium point. From Eqs. (4.17) - (4.19), we can obtain

the state equation with state vector x = [ωT, γ1e, ϕe]T ∈ R5 as follows:

ẋ = Ax + Bu (4.20)

where:

A =


J−1h×f 0 0

0 0 0

h−1
0 hT

f 0 0

 , B =


−J−1g1 f −J−1g2 f

1 0

0 0


where gi f , for i = 1, 2 is the ith column vector of the matrix G f , and u = γ̇ is the control

input.

4.3.2 Controllability of Linear System

A necessary and sufficient condition for the controllability of the linearized system in

Eq. (4.20) is that the controllability matrix defined as

Mc = [B, AB, A2B, A3B, A4B]T (4.21)

has rank five for γ1 f ∈ (−180◦, 180◦] and γ2 f ∈ [0◦, 180◦]. If the final scissor angle γ2 f

is 0◦ or 180◦, the controllability matrixMc for the linearized system in Eq. (4.20) has

rank three, and the linearized system is uncontrollable.

4.3.3 LQR Controller

The linear controller to achieve the control objective discussed in section 4.2 is designed

on the basis of the LQR theory. Consider the state feedback controller:

u = γ̇ = −Kx (4.22)

where x = [ωT, γ1e, ϕe]T ∈ R5 is the state vector, and K ∈ R2×5 is the control gain

matrix, which minimizes the performance index as follows:

J =
∫ ∞

0
(xTQx + uTRu)dt (4.23)
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where Q = QT ∈ R5×5 is a positive semidefinite matrix, and R = RT ∈ R2×2 is a

positive definite matrix. The control gain matrix K is given by K = R−1BTP. A positive

semidefinite matrix P = PT satisfies the algebraic Riccati equation as follows:

ATP + PA − PBR−1BTP +Q = 0 (4.24)

4.4 Nonlinear Controller Design

In the previous section, we had discussed the design of the LQR controller for a

linearized system. However, the LQR controller guarantees local asymptotic stability

only around the equilibrium points. In this section, we propose a nonlinear controller

that is developed on the basis of Lyapunov stability theory for the stabilization of the

gimbal angle error and the angular velocity.

4.4.1 Stabilization of Gimbal Angle Error and Angular Velocity

We consider a continuously differentiable Lyapunov function candidate as follows:

V = 1
2
ωT Jω +

1
2

kγT
e γe (4.25)

where k > 0 is a positive constant. The time derivative of the Lyapunov function, V̇
can be written as

V̇ = ωT Jω̇ + kγT
e γ̇e

= ωT (−ω×(Jω + h) − Gγ̇
)
+ kγT

e γ̇e

= −ωTGγ̇ + kγT
e γ̇

= −(ωTG − kγT
e )γ̇

(4.26)

The following control input is proposed:

γ̇ = Kn(ωTG − kγT
e )T (4.27)

where Kn ∈ R2×2 > 0 is a positive-definite gain matrix. Therefore, stabilization of the

gimbal angle error and the angular velocity is provided by the proposed control input.

By substituting the proposed control input obtained from Eq. (4.27) into Eq. (4.26),

we obtain

V̇ = −(ωTG − kγT
e )Kn(ωTG − kγT

e )T ≤ 0 (4.28)

However, when GTω = 0 and γe = 0, the time derivative of the Lyapunov function, V̇
is zero at the non-trivial equilibrium points.
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Table 4.1: Numerical simulation data

Symbol Value Units

J diag[10, 10, 9] kgm2

hw 0.5 Nms

ω0 [0.06, 0.05, − 0.05]T rad/s

γ0 [90, 90]T deg

γ̇0 [0, 0]T deg/s

Q diag[105, 105, 105, 100, 102] −
R diag[105, 105] −
Kn diag[1.7, 1.7] −
k 0.01 −

4.5 Numerical Simulation

In this section, we present the results of the numerical simulations of the pointing

control problem. The parameters of a spacecraft model with two SGCMGs, the initial

condition, and the control gain are given in Table 4.1.

For the initial condition in Table 4.1, the LQR controller cannot stabilize the system.

Therefore, two steps of the control method are shown as follows:

Mission start

↓
1st step: nonlinear controller in Eq. (4.27) for ω, γ1e → 0

↓
2nd step: LQR controller in Eq. (4.22) for ω, γ1e, ϕe → 0

↓
Mission complete

The results of the numerical simulations are shown for two cases of pointing control

with different target pointing directions.
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Case 1: Pointing Control to n̂ = [0.6081, 0, 0.7938]T

The unit vector x̂B of the FB is aligned with the desired direction vector n̂ = [0.6081, 0,

0.7938]T in the FH.

The results of the numerical simulations are shown in Figs. 4.6 and 4.7. These

figures show (a) the Euler angle, (b) the spacecraft angular velocity, (c) the gimbal rate,

(d) the gimbal angle, (e) the CMG angular moment, and (f) the singularity parameter

(i.e., det(GTG)).

As shown in Fig. 4.6(b), the angular velocity ω, obtained using the nonlinear

controller of Eq. (4.27), converges to almost zero at about 190 sec. Moreover, as shown

in Fig. 4.6(a), the Euler angles θ and ψ converge to the final values as θ f = 90◦ and

ψ f = 52.54◦, respectively.

Figure 4.7(d) shows that the rotation angle γ1approaches to the final angle γ1 f =

37.46◦ in accordance with Eq. (4.12). In Fig. 4.6(c), we can show that both the rotation

angle γ1 and the scissor angle γ2 are used as control input during the 1st step.

At 190 sec, the nonlinear controller is switched to the LQR controller of the 2nd step

using Eq. (4.22). During the 2nd step, only the scissor angle is used to make ϕ→ 0 as

shown in Fig. 4.7(d). Figure 4.6(a) shows that the Euler angle ϕ smoothly converges

to ϕ f = 0◦ and that the pointing control of the satellite is completed at about 320 sec.
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Figure 4.6: Simulation result: Case 1
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Figure 4.7: Simulation result: Case 1
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Case 2: Pointing Control to n̂ = [0.6081, 0, −0.7938]T

The other desired direction vector for the pointing control is given as n̂ = [0.6081, 0,

−0.7938]T in the FH. Figures 4.8 and 4.9 show the similar results of the numerical

simulation, namely, that the variables converge to the right final values, and the

pointing control is completed successfully at about 310 sec. In this case, the final Euler

angles are given as ϕ f = 0◦, θ f = 90◦, and ψ f = −52.54◦, which gives the final rotation

angle as γ1 f = 142.54◦.



52

0 100 200 300 400
–100

–50

0

50

100

150

Time (sec)

(a
) 

E
ul

er
 A

ng
le

 (
de

g)

φ
θ
ψ

0 100 200 300 400
–0.08

–0.04

0

0.04

0.08

Time (sec)

(b
) 

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
se

c) ωx
ωy
ωz

0 100 200 300 400
–6

–4.5

–3

–1.5

0

1.5

3

Time (sec)

(c
) 

G
im

ba
l R

at
e 

(d
eg

/s
ec

)

dγ1/dt
dγ2/dt

Figure 4.8: Simulation result: Case 2
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Figure 4.9: Simulation result: Case 2
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4.6 Conclusion

In this chapter, the author investigated the pointing attitude control of a spacecraft by

using a parallel array of two SGCMGs. The feasible orientations of a spacecraft at rest

are possible restrictively, because the total angular momentum vector is conserved in

the inertial frame.

The author proposed a control strategy which consists of two steps for the pointing

control. First, the LQR controller for a linearized system was designed; however, it

guaranteed only the local asymptotic stability. Therefore, a nonlinear controller on

the basis of the Lyapunov stability theory was proposed for large initial conditions.

Finally, the feasibility of the proposed control strategy is validated through numerical

simulations.
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Chapter 5

Attitude Control of Spacecraft Using

SGCMGs via LPV Control Theory

In the previous chapter, we proposed a control strategy which consists of two steps

for a pointing control of a spacecraft using two SGCMGs. Even though this two-step

strategy effectively worked, it was somehow complicated in both control design and

operation since it consists of two steps and needs to switch from one to the other.

In order to provide a one-step strategy which covers a wide operating range of

a spacecraft using SGCMGs, in this chapter, we investigate an attitude control of a

spacecraft using SGCMGs via Linear Parameter-Varying (LPV) control theory. Based

on this theory, nonlinear dynamics of the spacecraft with SGCMGs shall be described

as an LPV system and an interesting gain-scheduled (GS) control law is applied to

this system. This GS control law consists of extreme controllers designed for each

extreme points of the convex hull which covers the operating region of the spacecraft

described as an LPV system. The feasibility of the proposed control method is shown

by a numerical simulation.

5.1 Preliminary

5.1.1 Linear Matrix Inequality

A linear matrix inequality (LMI) has the form

F(x) , F0 + x1F1 + x2F2 + · · · + xmFm > 0 (5.1)
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where x ∈ Rm is the variable vector and the symmetric matrices Fi = FT
i ∈ Rn×n,

i = 0, . . . ,m, are given. The inequality symbol in Eq. (5.1) means that F(x) is positive-

definite, i.e., uTF(x)u > 0 for all nonzero u ∈ Rn. Of course, the LMI (5.1) is equivalent

to a set of n polynomial inequalities in x, i.e., the leading principal minors of F(x) must

be positive.

5.1.2 Linear Parameter-Varying System

Let us consider the Linear Parameter-Varying (LPV) system:

ẋ = A(ρ)x + Bu + Ew (5.2a)

z = Cx +Du (5.2b)

and the state-feedback gain-scheduled controller:

u = −K(ρ)x (5.3)

where x ∈ Rn is the state vector, u ∈ Rm the control input, w ∈ Rnw the disturbance

input, z ∈ Rnz the performance output, and ρ = [ρ1, . . . , ρp] the scheduling parameter.

All the matrices in Eqs. (5.2a) and (5.2b) have appropriate dimensions. Defining

Q = CTC and R = DTD, we assume that

• R > 0, CTD = 0

• (A,B): controllable, (C,A): observable.

5.1.3 Matrix Polytope

Let us denote the matrix polytope as follows:

M(t) ∈ Co
{
M1, . . . ,Mp

}
=


p∑

i=1

λiMi : λi ≥ 0,
p∑

i=1

λi = 1

 (5.4)

5.1.4 Lyapunov Function

Using P > 0, the Lyapunov function is defined by

V = xTPx > 0 (5.5)
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5.1.5 H2 Performance

For an impulse disturbance w, let us consider the performance index to be minimized:

Jzw =

∫ ∞

0
zTz dt (5.6)

which is equivalent to

Jzw =

∫ ∞

0
(xTQx + uTRu) dt (5.7)

When the closed-loop system is time-invariant, this is identical to the square of theH2

norm of the closed-loop transfer function from w to z:

Jzw = ∥Hzw(s)∥22 (5.8)

When the Lyapunov function is time-varying, minimizing Jzw is equivalent to

inf trace(ETPE) (5.9a)

subject to

P > 0, (5.9b)

Ṗ + P(A − BK) + (A − BK)TP + (C −DK)T(C −DK) < 0 (5.9c)

When the Lyapunov function is time-invariant with Ṗ = 0, minimizing Jzw is equiva-

lent to

inf trace(ETPE) (5.10a)

subject to

P > 0, (5.10b)

P(A − BK) + (A − BK)TP + (C −DK)T(C −DK) < 0 (5.10c)

5.1.6 Schur Complement Formula

The following statements are all equivalent. Φ11 Φ12

Φ21 Φ22

 < 0, (5.11a)

Φ22 < 0,Φ11 −Φ12Φ
−1
22Φ

T
12 < 0, (5.11b)

Φ11 < 0,Φ22 −Φ12Φ
−1
11Φ

T
12 < 0 (5.11c)
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5.1.7 Definition of Matrix Functions

For convenience, let us define the following matrix functions related to H2 perfor-

mance. Pre- and postmultiply (5.8) by X = P−1 > 0 and apply the Schur complement

formula, we have  (A − BK)X + sym. E

∗ −I

 < 0 (5.12)

Using the change variables F , KX, Eq. (5.12) is transformed into AX − BF + sym. E

∗ −I

 < 0 (5.13)

Related to theH2 objective function, introducing a slack variable Z, we define Z CX −DF

∗ X

 > 0 (5.14)

5.2 Pointing Control of Spacecraft Using Two SGCMGs via

LPV Control Theory

In Chapter 4, we consider the pointing control of a spacecraft using two SGCMGs. The

control objective for the control problem was stated through the angular momentum

conservation principle as follows:

ω→ 0 (5.15a)

γ1e , γ1 − γ1 f → 0 (5.15b)

ϕe , ϕ − ϕ f → 0 (5.15c)

where γ1e is the rotation angle error, and ϕe is the error of the Euler angle ϕ.

We had proposed a control strategy for the pointing control problem in Chapter

4. The proposed control strategy consists of two steps. In the first step, the control

objective (5.15a) and (5.15b) are achieved by using a nonlinear controller on basis of

the Lyapunov stability theory. After achieving the control objective (5.15a) and (5.15b),

the controller is switched to an LQR controller in the second step to achieve the control

objective (5.15c) in addition to (5.15a) and (5.15b). A disadvantage of the proposed

control strategy is that the nonlinear controller is necessary for a large initial condition,

because the LQR controller guarantees only a local asymptotic stability around an



59

equilibrium point. As a result, the two-step control strategy described above was

required.

In order to provide a one-step control strategy, in the rest of this chapter, we shall

develop an interesting GS controller of the spacecraft with two SGCMGs described as

an LPV system.

5.2.1 LPV System Modeling of Spacecraft with Two SGCMGs

First, the nonlinear system of a spacecraft with two SGCMGs can be expressed as

ω̇ = −J−1ω×(Jω + h(γ)) − J−1G(γ)γ̇ (5.16)

where the spacecraft angular velocity vector ω ∈ R3 is the state vector, the gimbal

rate vector γ̇ ∈ R2 is the control input vector, and the gimbal angle vector γ ∈ R2 is

the scheduling parameter vector. The Jacobian linearization of Eq. (5.16) around the

equilibrium point (ωeq = 0, γ̇eq = 0) leads as follows:

∂ω̇

∂ω

∣∣∣∣∣
ωeq,γ̇eq

= J−1h(γ)× (5.17a)

∂ω̇

∂γ̇

∣∣∣∣∣
ωeq,γ̇eq

= −J−1G(γ) (5.17b)

Thus, we can be obtained as following system:

ω̇ = J−1h(γ)×ω − J−1G(γ)γ̇ (5.18)

Next, the differential equation of the rotation angle error γ1e is given by

γ̇1e = γ̇1 (5.19)

Finally, from Eq. (4.6), the differential equation of the Euler angle error ϕe is given by

ϕ̇e = ϕ̇ = [sinψ cosecθ, cosψ cosecθ, 0]ω (5.20)

For ease of analysis, we apply the relation of θ f = 90◦ and γ1 f = 90◦ − ψ f to Eq. (5.20)

Assuming that cosecθ ≈ 1 and ψ ≈ 90◦ − γ1 around the final values, Eq. (5.20) is

rewritten as follows:

ϕ̇e ≈ [cosγ1, sinγ1, 0]ω ,M(γ)ω (5.21)
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Therefore, we can obtain the following system with the state vector xp = [ωT, γ1e, ϕe]T

∈ R5 as follows:

ẋp = Ar(γ)xp + Br(γ)γ̇ (5.22)

where:

Ar =


J−1h(γ)× 0 0

0 0 0

M(γ) 0 0



ω

γ1e

ϕe

 , Br =


−J−1g1(γ) −J−1g2(γ)

1 0

0 0


where gi(γ), for i = 1, 2 is the ith column vector of the matrix G(γ). However, the

elements of system matrices Ar(γ) and Br(γ) are trigonometric functions of γ; see

Appendix A and this system has not been yet an LPV system. In order to convert

this system into an LPV system, let us define a new scheduling parameter ρ ∈ R4 as

follows:

ρ1 , sinγ1, ρ2 , sinγ2, ρ3 , cosγ1, ρ4 , cosγ2 (5.23)

It should be noted that ρi ∈ [−1, 1], i = 1, . . . , 4. Using the new scheduling parameter

ρ, the system of Eq. (5.22) can be converted into the LPV system described as

ẋp = Ap(ρ)xp + Bp(ρ)γ̇ (5.24)

where:

Ap(ρ) =


J−1h(ρ)× 0 0

0 0 0

M(ρ) 0 0

 , Bp(ρ) =


−J−1g1(ρ) −J−1g2(ρ)

1 0

0 0


The readers might be in doubt that matrices Ap(ρ) and Bp(ρ) include the product ρiρ j,

i = 1, 3, j = 2, 4 in addition to the elements of ρi, i = 1, 3 alone, and the system in

Eq. (5.24) has not been yet an LPV system. However, the range of the value of ρiρ j,

i = 1, 3, j = 2, 4 is included in that of ρ j, j = 2, 4, while depending on the sign of ρi,

i = 1, 3. Taking account of this feature, we can construct a convex hull which covers

the operating range of the system in Eq. (5.24) and take its extreme points or vertices

as if it were an LPV system which linearly depends on ρi, i = 1, . . . , 4. Although the

system in Eq. (5.24) is not an LPV system in a strict sense, we shall regard it as an LPV

system in the sequel from the reason described above.

Note that the control input matrix depends on the ρ. Since this type of LPV system

does not satisfy the condition that the control input matrix is parameter-independent,

it is difficult to design a GS controller on basis of LMIs [1]. However, this problem
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Figure 5.1: The block diagram of the first-order filter

can be solve by inserting a first-order filter as shown in Fig. 5.1. Define a new control

input vector u ∈ R2 by

ẋu = Auxu + Buu (5.25a)

γ̇ = Cuxu (5.25b)

where coefficient matrices Au ∈ R2×2, Bu ∈ R2×2, and Cu ∈ R2×2 are the design param-

eters of the filter.

From Eqs. (5.24) and (5.25), defining the new state vector x = [xT
p , xT

u ]T, the

augmented system can be given by

ẋ = A(ρ)x + Bu (5.26)

where:

A(ρ) =

 Ap(ρ) BpCu

0 Au

 , B =

 0

Bu


Note that the control input matrix is independent from the scheduling parameter

vector ρ.

5.2.2 Design of GS Controller

Now let us introduce the disturbance input vector w ∈ R4 and the performance output

vector z ∈ R9. The former takes account of model errors, while the latter represents

the control performance for the disturbance repression. With the the disturbance input

vector and the performance output vector, the LPV system can be expanded as

ẋ = A(ρ)x + Bu + Ew (5.27a)

z = Cx +Du (5.27b)
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where x = [xT
p , xT

u ]T ∈ R7 is the state vector, the coefficient matrices C ∈ R9×7 and

D ∈ R9×2 satisfy CTD = 0, DTD > 0 and E ∈ R7×4. To this LPV system, we develop the

sate-feedback gain-scheduled (GS) controller:

u = −K(ρ)x (5.28)

The closed-loop system of the LPV system in Eqs. (5.27a), (5.27b) with the GS controller

in Eq. (5.28) is stable and is guaranteedH2 performance if there exists a matrix X which

satisfies the following LMI:

inf
ρ,X,Z

trace Z (5.29a)

subject to Z CX −DF(ρ)

∗ X

 > 0, (5.29b) A(ρ)X − BF(ρ) + sym. E

∗ −I

 < 0 (5.29c)

where F(ρ) = K(ρ)X. The scheduling parameter vector ρ ∈ R4 has 24 = 16 vertices.

Setting p = 16 as the number of the vertices, the LPV system can be expressed by the

following polytopic representation:

A(ρ) =
p∑

i=1

λi(ρ)Ai (5.30a)

K(ρ) =
p∑

i=1

λi(ρ)Ki (5.30b)

F(ρ) =
p∑

i=1

λi(ρ)Fi (5.30c)

where:
p∑

i=1

λi(ρ) = 1, λi(ρ) ≥ 0 (5.31)
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The LMIs in Eq. (5.29a) - (5.29c) can be rewritten as

inf
Fi,X,Z

trace Z (5.32a)

subject to Z CX −DFi

∗ X

 > 0, (5.32b) AiX − BFi + sym. E

∗ −I

 < 0 (5.32c)

Using the optimal solution sets (Fi,X), extreme controllers are given by Ki = FiX−1,

i = 1, . . . , p and a GS controller is constructed as follows:

K(ρ) =
p∑

i=1

λiKi (5.33)

In this case, the GS controller is determined by the common Lyapunov solution X > 0

and tends to result in conservatism.

As an alternative method, we can consider another problem, in which distinct

Lyapunov solutions Xi > 0, i = 1, . . . , p are adopted [19]:

inf
Fi,Xi,Zi

trace Zi (5.34a)

subject to Zi CXi −DFi

∗ Xi

 > 0, (5.34b) AiXi − BFi + sym. E

∗ −I

 < 0 (5.34c)

Using the optimal solution sets (Fi,Xi), extreme controllers are given by Ki = FiX−1
i ,

i = 1, . . . , p and a GS controller in constructed as in Eq. (5.33).

In this case, in order to guarantee the overall stability of the closed-loop system for

a whole operating range, we need to check the feasibility of the following inequality:

∃P > 0, P(Ai − BKi) + (Ai − BKi)TP < 0, ∀i (5.35)

after obtaining the extreme controllers Ki, i = 1, . . . , p. This alternative method leads

to a less conservative design result which improves the control performance in many

cases [19].
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Table 5.1: Parameters of the spacecraft model and initial condition

Symbol Value Units

J diag[10, 10, 9] kgm2

hw 0.5 Nms

ω0 [0.06, 0.05, − 0.05]T rad/sec

γ0 [90, 90]T deg

γ̇0 [0, 0]T deg/sec

Table 5.2: Design parameters of the controller and filter

Symbol Value Units

Au diag[−1, − 1] −
Bu diag[0.1, 0.1] −
Cu diag[2, 2] −
C see Appendix B −
D see Appendix B −
E see Appendix B −

5.2.3 Numerical Simulation A

In this subsection, we present a numerical simulation result of the pointing control

problem by using the proposed GS controller. The parameters of the spacecraft model

with two SGCMGs and the initial condition used for the simulation are given in Table

5.1. The design parameters of the controller and the filter are given in Table 5.2.
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Case 1: Pointing Control to n̂ = [0.6081 , 0, 0.7938]T

In this case, we give a desired direction vector n̂ = [0.6081 , 0, 0.7938]T in the FH. The

simulation results are shown in Figs. 5.2 and 5.3, in which (a) the Euler angle; (b)

the spacecraft angular velocity; (c) the gimbal rate; (d) the gimbal angle; (e) the CMG

angular momentum; and (f) the singularity parameter (i.e. det(GTG)) are given. As

shown in Fig. 5.2(a), the Euler angles ϕ, θ, and ψ converge to the final values as

ϕ f = 0◦, θ f = 90◦, and ψ f = 52.54◦ almost within 120 sec, respectively, while the

spacecraft angular velocity ω converges to zero after about 120 sec as shown in Fig.

5.2(b). Figure 5.3(d) shows the rotation angle γ1 converges to γ1 f = 37.46◦ (90◦ − ψ f ).

The GS controller is effectively worked than the proposed two step strategy in

Chapter 4.
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Figure 5.2: Simulation result: Case 1 (GS controller)
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Figure 5.3: Simulation result: Case 1 (GS controller)
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Case 2: Pointing Control to n̂ = [0.3595, 0, 2.9784]T

The other desired direction vector is given as n̂ = [0.3595, 0, 2.9784]T in the FH. In

this case, the final Euler angles are given as ϕ f = 0◦, θ f = 90◦, and ψ f = 83.12◦. The

final rotation angle is given as γ1 f = 6.88◦. Again, almost similar result can be seen as

shown in Figs. 5.4 and 5.5.

At about 25 sec, the singularity of γ2 = 0◦ is encountered as shown in Fig. 5.5(d). It

can be shown that the angular momentum vectors of two SGCMGs are corresponding.

Therefore, the norm of the CMG angular momentum becomes the maximum value,

∥h∥max = 1 as shown in Fig. 5.5(e). In Fig. 5.5(f), the singularity parameter det(GTG)

becomes zero. In this case, the settling time is about 220 sec.
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Figure 5.4: Simulation result: Case 2 (GS controller)
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Figure 5.5: Simulation result: Case 2 (GS controller)
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5.3 Attitude Control of Spacecraft Using Four SGCMGs via

LPV Control Theory

In this section, we consider the general maneuvers using four SGCMGs. After the LPV

modeling of a spacecraft with four SGCMGs, the control performances of a simple

LQR controller and the proposed GS controller in the previous section are compared

through numerical simulation.

5.3.1 LPV System Modeling of Spacecraft with Four SGCMGs

From Eqs. (2.15) and (2.7), the dynamical equation of a spacecraft with an SGCMG

cluster and the kinematic differential equation of the MRPs are given by

ω̇ = −J−1ω× (Jω + h(δ)) − J−1G(δ)δ̇ (5.36a)

σ̇ =
1
2

(1
2

(1 − σTσ)I3×3 + σ
× + σσT

)
ω (5.36b)

In this chapter, a standard four SGCMGs pyramid configuration shown in Fig. 3.1 is

used. Thus, the angular momentum h(δ) ∈ R3 is

h(δ) = hw


−cβ sin δ1 − cos δ2 + cβ sin δ3 + cos δ4

cos δ1 − cβ sin δ2 − cos δ3 + cβ sin δ4

sβ sin δ1 + sβ sin δ2 + sβ sin δ3 + sβ sin δ4

 (5.37)

where hw is the magnitude of the angular momentum of a wheel, sβ = sin β and

cβ = cos β. The Jacobian matrix G(δ) ∈ R3×3 is given by

G(δ) = hw


−cβ cos δ1 sin δ2 cβ cos δ3 − sin δ4

− sin δ1 −cβ cos δ2 sin δ3 cβ cos δ4

sβ cos δ1 sβ cos δ2 sβ cos δ3 sβ cos δ4

 (5.38)

The Jacobian linearization of Eqs. (5.36a) and (5.36b) around the equilibrium point

leads as follows:
∂ω̇

∂ω

∣∣∣∣∣
ωeq,δ̇eq

= J−1h(δ)× (5.39a)

∂ω̇

∂δ̇

∣∣∣∣∣
ωeq,δ̇eq

= −J−1G(δ) (5.39b)

∂σ̇

∂ω

∣∣∣∣∣
ωeq,σeq

=
1
4

I3×3 (5.39c)

∂σ̇

∂σ

∣∣∣∣∣
ωeq,σeq

= 0 (5.39d)
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Therefore, we can obtain the following system: ω̇σ̇
 =

 J−1h(δ)× 0
1
4 I3×3 0


 ωσ

 +
 −J−1G(δ)

0

 δ̇ (5.40)

However, the elements of system matrix and control input matrix are trigonometric

functions of δ and this system has not been yet an LPV system. In order to convert

this system into an LPV system, let us define a new scheduling parameter ρ ∈ R4 as

follows:

ρ1 , sin δ1, ρ2 , sin δ2, ρ3 , sin δ3, ρ4 , sin δ4 (5.41)

It should be noted that ρi ∈ [−1, 1], i = 1, . . . , 4. In addition, we linearize as follows:

cos δ1 ≈ 1, cos δ2 ≈ 1, cos δ3 ≈ 1, cos δ4 ≈ 1 (5.42)

Using the new scheduling parameter ρ, the above system can be converted into the

LPV system described as ω̇σ̇
 =

 J−1h(ρ)× 0
1
4 I3×3 0


 ωσ

 +
 −J−1G(ρ)

0

 δ̇ (5.43)

Note that the control input matrix depends on the ρ. Since this type of LPV system

does not satisfy the condition that the control input matrix is parameter-independent,

it is difficult to design a GS controller on basis of LMIs [1]. However, this problem

can be solve by inserting a first-order filter as shown in Fig. 5.1. Define a new control

input vector u by

ẋu = Auxu + Buu (5.44a)

δ̇ = Cuxu (5.44b)

where coefficient matrices Au ∈ R4×4, Bu ∈ R4×4, and Cu ∈ R4×4 are the design param-

eters of the filter. From Eqs. (5.43), (5.44a) and (5.44b), defining the new state vector

x = [ωT, σT, xT
u ]T ∈ R10, the augmented system can be given by

ẋ = A(ρ)x + Bu (5.45)

where:

A(ρ) =


J−1h(ρ)× 0 −J−1G(ρ)Cu

1
4 I3×3 0 0

0 0 Au

 , B =


0

0

Bu

 (5.46)

Note that the control input matrix is independent from the scheduling parameter

vector ρ.
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Table 5.3: Parameters of the spacecraft model and initial condition

Symbol Value Units

J diag[10, 10, 9] kgm2

hw 0.5 Nms

β 54.73 deg

ω0 [0, 0, 0]T rad/sec

δ0 [0, 0, 0, 0]T deg

δ̇0 [0, 0, 0, 0]T rad/sec

Table 5.4: Design parameters of the controller and filter

Symbol Value Units

Q diag[103, 103, 103, 105, 105, 105] −
R diag[106, 106, 106, 106] −

Au diag[−10, − 10, − 10, − 10] −
Bu diag[8, 8, 8, 8] −
Cu diag[7, 7, 7, 7] −
C see Appendix B −
D see Appendix B −
E see Appendix B −

5.3.2 Numerical Simulation B

In this subsection, we present a numerical simulation result of the attitude control by

using the proposed GS controller in Subsection 5.2.2. In order to compare, the result

by using LQR controller also is presented. The parameters of the spacecraft model

with four SGCMGs and the initial condition used for the simulation are given in Table

5.3. The design parameters of the controller and filter are given in Table 5.4.
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Case 1: Three-Axis Maneuver

In this case, we give a initial condition of σ0 = [1/3,−1/3,−1/3]T. A simulation result

of the maneuver using the LQR controller is shown in Figs. 5.6 and 5.7, and that with

the proposed GS controller is shown in Figs. 5.8 and 5.9. In Figs. 5.6 - 5.9, (a) shown

the MRPs; (b) the Euler angle; (c) the spacecraft angular velocity; (d) the gimbal rate;

(e) the gimbal angle; and (f) the CMG angular momentum.

As shown in Fig. 5.6(a), the maneuver using LQR controller is completed in about

125 sec, whereas the maneuver using proposed GS controller is finished in about 80

sec as shown in Fig. 5.8(a).
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Figure 5.6: Simulation result: Case 1 (LQR controller)
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Figure 5.7: Simulation result: Case 1 (LQR controller)
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Figure 5.8: Simulation result: Case 1 (GS controller)
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Figure 5.9: Simulation result: Case 1 (GS controller)
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Case 2: Large-Angle Maneuver

In this case, we give the other initial condition of σ0 = [1, 0, 0]T. This maneuver is

the large-angle maneuver of 180 degrees around x axis. A simulation result of the

maneuver using the LQR controller is shown in Figs. 5.10 and 5.11, and that with the

proposed GS controller is shown in Figs. 5.12 and 5.13. In Figs. 5.10 - 5.13, (a) shown

the MRPs; (b) the Euler angle; (c) the spacecraft angular velocity; (d) the gimbal rate;

(e) the gimbal angle; and (f) the CMG angular momentum.

By using the LQR controller, the large-angle maneuver is completed in about 170

sec as shown in Figs. 5.10(a) and (b). To generate output torque about x axis, only 1st

and 3rd SGCMGs are operated during the maneuver as shown Figs. 5.11(d) and (e).

On the other hand, Figs. 5.12(a) and (b) shows that the maneuver using the

proposed GS controller is completed in about 120 sec. All SGCMGs are actively

operated as shown Figs. 5.13(d) and (e).
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Figure 5.10: Simulation result: Case 2 (LQR controller)
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Figure 5.11: Simulation result: Case 2 (LQR controller)
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Figure 5.12: Simulation result: Case 2 (GS controller)
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Figure 5.13: Simulation result: Case 2 (GS controller)



84

5.4 Conclusion

In this chapter, this thesis is addressed attitude control problems via LPV control

theory. First, a pointing control using only two SGCMGs is dealt in Section 5.2. To

achieve this pointing control, the author developed a GS controller via LPV control

theory. The spacecraft model with SGCMGs was described as an LPV system. Then,

a GS controller was designed for this LPV system. The GS controller is effectively

worked than the proposed two step strategy in Chapter 4.

The author also dealt the general maneuvers of the spacecraft with four SGCMGs

in Section 5.3. The feasibility of the developed GS controller was validated through

numerical simulations.

Though the proposed method leaves room for improvements, this thesis proposed

a new control method for an ACS using SGCMGs.
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Chapter 6

Conclusions

This thesis provided control algorithms for attitude control problems of small satellites

using SGCMGs. The SGCMG system has a simple mechanical structure and high

torque amplification. The use of SGCMG system can lead to an increase in the pointing

accuracy of small satellites.

In this thesis, a cluster of 4-SGCMGs in pyramid type configuration has been stud-

ied for fixed-stars tracking attitude control of small satellites. The singularities of

the steering logic have been investigated to show the singularity surfaces in three-

dimensional angular momentum space. The present method utilizes the singular

value decomposition to obtain the singular vector and generates the command gim-

bal rate that keeps the command torque in the direction orthogonal to the singular

direction with maximum gain. The result of the numerical simulation demonstrates

the advantage of the proposed method in singularity avoidance over the conventional

SR steering law. The SR algorithm simply utilizes an artificially perturbed command

torque in order to avoid the singularity, whereas the present method efficiently gener-

ates the command torque in the direction orthogonal to the singular direction with a

maximum gain to escape from the singular point rapidly.

This thesis also addressed a pointing control using two SGCMGs. The feasible ori-

entations of a spacecraft at rest are possible restrictively due to the angular momentum

conservation principle. To solve this problem, the author proposed a control strategy

which consists of two steps. The feasibility of the proposed control strategy is validated

through numerical simulations. This results are expected to be the countermeasure for

a failure in the redundant CMG system (e.g., four CMG cluster).
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This thesis also presented attitude control problems via LPV control theory. First,

a pointing control using only two SGCMGs is dealt in Section 5.2. To achieve this

pointing control, we developed a GS controller via LPV control theory. The spacecraft

model with SGCMGs was described as an LPV system. Then, a GS controller was de-

signed for this LPV system. The GS controller is effectively worked than the proposed

two step strategy in Chapter 4. The general maneuvers of the spacecraft with four

SGCMGs are also dealt in Section 5.3. The feasibility of the developed GS controller

was validated through numerical simulations. Though the proposed method leaves

room for improvements, this thesis proposed a new control method for an ACS using

SGCMGs.

In the present thesis, it has been assumed that the spacecraft model is a rigid body.

As future works, an attitude control of a spacecraft with flexible appendage is an

important issue that needs to be considered.

The author believes that the results of the present work can contribute to the

development of the CMGs which are highly useful attitude control actuators for agile

small satellites.
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Appendix

A The System Matrices of Ar(γ) and Br(γ)

The matrices Ar(γ) and Br(γ) in Eq. (5.22) can be written as

Ar(γ) =



0 0
2hw sinγ1 cosγ2

Jx
0 0

0 0
−2hw cosγ1 cosγ2

Jy
0 0

−2hw sinγ1 cosγ2

Jz

2hw cosγ1 cosγ2

Jz
0 0 0

0 0 0 0 0

cosγ1 sinγ1


,

Br(γ) =



2hw sinγ1 cosγ2

Jx

2hw cosγ1 sinγ2

Jx
−2hw cosγ1 cosγ2

Jy

2hw sinγ1 sinγ2

Jy

0 0

1 0

0 0


where hw is the magnitude of the angular momentum of the flywheel, and Jk is the

moment of inertia with respect to each body axis k = x, y, z.
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B The Coefficient Matrices for Controller Design

For a numerical simulation A, coefficient matrices C, D, and E are given as follows:

C =



30 0 0 0 0 0 0

0 30 0 0 0 0 0

0 0 30 0 0 0 0

0 0 0 0.1 0 0 0

0 0 0 0 0.1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,

D =



0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1



, E =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0
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For a numerical simulation B, coefficient matrices C, D, and E are given as follows:

C =



√
107 0 0 0 0 0 0 0 0 0

0
√

107 0 0 0 0 0 0 0 0

0 0
√

107 0 0 0 0 0 0 0

0 0 0
√

106 0 0 0 0 0 0

0 0 0 0
√

106 0 0 0 0 0

0 0 0 0 0
√

106 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



,

D =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0√
107 0 0 0

0
√

107 0 0

0 0
√

107 0

0 0 0
√

107



, E =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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