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Abstract

This study considers the robust optimum airfoil shape of the morphing wing using the corrugated
structures arranged in the rear side of the airfoil. The rear side of the wing is deformed like the plain flap
by bending the corrugated structure. As the first step, this study considers the multiobjective optimization
of the airfoil shape with different objectives corresponding to the flapping angle. In addition, uncertainty
of the airfoil shape is considered, thus, the robust multiobjective optimization method is applied. The
morphing part is modeled by nonuniform rational basis spline (NURBS) curve and the passing points of
the NURBS curve are treated as design variables. In addition, the NURBS curve is smoothly connected
by appropriately arranging the passing points to the front side of the airfoil where is not morphed. The
aerodynamic analysis is performed by the free computational tool for the wing operating at low Reynolds
number range. Then, the surrogate model is constructed using the radial basis function (RBF) network
for computationally efficient optimization. Through numerical calculation, the validity of the robust
multiobjective optimization method for the airfoil design is demonstrated.

1 INTRODUCTION

A morphing wing can be defined as one which has the ability to either alter its shape in a seamless
change along the chord or spar by warping or bending [1, 2]. Yokozeki et al., one of the authors, have
developed the variable camber morphing airfoil arranging corrugated structures at the rear side in airfoil
as shown in Fig. 1 [3]. Since the corrugated structure has flexibility to bending to the wavy direction, the
rear part of the airfoil can morph as a plain flap. The flap has several functions to increase the lift-to-drag
ratio at taking off or to increase the lift at approaching. Feasibility of the corrugated morphing airfoil
was demonstrated through wind tunnel test using the two-dimensional model [3]. In addition, it is shown
that the morphing shape can be designed in terms of the corrugation pitch or the thickness [4]. However,
the optimized corrugate arrangement is not studied yet.

Thus, this study applies the robust multiobjective optimum design method proposed by the authors [5]
to the airfoil design of the corrugated morphing airfoil. For the formulation of the multiobjective opti-
mization, the satisficing trade-off method (STOM) [6] is applied. STOM is known to be an interac-
tive optimization method and converts a multiobjective optimization problem into the equivalent single-
objective optimization problem by introducing an aspiration level that corresponds to the user’s prefer-
ence for each objective function value. In the robust multiobjective optimization, the Pareto solutions are
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Figure 1. Morphing airfoil using corrugated structure

evaluated to visualize the trade-off between the mean performance and the variation by formulating them
as independent objective functions. In previous study, the method was applied to the high high-precision
space reflector design to investigate the effect of variations on the applied load on the shape accuracy [7].

As the first step of the optimum design study, this study concentrates on the airfoil shape design
considering the aerodynamic performance. The corrugation arrangement design is not considered yet.
That will be possible to design the arrangement according to the desired airfoil shape. The morphing
wing warped the corrugated section such that the length of the upper curve is unchanged, while that
of the lower curve is shrinked [3]. Accordingly, the upper curve is modeled by using the non-uniform
rational basis spline (NURBS) curve [8] and the passing points are treated as design variables. The
NURBS curve is widely used in the shape optimization such that the airfoil optimization [9] and the
membrane design [10]. The curve is modeled under following constraints that the length of the upper
curve is unchanged and the morphing part is smoothly connected to the unmorphed front part, where the
front part is not modeled as the NURBS curve. In addition, the lower curve of the morphed part is also
modeled as the NURBS curve that the passing points are modeled as dependent variables such that the
airfoil thickness is unchanged.

The aerodynamic performance is evaluated by using the airfoil analysis tool XFLR5 [11] that is
widely adopted to the design of wings operating at low Reynolds numbers. In this study, the numer-
ical analysis tool is not directly used in the optimization. For computational efficiency, the surrogate
model [12] is constructed by using the radial basis function (RBF) network [13]. The RBF network con-
structs the approximation model from several sample points and updates the model by adding the sample
properly determined to improve the approximation accuracy. In this study, the RBF network method
proposed by Kitayama et al. [14] is adopted for approximation accuracy.

Through numerical examples, it is first demonstrated the efficiency of the morphing airfoil modeling
using the NURBS curve proposed in this study. Then, the approximate accuracy of the RBF network for
the aerodynamic performance in terms of the design variables, the passing points of the NURBS curve,
is discussed. Finally, the usefulness and the efficiency of the robust multiobjective optimization method
to the morphing airfoil design are discussed.

2 MORPHING AIRFOIL SHAPE BY NURBS CURVES

The morphing airfoil with corrugation [3] is morphed as the plain flap by bending the corrugation
such that the length of the upper curve is unchanged, while that of the lower curve is shrinked as shown
in Fig. 2. In addition, the airfoil thickness is unchanged during the morphing.
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Figure 2. Deformation of morphing wing like plain flap
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Figure 3. NURBS curve model of morphing part in airfoil

The NURBS curve is adopted to model the morphing section of the rear part of the airfoil. While, the
front part without morphing is not modeled as the NURBS curve. Since the total airfoil shape is modeled
with a set of nodes passing on the airfoil and the shape is used as an input model to the aerodynamic
analysis tool, the nodal points of the rear side are obtained from the NURBS curve and those of the front
side are given as the constant values from the airfoil section data. Therefore, the different modeling
method for the ordinal airfoil shape optimization using the NURBS curve is required. Especially, the
smooth connection is required at the NURBS starting point.

In this study, the NURBS curve passing points are treated as design variables. For efficient optimiza-
tion, smaller number of the design variables is desirable. The minimum number of the NURBS curve
passing points is set to five for sufficient freedom of the airfoil shape and satisfy the smooth connection
requirement at the morphing starting point.

At first, consider the upper curve of the airfoil. The NURBS passing pointP u
2 is set at the morphing

starting point on the upper curve and the another pointP u
1 is set at the closed leading edge side on the

upper curve as shown in Fig. 3(a), whereP u
1 is a starting point of the NURBS curve. The unmoved two

points will act such that the change on the curvature of the NURBS curve will be continuous during the
morphing for the smooth connection between the front and the rear side. Then,P u

5 is set at the trailing
edge point that is the end point of the NURBS curve. The position of the end pointP u

5 is determined to
satisfy the two conditions as the morphing angleθ and the unchanged length of the upper curve. Where,
the morphing angle is defined to the angle between the unmorphed chord line and the line connecting the
morphing starting point at the lower curve and the trailing edge as shown in Fig. 2.

The two passing pointsP u
3 andP u

4 between the starting and the end points on the upper curve are

3



ICAST2015: 26th International Conference on Adaptive Structures and Technologies

October 14-16th, 2015, Kobe, Japan

Figure 4. Comparison between NURBS model and original morphing airfoil [3] for 20 degree
of morphing angle

freely moved to change the airfoil shape. For sufficient freedom of the airfoil shape and simplicity, the
y-coordinates of the points are treated as design variables.

Then, the morphing shape of the lower curve is defined. At first,P l
1 andP l

2 are set at the points on
the lower curve shifted perpendicular to the unmorphed chord line that is identical to thex-axis. The end
pointsP l

5 is set as the trailing edge that is identical toP u
5 as the end point of the upper NURBS curve.

Then, the points on the lower curveP l
3 andP l

4 are defined as shifting the wing thickness unchanged
from the pointsP u

3 andP u
4 on the upper surface, respectively, as shown in Fig. 3(b). The wing thickness

hj is first defined for the unmorphed wing as follows:

hj = yu0j − yl0j (j = 3, 4) (1)

whereyu0j andyl0j are they-coordinate of the NURBS passing points for the unmorphed airfoil. As
shown in Fig. 3(b), the slope angle of the upper curve at the point is denoted asφ. Then, the passing point
coordinate for the morphed airfoil is denoted asP u = [xu, yu]. The coordinate of the corresponding
pointsP l = [xl, yl] in the lower curve for the morphed wing is evaluated as follows:

xl = xu − h sin(φ− φ′) (2)

yl = yu − h cos(φ− φ′) (3)

whereφ′ is the slope angle at the upper curve for the morphed wing.
Figure 4 compares the morphing airfoil with 20 degree of the morphing angle between the NURBS

modeling by red curves and the original shape in reference [3] by blue curves. It is found that the two
curves are almost identical, though small differences appear around the trailing edge.

3 AIRFOIL ANALYSIS AND SURROGATE MODEL

3.1 Airfoil analysis

This study uses the airfoil analysis tool XFLR5 [11] that is widely adopted to the design of wings
operating at low Reynolds numbers. The tool provides the change of the lift coefficient, the drag coeffi-
cient and the moment coefficient with respect to the angle of attack based on the pressure distributions
evaluated by the two-dimensional viscous formulation for the given airfoil shape, the velocity, and the
Reynolds number.

4



ICAST2015: 26th International Conference on Adaptive Structures and Technologies

October 14-16th, 2015, Kobe, Japan

3.2 Surrogate Model by RBF Network

A radial basis function (RBF) network is a three-layer feed-forward network using the RBF. The
functionf(x), the output of the network, is approximated as follows:

f(x) =
m∑
j=1

wjhj(x) (4)

wherem indicates the number of sampling points,wi is the weighting factor, andhj(x) is thej-th basis
function defined as follows:

hj(x) = exp

[
−(x− xj)

T (x− xj)

r2j

]
(5)

wherexj is j-th sampling point,andrj is the width of the basis function. In this study,rj is defined by
using Kitayama’s method [14] as follows:

rj =
dj,max√
n n
√
m− 1

(6)

wheren is the number of design variables,m denotes the number of sampling points, anddj,max is the
maximum distance between thej-th sample point and the other sampling points.

The RBF network is usually accomplished by solving the following function to estimate the weighting
factorw in Eq. (5).

Minimize :
p∑

i=1

(ŷi − f(xi))
2 +

m∑
j=1

λjwj
2 (7)

where the first term is sum of squares of the error between the network outputf(xi) and the true value
ŷi and the second term is introduced for the regularization [13]. It is recommended thatλj is seta as a
small value, e.g.,1× 10−3.

The necessary condition of Eq. (7) yields the following equation:

w = (HTH + λ)−1HT ŷ (8)

whereH is given as follows:

H =


h1(x1) h2(x1) · · · hm(x1)
h1(x2) h2(x2) · · · hm(x2)

...
...

...
...

h1(xp) h2(xp) · · · hm(xp)

 (9)

and the following matrixA is introduced:

A = (HTH + λ) (10)

The learning of the RBF network reduces to obtainA−1. In this study, the leave one out cross valida-
tion(LOOCV) [12] is adopted for efficient learning.
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Figure 5. Pareto optimal solution searching by STOM

4 ROBUST MULTIOBJECTIVE OPTIMIZATION

Designing the morphing airfoil requires the robust design that considers the effect of uncertainties of
several parameters such as velocity, the angle of attack, the airfoil shape and so on.

The robust optimization can be defined as a multiobjective optimization problem to minimize both
the expected value and the variation of the objective function. However, it has been generally formulated
as the minimization of the weighted sum of the expected value and the variation as follows:

Frobust(x, z) = E[f(x, z)] + α
√

Var[f(x, z)] (11)

wherex andbmz denotes design variables and random variables, respectively, andα > 0 is a weight co-
efficient. The single-objective optimization using Eq. (11) sometimes fails to obtain the desired solution,
especially when the Pareto set has a non-convex shape.

In this study, the robust design optimization is formulated as the following multiobjective optimization
problem:

Minimize: f1(x,z) = E[f(x, z)] (12)

f2(x,z) =
√

Var[f(x,z)] (13)

where the expected value and the standard deviation are adopted as individual objective functions.
Part of the authors [5] are proposed to use STOM [6] to the robust multiobjective optimization prob-

lems. STOM is known to be an interactive optimization method and converts a multiobjective optimiza-
tion problem into the equivalent single-objective optimization problem by introducing an aspiration level
that corresponds to the user’s preference for each objective function value. As shown in Fig. 5, the Pareto
optimal solution is usually located on the line connecting the ideal point and the aspiration level in the
objective function space, regardless of whether or not the aspiration level lies in the feasible region.
STOM is formulated as the following min-max problem:

Minimize : max
i=1,2,··· ,r

wi(fi(x)− f I
i ) (14)

subject to : gj(x) ≥ 0 (j = 1, 2, · · · ,m)
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Figure 6. Flowchart of robust multiobjective optimization using STOM

wheref I
i is an ideal point andwi is a weight coefficient that is evaluated by using an aspiration levelfA

i

as follows:

wi =
1

fA
i − f I

i

(i = 1, · · · , r)

Introducing a slack variables, the equivalent single-objective optimization problem is defined:

Minimize: s (15)

subject to: wi

(
fi(x, z)− f I

i

)
≤ s (i = 1, · · · , r)

gj(x, z) ≤ 0 (j = 1, · · · ,m)

The Pareto solution corresponding to the aspiration level is obtained. When the user is not satisfied with
the obtained solution, the user repeats the process by changing the aspiration level. On the other hand,
the Pareto surface can be obtained by parametrically changing the aspiration level.

The flow of the robust multiobjective optimization is illustrated in Fig.??. In this study, the sequential
quadratic method (SQP) is adopted to solve the equivalent optimization problem (15).

5 NUMERICAL EXAMPLES

The airfoil adopted in this study is Fx63-137 (maximum wing thickness 13.7%, maximum camber
5.97%) that motor gliders widely adopt, where the Reynolds number is set asRe = 7.94×105 [3]. Here,
the lift maximization design under the case of 10 degree of the morphing angle is illustrated.

The design variables are the y coordinates of the NURBS passing pointsy3 for P u
3 andy4 for P u

4 and
the angle of attack for the nominal airfoilα′. Note thatα′ is different from the angle of attack for the
morphed airfoil. In order to avoid the ill-shaped airfoil that has ill effects on the accuracy of the surrogate
model, the design variables for 10 degree of the morphing angle are constrained as follows:

0.06355 ≤ y3 ≤ 0.11855 (16)

−0.07165 ≤ y4 ≤ 0.02835 (17)

−6.0 ≤ α′ ≤ 5.0 (18)

Note that the lower and upper bounds are varied for the morphing angle. In addition, the angle of attack
α′ is also constrained to avoid numerical errors beyond the stall angle for the aerodynamic analysis.
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Figure 7. CL distribution for α′ = 2◦ in design variable space
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Figure 8. CD distribution for α′ = 2◦ in design variable space

5.1 Approximation Accuracy of RBF Network

The approximation accuracy of the RBF network is compared for the airfoil under the case of 10
degree of the morphing angle. The lift and the drag coefficient distribution in terms of the design variables
y3 andy4 for the angle of attack to the nominal airfoilα′ = 2◦ are illustrated in Figs. 7 and 8, respectively.
In the figures, (a) indicated the approximated contour curve evaluated by the RBF network, and (b) is
a contour plot made from the XFLR5 results at the lattice points. Because of the lattice points is small
in number, the contour curves in (b) are shaky. It is found from the figures that the RBF network has
sufficient approximation accuracy for the lift coefficient. However, the accuracy for the drag coefficient
is insufficient, though the overall trends are very similar from each other. This is because the change of
the drag coefficient is much larger for the stall regions in comparison of that of the lift coefficient.
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Figure 10. Comparison of pressure distributions at the maximum lift coefficient

5.2 Lift Coefficient Maximization as Deterministic Design

The lift coefficient maximization design for 10 degree of the morphing angle is illustrated in Fig. 9(a).
In this figure, “Opt” curve corresponds to the optimized design and “Ref” to the airfoil shape in the
reference [3]. Though the optimized airfoil has wavy shape, the maximum lift coefficient is larger than
that of the reference airfoil as illustrated in Fig. 9(b), where the horizontal axis indicates the angle of
attack for the nominal airfoil (α′).

The maximum lift coefficient of the optimum airfoil is 2.157 atα′ = 3.9◦. It is better than that of the
referred airfoil, 2.0443 atα′ = 2.5◦. On the other hand, the drag coefficient is about twice as that of the
referred wing because of the wavy shape. However, the optimum airfoil has smaller drag coefficient at
the stall angle. The pressure distribution is compared in Fig. 10. The horizontal axis indicates the chord
line of the nominal airfoil and the lateral axis indicates the pressure coefficient, where the negative value
is the upper side. That is, upper curve corresponds to the upper airfoil side. In the optimized airfoil, the
negative pressure decreases at the wavy point, but the value is recovered at the backward. That’s why the
optimum airfoil has larger lift coefficient.

The approximation accuracy is shown in Table 1, where the approximated and the analyzed values
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Table 1 Approximation accuracy at the optimum design
Design Method CLmax α′ (deg)

RBFN 2.158 3.09
Optimum

XFLR5 2.157 3.90

Reference [3] XFLR5 2.044 2.50

are compared for the optimized and the referred airfoil. Though the difference of the maximum lift
coefficient is small, the stall angle has large difference. It indicated that some improvements are required
to establish the approximation accuracy.

5.3 Robust Multiobjective Optimization

Here illustrates the Pareto solutions for the robust multiobjective optimization problem to maximize
the lift coefficient, while to minimize the variation of the lift coefficient with respect to the airfoil shape.
Considering variations of the airfoil shape,y3 andy4 are set as random variables and the standard devia-
tions are set as follows: √

Var[yi] = 0.01 (i = 3, 4) (19)

The design variables are set as the mean values of the coordinates,E[y3], E[y4] and the angle of attack
for the nominal airfoil,α′. The design problem is formulated as the robust multiobjective optimization
problem as follows:

Maximize: f1 = CL(E[y3], E[y4], α
′) (20)

Minimize: f2 =
√

Var[CL(E[y3], E[y4], α′)]

yLi ≤ E[yi] ≤ yUi (i = 3, 4)

α′
L ≤ α′ ≤ α′

where the same side constraints as the deterministic design problem are used.
Pareto solutions obtained by parametrically changing the aspiration levels are illustrated in Fig. 11(a).

The ideal point is located at the lower right corner, becausef1 (mean value ofCL) will be maximized
andf2 (standard deviation ofCL) will be minimized, where the ideal point is set for both solutions for
the single objective optimizations. It is found that the obtained Pareto solutions are located on the line
connecting the ideal point and the aspiration levels.

The mean airfoil shapes corresponding to A, B and C denoted in Fig. 11(a) are compared in Fig. 11(b).
The solution C that has large mean value ofCL and large variance ofCL is a wavy shape as the determin-
istic design shown in Fig. 9. On the other hand, the smaller variance designs like B and A have smaller
wavy shape. Therefore, the STOM obtains reasonable Pareto solutions.

Finally, the approximation accuracy of the surrogate model is presented. Table 2 compares the ap-
proximatedCL by the RBF network with the numerical value by XFLR5 for the obtained airfoil shapes,
A, B and C. It is found that the approximation has the sufficient accuracy as the previous examples.

6 CONCLUSIONS

This study evaluates the robust optimum airfoil shape of the morphing wing by the robust multiobjec-
tive optimization method by using STOM. Through numerical examples, the following conclusions are
remarked.

10
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Figure 11. Pareto solutions for robust multiobjective optimization

Table 2 Approximation accuracy by RBF network for the Pareto solutions A, B and C in
Fig. 11(a)

Pareto RBF network XFLR5
solution E[CLmax ] α′ (deg) E[CLmax ] α′ (deg)

A 1.989 3.48 2.007 3.30
B 2.051 3.71 2.056 3.70
C 2.146 3.30 2.132 3.90

• The morphing section is modeled by using the NURBS curve in order to reduce the number of
design variables, where the passing points of the NURBS curve are treated as design variables.
The smooth connection of the leading edge side and the morphing section at the trailing edge side
at the morphing starting point is established by setting the double starting points of the NURBS
curve at the morphing beginning points.

• The aerodynamic performance is evaluated by using the analysis tool XFLR5 for low Reynolds
number region. To avoid the direct calls of the analysis tool during the optimization, the surrogate
model is constructed by using the RBF network. Through numerical examples, the approximation
accuracy of the lift coefficient is demonstrated to be sufficient, though some improvements will be
required for the drag coefficient approximation.

• The robust multiobjective optimization considering variation of the airfoil shape is demonstrated,
where the mean value and the standard deviation of the lift coefficient are formulated as individual
objective functions. The Pareto solution obtained by STOM is illustrated to be effective to visualize
the trade-off between the mean value and the standard deviation.

The other performance index such as the lift-to-drag ratio should be considered. Then, design method-
ology for the corrugation arrangement corresponding to the optimized airfoil shape should be established
in the future that requires the multidisciplinary coupling analysis with aerodynamics and structure.
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