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Abstract 

In this paper, an extension of the conventional adaptive Kalman filtering technique to the ensemble 
Kalman filter is presented. Using the presented method, unknown noise covariances of the filter settings 
are effectively determined. A simple cantilevered beam vibration problem is provided to verify the 
effectiveness of the presented adaptive estimation method.  

1.  INTRODUCTION 

Recently, many interests have been attracted for smart structural systems, which are designed to be 
adjustable via actuators on orbit1. One of the main difficulties in constructing effective smart structural 
systems is to estimate the appropriate current structural states for the actuations because the sensors 
equipped with spacecraft are usually insufficient to observe whole structural states. To compensate 
unobserved structural data, numerical simulations based on the finite element (FE) models play an 
important role.  

The FE models usually contains various uncertainties in the systems, such as uncertain structural 
parameters, and these uncertainties are often identified by using measurement data obtained in validation 
tests on the ground. The accuracy of the model is limited by how precise the validation test can simulate 
the orbital spacecraft environment. In future space missions, such as advanced space antennas, the 
structural design requirements tend to become more and more severe, and the accuracy of the numerical 
models estimated based on the ground-based validation test could be insufficient. 

This research presents an effective model estimation method based on the ensemble Kalman filtering 
(EnKF) technique2,3, which can automatically provide optimum estimations of system state variables 
while assimilating the nonlinear numerical model with the experimental data in sequential manner. 
Based on the EnKF technique, the structural state estimations can be sequentially obtained on orbit for 
the actuations in the smart structure system. The accuracies of the EnKF estimations depend on the filter 
noise settings, that is, the system noise covariance and the measurement noise covariance. These noise 
settings have to be determined without knowing real state values. In our research, we apply the adaptive 
estimation technique for the conventional Kalman filter4,5 to the EnKF, and investigate the effectiveness 
of the adaptive estimation technique on the EnKF estimations. A simple nonlinear example is provided 
to verify the effectiveness of the adaptive estimations. 

                                                           
* akita.takeshi@it-chiba.ac.jp 
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2.  NONLINER STRUCTURAL DYNAMIC SYSTEM EQUATIONS 

In the finite element analysis, the governing equations for nonlinear structural dynamics problems 
are given by 

1 1 1 1( ) ( )t t t t     Mu Cu Q u F u        (1) 

Here, the vectors 1 1 1, ,t t t  u u u   indicate the nodal displacement, velocity, and acceleration vectors, 

respectively, and the matrices M  and C  are the mass and damping matrices, respectively. The internal 
and external force vectors are denoted by Q  and F , respectively, which are functions of 1tu . The 
subscript 1t   denotes a discretized time step. In this paper, we apply the generalized α method6 for 
numerical integration of (1). In the generalized α method, the following governing equations are 
considered: 

1 1 1 1( ) ( )m f f ft t t t            Mu Cu Q u F u      (2) 

Here, ,m f   are constants that affect numerical damping, and are defined by 

 
2 1

,
1 1

m f
  
 

 

 


 

        (3) 

where   is the radius of convergence. The discrete time update equations as shown below: 

 1,t t Γ u u 0        (4) 

Note that the above equations become nonlinear simultaneous equations and need an iterative method 
such as the Newton-Raphson method. 

3.  ENSEMBLE KALMAN FILTER (EnKF) 

In this section, we present a basic formulation of the EnKF2,3, which is a nonlinear extension of the 
standard Kalman filter. In the EnKF, a priori state estimates are provided by using the Monte Carlo 
method of nonlinear physical simulations, whereas in the widely used extended Kalman filter (EKF), 
they are obtained based on linearized systems. Unlike in the EKF, the estimates in the EnKF can inherit 
many of the nonlinear properties of a priori state estimates.  

3.1 Model and observation equations 

We define the following model and observation equations: 

1 ( , )t t t t x F x w        (5) 

1 1 1 1t t t t    y H x v        (6) 

Here, tx  and tw  are the state vector and the system noise whose dimensions are n , tF  is the nonlinear 

model operator that relates tx  to 1tx , 1tH  is the transformation matrix from the state vector 1tx  to 

the measurement 1ty  whose dimension is p , and tv  is the measurement noise. The covariance 
matrices of the system noise vector and the measurement noise vector are given by 

 T
t t tE w w Q

       
(7) 

 T
t s tE v v R   

      
(8) 

where  E a  denotes the expected value of a, the matrices tQ  and tR  denote the covariance matrices 

of the system noise vector and the measurement noise vector, respectively. 
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In general, the state estimation problem is to find the posterior probability density function (PDF) of 
the state vector 1tx  given the observation 1ty  with the prior PDF, which is the conditional PDF of tx  

given  1: 1 2, , ,t ty y y y . The prior PDF and the posterior PDF are described as 

1 1: 1 2( | ) ( | , , , )t t t tp p x y x y y y      (9) 

1 1: 1 1 2 1( | ) ( | , , , )t t t tp p  x y x y y y      (10) 

The state prediction and estimation of 1tx  can be obtained as the expected value of (9) and (10), 
respectively, as follows: 

 1| 1 1: 1 1 1:| ( | )t t t t t t tE p d


   


  x x y x x y x
    

(11) 

 1| 1 1 1: 1 1 1 1: 1| ( | )t t t t t t tE p d


      


  x x y x x y x
   

(12) 

3.2 Ensemble approximation 

The prior and posterior PDFs usually become non-Gaussian when the model equations are nonlinear, 
and thus, numerical schemes are needed to evaluate (11) and (12). In the EnKF, the Monte Carlo 
approach is applied, where the PDFs in (11) and (12) are approximated by generating a number of 
samples, called particles in the EnKF, as follows: 

 ( )
1 1: 1 1|

1

1
( | )

M
m

t t t t t
m

p
M

  


x y x x
     

(13) 

 ( )
1 1: 1 1 1| 1

1

1
( | )

M
m

t t t t t
m

p
M

    


x y x x
    

(14) 

Here, M  is the total number of particles, ( )   is Dirac's delta function, the superscript ( )m  denotes 

the index number of the particle set, and ( )
1|

m
t tx  and ( )

1| 1
m

t t x  are the prediction and the estimation, 

respectively, of the state vector of the mth particle at time step 1t  . Substituting (13) and (14) into (11) 
and (12), respectively, we can obtain the state prediction and estimation of 1tx  as the ensemble mean 
of particles as shown below: 

 ( ) ( )
1| 1| 1 1 1| 1|

1 1

1 1
ˆ

M M
m m

t t t t t t t t t t
m m

d
M M




     
 

   x x x x x x x
   

(15) 

 ( ) ( )
1| 1 1| 1 1 1 1| 1 1| 1

1 1

1 1
ˆ

M M
m m

t t t t t t t t t t
m m

d
M M




         
 

   x x x x x x x
  

(16) 

Likewise, the covariance matrices of 1|t tx  and 1| 1t t x  are approximated by the particle set as shown 
below: 

  ( ) ( )
1| 1| 1| 1|1| 1|

1

1ˆ ˆ ˆ
1

M
Tm m

t t t t t t t tt t t t
mM

    


  
 P P x x x x

    
(17) 

  ( ) ( )
1| 1 1| 1 1| 1 1| 11| 1 1| 1

1

1ˆ ˆ ˆ
1

M
Tm m

t t t t t t t tt t t t
mM

          


  
 P P x x x x

   
(18) 

3.3 State estimation 

The state estimation is performed through two steps: a prediction step and an estimation step. At the 
prediction step, all particles are updated through the following equations: 
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( ) ( ) ( )
1| |( , )m m m

t tt t t t x F x w        (19) 

where ( )m
tw  is the mth realization of system noise vector based on tQ . At an estimation step, the 

estimation vector of the mth particle is obtained as follows:  

 ( ) ( ) ( ) ( )
1 1 111| 1 1| 1|

m m m m
t t ttt t t t t t        x x K y v H x

    
(20) 

where ( )m
tv  is the realization of measurement noise vector for the mth particle based on 1tR , and 1tK  

is the Kalman gain matrix given by 

  1

1 1| 1 1 1 1| 1
ˆ ˆT T

t t t t t t t t t


       K P H R H P H

    
(21)  

Here, 1|
ˆ

t tP  is obtained by the ensemble calculations of the particle set in the EnKF. 

4.  ESTIMATION PROCEDURE FOR NONLINEAR STRUCTURAL SYSTEM 

In the previous section, a standard formulation of the EnKF is presented. In this section, we apply it 
to nonlinear structural model estimation by combining displacement and structural properties into a state 
vector. The combined state vector for model estimation is defined by 

t
t

t

 
 
 

s
x

u


       

(22) 

where ts  is a k -dimensional parameter vector whose components are various structural parameters 
such as damping ratios and densities. Likewise, the system noise vector is expressed as the combined 
vector as follows: 

,

,

s t
t

u t

 
 
 

w
w

w


       

(23) 

where ,s tw  and ,u tw  are the system noise in the structural dynamics equations and the system noise in 
the parameter time update equations, respectively. In the presented approach, the prediction in (19) is 
performed through two steps. The first step is the prediction of the parameter vector as follows: 

1 ,t t s t  s s w        (24) 
By using the updated parameter vector, in the next step, the time state update of the displacement vector 
is performed as shown below: 

 1 1, ,t t t  Γ u u s 0
      

(25) 

We consider direct observations of displacement vectors, where the observation equations are given by 

1
1 1 1 1 1 1

1

t
t p q t t t t t

t


     



         

s
y 0 H v H x v

u


   
(26) 

where 1tH  is a p n -dimensional Boolean matrix that relates the observation nodes to the FEA nodes. 
The estimation procedure for the nonlinear structural model based on the EnKF is shown below. 

(Step 1: Generation of an initial particle set) 
The initial particle set is generated by adding initial perturbations to the nominal parameter values in 
each particle as shown below: 

( ) ( ) 2
0 ,0 ,000|0 , (0, ) : 1,2,m m i i

s sw N m M  s s w  
   (27) 

(Step 2: Time update of each particle) 

In the prediction step, we first produce the realization of ( ) 2
,, , (0, )m i i

s t ss t w N w   in each particle. Then, 
we update the parameter vector as follows: 

( ) ( ) ( )
1| | , 1,2,m m m

tt t t t m M   s s w 
     (28) 
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Next, the displacement vector of each particle is updated by using (25). Consequently, the state 
prediction vector is given by 

( )
1|( )

1| ( )
1|

, 1, 2,
m

t tm
t t m

t t

m M




 
  
 

s
x

u


      

(29) 

In addition, the covariance matrix 1|t tP  of 1|t tx  is calculated by (17). 
(Step 3: Calculation of Kalman gain) 

The Kalman gain is calculated by using (21) with 1|t tP  obtained in step 2. 
(Step 4: Estimation of each particle) 
All particles are updated by using (20) with the Kalman gain given in step 3. Note that the parameter 
estimations are provided by means of the ensemble mean of the particle set as follows: 

( )
1| 1 1| 1

1

1
ˆ

M
m

t t t t
mM

   

s s

      
(30) 

We return to step 2 until the estimation process finishes. Through these steps, we can sequentially obtain 
the state estimations of the displacement vector and parameters at each observation time step. 

5.  ADAPTIVE FILTERING FOR THE ENSEMBLE KALMAN FILTER 

The settings of system and measurement noise have strong effects on both the efficiency and the 
accuracy of estimation results. In a real case, we have to choose the noise settings without knowing the 
real state values. To find appropriate settings, the adaptive Kalman filtering techniques have been 
proposed for the conventional Kalman filter4,5. In the adaptive Kalman filter, a proper cost function 
related to estimation residuals is minimized with respect to the noise variances. The widely used cost 
function in the conventional Kalman filter5 is given by 

 

 
0

1 1|

1
1 1

1 1 1 1|

1 1

( ) ln ( ) ( )

( ) ( ) ( )

nt
T
t t

t

T
t t

t

t

t t

t t t

t

t

J 
 



  

   



 











H P

a S a e S a e

S a a

e H x

H R a

y     
(31) 

where a denotes the parameter vector composed of the noise variances as follows: 
2 2 2 2
,1 , ,1 ,, , , ,s s n obs obs m      a  

    
(32) 

To apply the adaptive Kalman filtering technique to the EnKF, we extend the cost function J to the 
following equations: 

 
 

0

1
1 1

( )
1 1 1 1|

1

1 1| 1 1

ˆ ˆˆ ˆ( ) ln ( ) ( )

ˆ ( ) ( ) ( )ˆ

1
ˆ

nt
T
t t

t

T
t t t

t

M
m

t t t t t
m

t t

J

M

 


 



   


 

 



 







a S a e S a e

S a a a

e y x

P

H

H H R
    

(33) 

In the adaptive filtering, the tuned noise variances are defined by the solution of the following 
minimization problem: 

min ( )J
a

a    
    

(34) 
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6.  A NUMERICAL EXPERIMENT 

A simple cantilevered beam vibration problem is considered to verify the effectiveness of the 
presented adaptive estimation. The beam is divided into five elements and the y tip displacement is set 
to the measurement point (Figure 1). The length of the beam is set to 0.4 m, and the base excitation 
frequency is set to 10 Hz, which is near the 1st eigen frequency of the beam. The base excitation 
amplitude is set to 5mm, which can induces cubic nonlinearities to the system. In this experiment, the 
1st mode damping ratio is set as a model parameter. 

The numerical experiment is performed through two processes. In the first process, the structural 
analysis with the real model parameter value is performed to obtain the displacement history of the 
cantilevered beam vibration. Then, the artificial measurements are produced by adding the random noise 
to the calculated observations. In the second process, the EnKF estimation is performed with the 
artificial measurements. The variance of the measurement noise is set to 

obs = 1.0×10-8m2, 
measurement time step is set as 2ms. The real value of the damping ratio is set to  = 0.005, and the 
initial parameter value in the EnKF is chosen as  = 0.025. The total simulation time is 5 s, and the total 
number of particles is 100. 

The solution procedure for the adaptive estimation is summarized in Figure 2. First, we set initial 
system and measurement noise settings, and perform the EnKF estimation with Nt interval. Then, 
calculate the cost function J. If the convergence check is OK, the adaptive estimation is finished. 
Otherwise, we update the noise values, and the EnKF is performed with the new noise values. This 
process continues until the convergence check is OK. In this paper, we utilize MATLAB optimization 
toolbox in the update process. In this experiment, the initial system noise is set 

s,1 = 6.3×10-8, and 
the initial measurement noise is set 

obs = 1.0×10-8. The time interval for adaptive estimation is set Nt 
= 5s. 

Figure 3 shows the results of minimization of J. The minimization converges at 10 step, where the 
system noise is Tuned

s,1 = 4.4×10-6 and the measurement noise is Tuned
obs = 6.6×10-9. Figure 4 (a) 

shows the comparisons of estimation errors of , between the initial system noise setting and the tuned 
filter setting while the comparisons of y displacement estimation errors in the unobserved nodes (node 
4) and the observed nodes (node 6) of the cantilevered beam shown in Figure 1. In these figures, the 
upper plot shows the estimation errors in the initial setting, while the lower plot shows those in the tuned 
setting. The 3 standard deviation intervals (3) are also depicted in the figures. The standard deviations 
are evaluated by calculating the square root of variances of corresponding particle set. As can be seen 
in Figure 4 (a), the convergence rate of model parameter estimation error with the tuned settings is 
significantly improved when compared to that with the initial settings. Further, the estimation errors in 
the initial setting lie outside in the area enclosed by 3 around the early time step. In the tuned setting, 
at almost all the time step, the estimation errors lie in the area. In the practical estimation case, the real 
sate values are unknown, and thus, the accuracies of error boundaries play an important role to evaluate 
the estimation results. We can see the same trends in Figures 5 (b) and (c). These results indicate the 
effectiveness of the presented adaptive estimations. 
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Figure 1. Cantilevered beam model 
 
 

Figure 2. Flow chart in the adaptive estimation 
 
 

Figure 3. Minimization results 
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(a) model parameter 

(b) y displacement (node 4, unobserved node) 

(c)  y displacement (node 6, observed node) 

Figure 4. Comparisons of estimation errors between the initial noise 
values (

s,1 = 6.3×10-8, 
obs = 1.0×10-8) and the tuned noise 

values (Tuned
s,1 = 4.4×10-6, Tuned

obs = 6.6×10-9) 
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6.  CONCLUSIONS 

An adaptive estimation method of nonlinear structural system with the ensemble Kalman filter was 
presented. The state space equations of the nonlinear structural dynamics model were derived, and the 
estimation procedure based on the ensemble Kalman filter was presented. A conventional adaptive 
filtering technique was applied to the ensemble Kalman filtering. A simple cantilevered beam vibration 
problem was provided to verify the effectiveness of the presented adaptive estimation method. 
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