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Structural parameters in a geometrically nonlinear finite-element (FE) model are updated so that the
experimental measurements are precisely reproduced by the FE model. In addition, the confidence intervals of the
estimated parameters are obtained by a bootstrap method. This study evaluates the applicability of the analysis methods
by carrying out a simple experiment. The experimental model consists of a flexible beam and cable, which are in an
equilibrium of internal forces under finite deformation. This experimental model simulates a future space reflector.
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1. Introduction

Recent space structures, especially for reflector applications, tend to
become larger and more precise than conventional space structures.
For example, Japan Aerospace Exploration Agency is developing the
radio astronomy satellite, Astro-G, whose reflector is approximately
10m in diameter, and has a 0.4mmRMS surface accuracy. The
reflector of Astro-G consists of flexible ribs, cables, and meshes. After
the reflector’s deployment, the ribs are elastically deformed by the
tensions in the cables to form a curved surface.

It is challenging to test such flexible structures on the ground
due to gravity. Since tests using full-scale hardware is often not
feasible, tests have to be compensated by a high-fidelity numerical
model. Finite element (FE) methods are commonly used. Tension-
stabilized structures like Astro-G’s reflector require geometrically
nonlinear analysis, in which the finite deformation of flexible ribs
and the geometric stiffness due to the introduction of internal forces
are taken into account. In addition, attachment of actuators on the
ribs has been discussed for shape control. For example, piezo-electric
actuators for space use have been developed1.

When numerical models of space structures are fitted to
experimentally measured data, it is required to consider uncertainties
in the experimental measurements. In other words, when parameters
in the numerical models are determined, how much the parameter
values possibly distribute has to be also quantified. The confidence
intervals (CI) with a particular confidence level are often used to
quantify the reliability of a parameter estimation.

From these backgrounds, the present study applies the following
methods to a simple experimental model that simulates flexible rib and
cable structures, aiming at evaluating the applicability of the following
methods:

• Parameters in a geometrically nonlinear FE model are updated
so that the experimental measurements are reproduced precisely
by the FE model.

• Deformations caused by piezo-electric actuators are also
precisely modeled by the FE method.

• Uncertainties in the estimated FE parameters due to the
uncertainties in experimental measurements are evaluated by
obtaining confidence intervals. The bootstrap method2,3 is used.

This paper is organized as follows. Section 2 explains the
experimental model that is used the evaluation of the analysis

Fig. 1 Experimental setup.

methods. Section 3 describes the analysis methods being evaluated.
Section 4 shows the results and discussions.

2. Experimental model of tension-stabilized structure

Figure 1 shows the experimental setup. The flexible beam is
made of spring steel, with 250mm in length, 50mm in width, and
0.5mm in thickness. The beam is initially straight in its undeformed
configuration. A steal cable applies a tension to the beam and the
structures are in equilibrium. The tension level exerted in the cable
is approximately 4N. A macro-fiber composite (MFC) actuator is
attached at the beam’s root. Figure 2 shows the MFC actuator itself.
At the root of the cable, a tension gauge is attached to measure the
tension in the cable for verification of the analysis.

The deformed beam shape is measured by a laser displacement
sensor attached on a linear slider. Since the FE model computes
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Fig. 2 Macro-fiber composite (MFC) actuator.1

Fig. 3 Consideration of thickness of beam.

Difference [mm
]

Fig. 4 One of measured beam shapes and curve fitting result.

the deformation of the center line of the beam, the experimental
measurement data are processed to the displacement at the center line
by the consideration of the beam thickness, as depicted in Fig. 3.
The laser displacement sensor measures the displacement every 1mm
along the beam length. In addition, the measured shape is smoothed
out, after eliminating some outliers, using a polynomial fitting as
shown in Fig. 4.

3. Analysis methods

This section describes the FE model of the experimental model, the
FE updating method, and the bootstrap method that provides the CIs
of the estimated parameters.

3·1 Construction of FE model Figure 5(a) illustrates
an early FE model constructed by the authors. The commercial FE
package ABAQUS is used. The flexible beam is represented by
2D Euler-Bernoulli beam elements. The cable is represented by 2D
truss elements. Finally, the MFC actuator is represented by piezo-
electric elements, and they are connected to the beam elements using
geometrical constraints.

In the early model, as shown in Fig. 5(a), boundary conditions
at beam’s and cable’s roots were fixed ones. However, with
this boundary conditions, the FE model could not precisely fit to

(a) Preliminary model (b) Refined model
Fig. 5 Boundary conditions of finite-element (FE) models.

(a) Initial shape (b) Deformed shape
Fig. 6 Procedure of FE computation in geometrically nonlinear analysis.

experimental results. Therefore, the FE model was updated to the
one illustrated in Fig. 5(b). The rotational spring at beam’s root, with
the spring constantKrb, represents the effect of non-ideal cantilever
clamping. The translational spring at cable’s root represents the
flexibility of the tension gauge. This new model realizes much close
fitting of the FE model to the experimental results.

Figure 6 shows the procedure of the FE computation in the
geometrically nonlinear FE analysis framework. In the initial step of
the analysis, the initial configuration depicted in Fig. 6(a) is used. In
this configuration, the cable is pre-stressed with the pre-stress ofPc.
Then the equilibrium configuration, depicted in Fig. 6(b), is computed
iteratively by the Newton-Raphson method.

3·2 FE updating method The beam’s deformed shape is
very sensitive to some parameters in the FE model. In addition, some
parameters in the FE model are unable to measure precisely in separate
experiments. Therefore, these parameters are updated so that the FE
prediction of deformed shape approaches to the experimental result.
The FE updating algorithm used in this study is as follows.

First, let x1, · · · , xn are the FE parameters that are subject to
updating, andy1, · · · , ym are the displacements atm measurement
points.

x = [x1, x2, · · · , xn]
T (1)

y(x) = [y1(x), y2(x), · · · , ym(x)]
T (2)

At the k-th iteration, letx = xk. In addition, letxE is the set of
ideal parameters that coincides the FE result and the experimental
measurement. By Taylor expansion,

y(xE)≈ y(xk)+

[
∂y(x)

∂x

]
x=xk

∆xk (3)

wherek = 0,1,· · · . Then the parameter updating law is given by
xk+1 = xk+∆xk where

∆xk =

[
∂y(x)

∂x

]+
x=xk

{y(xE)−y(xk)} (4)
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In Eq. (4), [ ]+ means a pseudo-inverse. The above procedure is
repeated until all the components of|y(xE)−y(xk) | becomes smaller
than a threshold.

In Eqs. (3·2) and (4), the sensitivities,
[

∂y(x)
∂xi

]
xi=xi k

where i =

1, · · · , n, are the deformation mode with respect to the updating
parameters, In this study, these values are computed by partial
differences using ABAQUS analysis. these sensitivities are calculated
in each iteration.

In this study, the following parameters are updated: the rotational
spring constant at the beam root,Krb, the Young’s modulus of the
MFC actuator,EM , and the initial stress introduced in the cable,Pc.

3·3 Bootstrap method Finally, the confidence intervals of
the estimated FE parameters are obtained by bootstrap methods2,3.

Step 1: Carry out the experimental shape measurementsN times to
obtainy1, y2, · · · ,yN.

Step 2: From the datay1, y2, · · · ,yN, randomly extractN samples,
Y1, Y2, · · · ,YN, allowing repetition (resampling). Calculate the
average shape from the resampled data as:

Ȳ =
1
N

N

∑
i=1

Y i (5)

Thenestimate the FE model parameters,(K̂rb, ÊM , P̂c), that minimizes
|| Ȳ− ŷ(K̂rb, ÊM , P̂c) || whereŷ is the beam shape predicted by the FE
analysis.

Step 3: Repeat Step 2 forB times. As a result,B estimations are
obtained such aŝK(1)

rb , K̂(2)
rb , · · · , K̂(B)

rb . (Ê( j)
M and P̂( j)

c are similarly

obtained wherej = 1, · · · ,B.) Note thatK̂( j)
rb , Ê( j)

M andP̂( j)
c herein are

sorted in ascending order respectively.

Step 4: When the required confidence level is 1−α, the confidence
interval (CI) forK̂rb is given as follows (Percentile bootstrap CI2).[

K̂
( α

2 B)
rb , K̂

((1−α
2 )B)

rb

]
(6)

And CIs for ÊM andP̂c are similarly given.

4. Results and discussion

4·1 Results of FE updating Figure 7 shows the
comparison between one of the experimentally measured shape and
the FE result calculated using a initial set of parameters. The initial
parameters are determined by catalog value (EM) and guessing (Krb
andPc). The deformed shape of the beam is not precisely predicted;
the overall error is 0.740mmRMS.

The three parameters in the FE model,(Krb, EM , Pc), are updated
by the FE updating algorithm described in§3.2. In this study,
n = 3 and m = 251. Figure 8 shows the difference between the
experimental result and the FE prediction after the convergence of the
algorithm. The residual is 0.017mmRMS. Figure 9 shows the results
when the MFC actuator is driven by the voltages of 200V and 400V
respectively. The FE analysis results correlate the experimental results
quite accurately.

4·2 Estimation of confidence interval (CI) The results
of confidence interval calculation described in§3.3 especially change
when the number of experiments changes. In this study, the three
cases,N = 5,10, 20, are compared whereN is the number of
experiments. In fact, the experiments were carried out 30 times.
Five different sets of experimental data are extracted in each case

Fig. 7 Experimental result and initial FE model’s result.

Fig. 8 Difference between experiment and FE analysis after FE-model
updating.

(a) 200V applied to MFC

(b) 400V applied to MFC
Fig. 9 Difference between experiment and FE analysis after FE-model

updating with MFC actuation.

of N = 5, 10,20 respectively to observe the distribution of CIs. In
every case, the number of bootstrap resampling,B, is 100, and the
confidence level is set at 1−α = 95%.

Figure 10 shows the CIs of the rotational spring constant at the
beem root,Krb, obtained by bootstrap method. The blue histograms
show the distribution of the estimated parameter, the two blue lines
show the lower and upper bounds of the CIs for the particular cases.
Finally, the two red lines show the lowest lower bounds and highest
upper bounds of the CIs for five cases. Table 1 and 2 show the
same results by numbers. Two things can be observed. First, the
CI is significantly wider whenN = 5 than the other two cases. In
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Frequency Frequency
Frequency (a) 5 experiments (b) 10 experiments

(c) 20 experiments

CI by this experimental result set Possible CI by 5 sets of experimental results

Fig. 10 Distribution and 95% confidence interval (CI) of estimated
rotational spring constant.

Table 1 95% confidence intervals (CI) of rotational spring constant
estimated by bootstrap method using one set of experimental
results.

Numberof experiments CI [Nm] Intervalwidth [Nm]

5 [3.828×101, 5.461×101 ] 1.633×101

10 [3.184×101, 4.152×101 ] 9.682×100

20 [3.380×101, 4.318×101 ] 9.380×100

Table 2 Lowest lower bound and highest upper bound of 95% CI of
rotational spring constant estimated by bootstrap method using
five sets of experimental results.

Numberof experiments CI [Nm] Intervalwidth [Nm]

5 [2.637×101, 6.054×101 ] 3.417×101

10 [3.028×101, 4.667×101 ] 1.639×101

20 [3.288×101, 4.797×101 ] 1.509×101

other words, the FE parameters estimated by only five experiments
are less reliable. Second, the CIs ofN = 10 andN = 20 cases are
not substantially different. This result may imply that 10 experiments
are enough for this system and significant improvement in parameter
estimation cannot be expected even if more number of experiments
are carried out. Further investigations will clarify this issue.
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