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This study proposes a finite element updating method using multiobjective optimization method to consider multiple experimental
conditions for estimating parameters. The method is applied to the BBM model for the tension-stabilized space reflector consisting of
hoop cables and radial ribs, where the rib is deformed into the prescribed shape by cable tension generated on deployment. The design
requirement is to deform the rib to the prescribed shape by appropriately applied tension loads to the radial and hoop cables. Under
actual situations, the deformation shape is deviated from the ideal shape due to uncertainties. It is necessary to estimate the physical
parameters in high accuracy to investigate the effect of the parameters on the deformation shape through a geometrically nonlinear
finite element analysis. In order to efficiently estimate the physical parameters, the satisficing trade-off method (STOM) is adopted
as a multiobjective optimization method. Numerical examples demonstrate the validity of the proposed method that the analytical
deformation shapes are compared with the experimental results.
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1. Introduction

Space antenna for space exploration missions require large
aperture areas and high surface shape accuracy, as well as
lightweightness. 1) As a large-scale highly precise space reflec-
tor structure, a tension-stabilized space reflector consisting of
hoop cables and radial ribs as shown in Fig. 1 was proposed to
satisfy these requirements. 2) The ribs are arranged in the ra-
dial direction from a central hub and simply supported at the
hub. The ribs are deformed to the bending deformation under
tensions of hoop and tie cables on deployment, where the ribs
were originally straight form in folding position. The dimen-
sions of ribs are determined such that the bending deformation
will get close to the ideal parabola shape.

The structural design is verified through the one-dimensional
rib model shown in Fig. 2. 2)- 4) The one-dimensional model
consists of a single rib taken from the whole reflector and a
cable element that represents the tie cable. The root of the rib
is simply supported, and the lower end of the tie cable is fixed
in the vertical direction and free to move in the longitudinal
direction. The hoop cable tension is modeled as a concentrated
nodal load that deforms the rib into the ideal parabola shape
from the original straight form. The deformation transfers the
tension force to the tie cable as a reaction force.

Highly precise structure requires highly accurate numerical
analysis to obtain the deformed shape such as a structural non-
linear finite element analysis. For the accurate analysis, the
structural parameters such as stiffness and internal stress should
be also estimated with high accurately. For the purpose, part of
the authors proposed the accurate parameter estimation method
to establish the highly accurate numerical analysis model for
the tension-stabilized structure. 5) Though the finite element
updating has usually applied to the linear finite element anal-
ysis, 6) 7) the previous study applied to the geometrically non-
linear finite element analysis. Because the analysis of tension-

Fig. 1. Reflector consisting of radial ribs and hoop cables

Fig. 2. Simplified one-dimensional structural model taken from the
whole reflector

stabilized space structures usually requires a geometrically non-
linear analysis. In these structures, the balance of internal forces
determines the structural shape, and the shape determines the
distribution of internal forces; therefore, internal forces and de-
formation should be solved simultaneously. The structural pa-
rameters are estimated using the finite element updating that
uses results of the shape measurement experiment. The experi-
mental setup is shown in Fig, 3. The present experimental setup
has only one layer of the hoop cables as the simplest represen-
tation of the tension-stabilized structure concept.

By updating the parameters with high sensitivity with respect
to the rib deformation, the deformation error between the ex-
perimental and FEM results was reduced. However, the cable
tension estimated by the finite element updating is much dif-
ferent from that of the experimental results. It is found that



(a) Experimental system

(b) Schematic figure of experimental system
Fig. 3. The overview of Experimental system

the additional experiments that gives known perturbation to the
structure are efficient to reduce the errors. 5)

The previous research concludes that the efficient updating
method corresponding to the multiple experimental conditions
is required for the finite element updating. This study proposes
the new finite element updating method for estimating struc-
tural parameters with high accuracy by applying the multiob-
jective optimization method. This study adopted the satisficing
trade-off method (STOM) 8) as the multiobjective optimization
method. STOM can obtain a single, highly accurate Pareto so-
lution, regardless of the shape of the Pareto set. Therefore, the
method is widely applied to engineering design problems. 9) In
addition, part of the authors developed robust and reliability-
based multiobjective optimization methods considering uncer-
tainty using STOM. 10) 11)

Efficiency of the proposed method is verified through the ex-
perimental results.

2. Experimental model

The simplified reflector shown in Fig. 3 consists of the simple
rib applied the tensional load from a tie cable and a pair of hoop
cables. The rib is made of aluminum alloy and the dimension
is 1040 mm length with a uniform rectangular cross-sectional
shape of 40 mm width and 3 mm thickness. Young’s modulus of
the rib is obtained from a simple bending experiment as 69.87
GPa. The value is used in the analysis as a constant, not an
estimating parameter.

The cables are made of phosphor bronze with 0.3 mm diame-
ter. Tie and hoop cables are connected to the rib at 300 mm and
1000 mm lengths from the hinge center, respectively, through
the rod ends. The other ends are fixed at the load cells on the

Table 1. Load cases
Case 1 2 3 4
Tie cable tension [N] 6.814 7.622 8.418 9.223
Hoop cable tension [N] 34.97 29.94 24.99 19.97
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Fig. 4. Deformation obtained by experiment

stage to control the tension. The hoop cables are connected with
15 degree inclined from the vertical directions from the rib on
the horizontal plane.

The rib connected to the hinge is deformed by applying the
tension to the connected cables. For the stable deformation to
the rib, the cable tension is applied according to the following
three steps.

step 1 Only tie cable is connected to the rib. That is, the rib
is supported by the hinge and the tie cable and is deformed
by the empty weight.

step 2 Then, the hoop cables are connected to the rib. A neg-
ligible small tension is applied at the the hoop cables to
prevent from the slack.

step 3 The rib is deformed by applying the prescribed ten-
sions to all cables. In order to estimate the parameters,
four load conditions are investigated.

In each step, the cable tensions are measured by the load cell
and the rib deformation is measured by the laser displacement
sensor located on a linear slider with a 0.8 m stroke.
After the steps, the four different cable tensions listed in Table 1
are given to make the rib deformed as different load cases. The
deformation distributions in the four cases are shown in Fig. 4.
Load case 1 has the largest tip displacement due to the largest
hoop cable tensions. On the other hand, the tie cable tension is
the smallest of the four cases. This is because the hoop cable
tension makes the rib pulled to the hinge direction in addition
to the lower direction. Hence, at the tie cable position, the rib is
slightly deformed to the upper direction that makes the tie cable
tension smaller. The four cases are used to estimate the param-
eters in the finite element updating. Since uneven deformation
near 300 mm is due to the propulsion of the tie cable connecting
bolt, the part is not used in the finite element updating.

3. FEM model of rib structure

FEM model of the rib structure is shown in Fig. 5. The rib
is modeled by using beam elements and the cables are by cable
elements that do not support the compression load as differed
from the rod element. The rod ends that is used to connect



Fig. 5. Finite element model of the one-dimensional simplified rib model

the cables to the rod are modeled by the beam elements. In
addition, the penalty element that has rigid in bending with zero
length is allocated at each connecting point between the beam
and cables for simulating the deformation of the rod end that
the connecting angle is always kept perpendicular to the rib on
deforming. The rib is equally divided into 28 elements and the
structure is modeled by totally 36 elements with 37 nodes.

As boundary conditions, the opposite side edge to the rod end
side on the cables is fixed. Cable tensions are obtained as the
reaction force and are compared with the experimental results.
The hinge of the rib that is opposite side of the hoop cable con-
necting side is simply supported. However, it is found from the
experimental results that the hinge has a small rotational fric-
tions. In order to estimate the unknown friction, the friction is
simulated by applying the equivalent moment at the hinge.

The FEM analysis is performed along to the experimental
conditions with the three steps loading described in the previous
section.

4. Finite Element Updating Using Multiobjective Opti-
mization

Finite element updating is a method to estimate several pa-
rameters accurately by changing values of parameters to reduce
the difference of structural responses between the finite element
analysis and the experimental results. Usually, the optimiza-
tion method is adopted to minimize the difference, where the
RMS error is defined as the objective function in terms of the
estimating parameters. Additionally, this study considers multi-
ple experimental conditions for estimating parameters. For the
purpose, the multiobjective optimization method is adopted.

The procedure of finite element updating using the multiob-
jective optimization is shown in Fig. 6 and summarized as fol-
lows.

1. At first, the updating parameters is denoted as x =

[x1x2 · · · xn]T . Set i = 0 and the initial estimate value xi
2. The rib deformation u(k)

f (xi) is evaluated by the geomet-
rically nonlinear finite element analysis, where, k corre-
sponds to the experimental condition.

3. The residual e(k)
i is evaluated as the difference between the

deformation shape u(k)
f (xi) obtained by the analysis and the

experimental results, um.

e(k)
i (xi) = u f (xi) − um (1)

4. Set the objective functions corresponding to the experi-
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Fig. 6. Flow of finite element model updating using STOM

mental conditions as follows.

fk(xi) =
√

1
2

e(k)
i (xi)T e(k)

i (xi) (2)

fk corresponds to the RMS error of the rib deformation
under the experimental conditions, k, The parameters xi
are updated in the multiobjective optimization step.

5. If the optimization step is converged, the updated parame-
ter is obtained. Otherwise set i = i + 1 and go back to step
2.

4.1. Multiobjective Optimization Method
A multiobjective optimization problem is an optimization

problem with multiple objective functions.

f (x) =
[
f1(x), f2(x), · · · , fk(x)

]T (3)

where k is the number of objective functions, x =

(x1, x2, · · · , xn)T are the design variables, and n is the number
of design variables.

The multiobjective optimization problem is generally formu-
lated as follows:

Minimize: f (x) =
[
f1(x), f2(x), · · · , fk(x)

]T (4)
subject to: g j(x) ≤ 0 ( j = 1, · · · ,m)

xL
i ≤ xi ≤ xU

i (i = 1, · · · , nx)

where g j(x) ( j = 1, · · · ,m) are constraint conditions and xU
i

and xL
i are the upper and lower limits of the design variables,

respectively.
This study adopts the satisficing trade-off method (STOM)

as the multiobjective optimization method. 8) STOM is known
to be an interactive optimization method that converts a mul-
tiobjective optimization problem into the equivalent single-
objective optimization problem by introducing an aspiration
level that corresponds to the user’s preference for each objec-
tive function value.

The flow of the STOM is summarized in Fig. 7 and briefly
described as follows.
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Fig. 7. Flowchart of STOM.

Step 1 Set the ideal point f I
i , (i = 1, · · · , k) of each objective

function. The ideal point is usually determined by solving
a single-objective optimization problem considering only
the corresponding objective function, fi(x).

Step 2 Set the aspiration level f A
i , (i = 1, · · · , k) of each ob-

jective function and evaluate the weight coefficient, wi, as
follows:

wi =
1

f A
i − f I

i
(i = 1, · · · , k) (5)

Step 3 Formulate the multiobjective optimization problem in
Eq. (4) into the weighted Tchebyshev norm problem as fol-
lows:

Minimize: max
i=1,··· ,k

wi
(

fi(x) − f I
i

)
(6)

subject to: g j(x) ≤ 0 ( j = 1, · · · ,m)

xL
i ≤ xi ≤ xU

i (i = 1, · · · , nx)

Step 4 The min-max problem in Eq. (6) is transformed into
the equivalent single-objective problem by introducing a
slack design variable y as follows:

Minimize: y (7)

subject to: wi
(

fi(x) − f I
i

)
≤ y (i = 1, 2, · · · , k)

g j(x) ≤ 0 ( j = 1, · · · ,m)

xL
i ≤ xi ≤ xU

i (i = 1, · · · , n)

When Eq. (7) is solved using a nonlinear programming
method such as a sequential programming method, an ac-
curate Pareto optimal solution is obtained in comparison
with an evolutionary method.

Step 5 If the objective function values are satisfactory, the
search is completed. Otherwise, update the aspiration level
f A
i and return to Step 2. The automatic trade-off analysis

method 12) is one of the methods used to reasonably update
the aspiration level.

The weight coefficient, wi, plays an important role in obtaining
the Pareto solution in the direction of the aspiration level, which
is directly related to the designer’s preference. As shown in
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Fig. 8. Pareto solution search process of STOM.

Table 2. Initial and estimated parameter values and RMS error
(a) Initial parameter value and RMS error

Case 1 2 3 4
Moment (Nm) 0 0 0 0

Tie cable tension (N) 6.814 8.566 9.368 9.917
Hoop cable tension (N) 46.12 33.71 28.37 26.75
RMS error (mmRMS) 0.200 0.1851 0.1995 0.1900

(b) Updated parameter value and optimum RMS error

Case 1 2 3 4
Moment (Nm) 0.304 0.0209 0.0149 4.57 ×10−3

Tie cable tension (N) 5.688 8.120 9.134 10.08
Hoop cable tension (N) 46.11 37.28 30.57 24.63
RMS error (mmRMS) 0.07287 0.07287 0.07286 0.06852

Fig. 8, the Pareto optimal solution is usually located on the line
connecting the ideal point and the aspiration level in the objec-
tive function space, regardless of whether or not the aspiration
level lies in the feasible region. On the other hand, the optimal
solution is often not located on the line when some constraints
are active. In that case, designers can investigate the effect of
the active constraints on the Pareto optimal solution.

5. finite element updating results

On the finite element updating, the four load cases listed in
Table 1 are considered and the RMS error of the rib deformation
between the experiment and the analysis are defined as objec-
tive functions in terms of tie cable and hoop cable tensions as
well as the moment at the root hinge that simulates the friction
at the hinge. In the STOM, the ideal point f I

i is set to zero, that
corresponds to no error. The aspiration level f A

i is set to the
same value, 0.001 for each case. It corresponds that each case
has the same weight.

The initial values of the updating are set as the experimental
data for cable tensions and zero of the moment. The RMS errors
under the initial conditions are listed in Table 2 (a). The rib
deformation distribution under case 1 is compared in Fig. 9.
It is found that the FEM results are much different from the
experimental results in all cases.

The updated parameter values and the RMS errors are listed
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Fig. 9. Comparison of experimental result and FEM analysis using
initial and updated parameters in case 1

in Table 2 (b). It is found that the moment at hinge makes the
RMS error smaller. Though the hinge ideally has no friction,
the friction at the hinge has large effect on the rib deformation
on this experiment. On the other hand, the variations of the
cable tensions are small. The FEM result using the updated
parameters is shown in Fig. 9. It is found that the parameter
estimation works well. Due to the limitation of the space, the
deformation distribution under other cases are not shown here,
but the updating works well for the other cases.

6. Conclusions

This study proposes a finite element updating method using
the multiobjective optimization method to consider multiple ex-
perimental conditions for estimating parameters. As the multi-
objective optimization method, the satisficing trade-off method
(STOM) is adopted.

The method is applied to the BBM model for the tension-
stabilized space reflector consisting of hoop cables and radial
ribs, where the rib is deformed into the prescribed shape by
cable tension generated on deployment. It is necessary to es-
timate the physical parameters in high accuracy to investigate
the effect of the parameters on the deformation shape through a
geometrically nonlinear finite element analysis.

Through numerical examples, the validity of the proposed
method that the analytical deformation shapes are compared
with the experimental results is demonstrated. Especially, a
friction at the hinge support modeled as the applied moment in
the analysis has significant effect on the rib deformation shape.
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