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On height functions on Jacobian surfaces

By Kentaro Yoshitomi

Introduction

First we recall some fundamental facts on the canonical height function on an abelian
variety. For an algebraic number field K, let A be an abelian variety defined over K.
Take a very ample divisor D. Then we have the projective embedding ϕD : A → Pn.
Using this embedding, we define the logarithmic height hD on A by h ◦ ϕD, where h
is the logarithmic height on Pn (see [16],Chapter 3). The canonical height ĥD on A

attached to D is defined by ĥD(z) = lim
n→∞

hD(nz)/n
2. The function ĥD has a property

that ĥD(z) ≥ 0 for any z ∈ A(K) and ĥD(z) = 0 if and only if z is a torsion point. If D′

is any ample divisor and mD′ is very ample, then we define ĥD′ by
1

m
ĥmD′ . The height

pairing ⟨ , ⟩D is defined by ⟨x, y⟩D = ĥD(x+ y)− ĥD(x)− ĥD(y). The regulator, which
is an important factor of the Birch-Swinnerton-Dyer Conjecture, is defined via this
height pairing. In general, it is very difficult to compute the canonical height directly
by definition. Néron and Tate have shown that the canonical height decomposes into
canonical local heights. In the case of elliptic curves, the archimedean local height is
expressed using a theta function and the non-archimedean local height is expressed in
a simple form (see [26],Chapter VI).

In this paper we compute canonical heights on Jacobian surfaces attached to the
theta divisor and, as an example, we shall verify the Birch-Swinnerton-Dyer Conjecture
numerically for certain Jacobian surface. We use Néron’s formula [14], p.332, which
asserts that the computation of the height pairing on Jacobian variety reduces to
that of Néron’s symbol. Néron’s symbol is decomposed into Néron’s local pairings
first introduced by Néron [21],Chapter 2. Néron’s local pairing is defined via Green’s
function at archimedean places and via intersection theory on an arithmetic surface
at non-archimedean places; see [14].

The main result of this paper is the relation between the archimedean canonical
local height and archimedean Néron’s local pairing. In the case of elliptic curves,

1



2 K. YOSHITOMI

there exists the following relation between the canonical local height and Néron’s local
pairing at an archimedean place. Let E : y2 = 4x3−g2x−g3 be an elliptic curve defined
over an algebraic number field K. Let v be an archimedean place of K. Let E ≃ C/Λ
and ℘(z) be the Weierstrass ℘-function relative to Λ. Let k(z) be the Klein function,

that is, k(z) = ∆(Λ)1/12e−
1
2
zη(z)σ(z), where ∆(Λ) = g32 − 27g23, σ is the Weierstrass σ-

function, and η is the quasi-period map associated to Λ (see [26],p.41 and p.465). For

z ∈ C, we denote by z̃ its image in C/Λ. Then λ̂v(z̃) = − log |k(z)| is the archimedean
canonical local height on E − {O}, where O is the origin of E. Néron’s local pairing
is defined via Green’s function, which is, in this case, also expressed in terms of the

Klein function. For any P ∈ E(K̄), if we take, as an uniformizer,
y

2x2
at O and its

translation at P , then we have

⟨(P )− (O), (P )− (O)⟩v = 2(λ̂v(z̃P ) +
1

12
log |∆(Λ)|),

where P = (℘(zP ), ℘
′(zP )).

We shall generalize the relation above for the case of hyperelliptic curves of genus
2. That is : For an algebraic number field K, let C be a hyperelliptic curve of genus
2 defined by y2 = f(x) = x5 + a1x

4 + · · · + a5 ∈ K[x] and B be the set of finite
Weierstrass points. Let J be the Jacobian variety of C and Θ be the theta divisor of
J . For a divisor D of degree 0 on C, we denote its image in J = Pic0(C) by D. For
P ∈ C(C), we denote the hyperelliptic integral from ∞ to P by uP ∈ C2, which is
defined up to the period lattice Λ. For z ∈ C2, we denote its image in J = C2/Λ by z̃.

Let ϕ be the function as in Proposition 1.10. Let v be an archimedean place of K, λ̂v
be the canonical local height on J − Θ which is normalized as in Definition 2.1 with
the fixed function ϕ as above, and ⟨ , ⟩v be Néron’s local pairing explicitly defined as
in (2.5). Then we have (Theorem 2.18):

Main Theorem For Pi(xi, yi) ∈ C(K), (i = 1, 2), let b = P1 − P2 with b̄ ̸∈ Θ, and

zb = uP1 −uP2 ∈ C2. As the base of tangent space at Pi, we take 2 yi
∂

∂x
= f ′(xi)

∂

∂y
.

Then we can take
x− xi
2 yi

if Pi ̸∈ B and
y − yi
f ′(xi)

if Pi ∈ B as an uniformizer at Pi.

In both cases, for an archimedean place v, if we take the uniformizer as above, the
relation

⟨b, b⟩v = 2 λ̂v(z̃b)

between Néron’s local pairing and the canonical local height holds.

We can compute the canonical local height at archimedean places numerically. In
the case of elliptic curves, one can achieve this by evaluating a rapidly convergent
series, which is called Tate’s series [25]. In Call and Silverman [4], they generalized



HEIGHTS ON JACOBIAN SURFACES 3

Tate’s series for a class of varieties with a divisor and a morphism which satisfy certain
conditions, including higher dimensional abelian varieties. Thus we can use their series
to evaluate λ̂v for archimedean places v. We shall give concrete expression of this
series. In Grant [12], defining equations of Jacobian surfaces and the addition theorem
are formulated by using the theory of hyperelliptic p functions which goes back to
an old book of Baker [1]. To construct the generalized Tate’s series, we must first
find appropriate domains in the Jacobian variety. We can take three domains which
are obtained by partitioning the Jacobian surface by three translations of the theta
divisor. Then we can construct the generalized Tate’s series explicitly via hyperelliptic
p functions and compute the archimedean canonical local height numerically. By virtue
of Theorem 2.18, we can compute Néron’s local pairing at archimedean places. At non-
archimedean places, we compute Néron’s local pairing using intersection theory on an
arithmetic surface, and hence we can compute the canonical height.

In section 1, we shall review some facts on Jacobian surfaces and hyperelliptic p-
functions. In section 2, we shall give the explicit formula of Green’s function using
naturally generalized Klein function (Proposition 2.9). Using this formula, we shall
prove Main Theorem. In section 3, we shall construct the generalized Tate’s series in
our case, using hyperelliptic p-functions. Finally, in section 4, we shall give some ex-
amples. Especially, we shall check the Birch-Swinnerton-Dyer Conjecture numerically.

Some algebraic computations are executed using the mathematical computing sys-
tem Maple V. The Tate’s series is computed using GNU g++ Ver 2.7.2 and LiDIA
library 1.2. 1

I would like to express my gratitude to Prof. H. Yoshida and Prof. T. Ikeda for
their many useful suggestions.

Notation and terminology

Throughout this paper, we use the following notation. By an algebraic number
field, we understand a finite algebraic extension of Q in C. For an algebraic number
field K, let Σ∞

K denote the set of infinite places of K, Σ0
K the set of finite places of

K, and ΣK = Σ∞
K ∪Σ0

K . For v ∈ Σ0
K , let Kv be the completion of K at v, let πv be

an uniformizer at v, Ov the ring of v-adic integers, kv = Ov/πvOv, qv the number of
elements of kv, and pv the residual characteristic. As usual, for a ∈ K and v ∈ ΣK ,
define:

|a|v =


|a| if v ∈ Σ∞

K and v is a real place,

|a|2 if v ∈ Σ∞
K and v is a complex place,

q
− ordπv (a)
v if v ∈ Σ0

K .

1This library may be available from anonymous ftp site:ftp://crypt1.cs.uni-sb.de/pub/LiDIA.
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As is well known, the product formula
∏

v∈ΣK

|a|v = 1 holds. We also use additive

notation v(a) = − log |a|v for every v ∈ ΣK .

For any finite set S, we denote by #S the cardinality of S. For any divisor a,
we denote the support of a by supp(a). For divisors a and a′, we write a ∼ a′ if a
is linearly equivalent to a′. For a complex number, a complex vector, or a complex
matrix x, we denote by x its complex conjugate. For z ∈ C2, we denote by z̃ its image
in C2/Λ(see § 1.2).

1. Review on Jacobian surfaces

We assume that the characteristic of a ground field K is not equal to 2; moreover,
except for the section 1.1, we assume thatK is a subfield of C. Let C be a hyperelliptic
curve of genus 2 over K, defined by the equation

y2 = f(x) := x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 =

5∏
i=1

(x− βi) .(1.1)

We consider C as a projective non-singular curve and we denote by ∞ the point at
infinity. The double covering C → P1, P (x, y) 7→ x is branched over 5 finite points
and ∞. We denote the set of finite Weierstrass points by B = {B1, B2, B3, B4, B5},
where Bi = (βi, 0), (i = 1, . . . , 5). Let P ι be the image of P under the hyperelliptic
involution with respect to this covering, that is P ι = (x,−y) when P = (x, y).

1.1. Algebraic Theory. We review the algebraic definition of the Jacobian variety
J = Jac(C). Let Div0(C) be the divisor group of degree zero and J is the abelian
variety whose points represent Pic0(C). For any D ∈ Div0(C), denote by D its image
in Pic0(C). For m points P1, P2, . . . , Pm ∈ C, put D(P1, P2, . . . , Pm) = P1 + P2 +
· · ·+ Pm −m∞ ∈ Div0(C).

Definition 1.1. For m > 0, we define

Divm0 (C) = {D(P1 , P2 , . . . , Pm) | P1, . . . , Pm ∈ C} ⊂ Div0(C),

Div+,m
0 (C) =

{
D(P1 , P2 , . . . , Pm)

∣∣∣ Pi ̸= ∞ for every i,

Pi ̸= P ι
j whenever i ̸= j

}
⊂ Divm0 (C),

and denote their images in Pic0(C) by Divm0 (C) and Div+,m
0 (C).

Then J = Div20(C) (see [19],pp.3.28–3.31). If we put Θ = Div10(C), which is the

theta divisor of J , then we have J − Θ = Div+,2
0 (C) (loc.cit.). Hence any points of J

can be written as D(P1, P2)with P1 ̸= P ι
2, Pi ̸= ∞, or D(P ), which belongs to the



HEIGHTS ON JACOBIAN SURFACES 5

theta divisor. The zero element OJ of J is D(∞) = D(P, P ι). All 2-torsion points

of J are given by D(Bi), (i = 1, . . . , 5) and D(Bi, Bj), (i, j = 1, . . . , 5, i ̸= j). We
abbreviate these to Bi and Bij.

Reduction of any divisor of degree 0 to the form D(P1, P2) is explicitly given as
follows.

Let P1, P2, P3 be three points of C and Pi = (xi, yi), (i = 1, 2, 3). For simplicity,
we assume that the points Pi are finite, distinct and Pi ̸= P ι

j for i ̸= j. Then we can
find the polynomial V (x) of degree 2 satisfying the equations V (x1) = y1, V (x2) = y2,
V (x3) = y3. We write VP1,P2,P3 for this V .

Then we define a rational function Ṽ on C by

Ṽ (x, y) =
y + V (x)

(x− x1) (x− x2) (x− x3)
,

which has poles at Pi, (i = 1, 2, 3) and has a simple zero at∞. Hence either Ṽ has zeros
of order 1 at two finite points P4, P5 or Ṽ has a zero of order 2 at one point P4 = P5.

That is, V (x4) = −y4 and V (x5) = −y5, or V (x4) = −y4, V ′(x4) = − dy

dx

∣∣∣∣x=x4
y=y4

. Since

xi, (i = 1, . . . , 5) is the solutions f(x)− V 2(x) = 0, we can find x4 and x5 and by the
equations y4 = −V (x4), y5 = −V (x5), we can find the coordinates of P4, P5 which

satisfy P1+P2+P3 ∼ P4+P5+∞, that is D(P1, P2, P3) = D(P4, P5). For any divisor
of degree 0, we can reduce it using the procedure above recursively. For the reduction
algorithm, see Cantor [6].

1.2. Analytic Theory. For convenience of the reader, we review analytic theory of
hyperelliptic integrals following [1].

First we take a basis γ1, γ2, γ
′
1, γ

′
2 of the first homology group H1(C,Z) with inter-

section numbers γ1 · γ2 = γ′1 · γ′2 = 0, γi · γ′j = δij (Kronecker’s δ). We take a basis

of the differentials of the first kind, µ1 =
dx

2 y
, µ2 =

x dx

2 y
, and write µ =

(
µ1

µ2

)
. We

denote their periods by

ωij =

∫
γj

µi, ω′
ij =

∫
γ′
j

µi, (i, j = 1, 2).

It is well known that τ = ω−1ω′ belongs to the Siegel upper half space h2. If we define
the period lattice Λ = ωZ2 ⊕ ω′Z2, then J = C2/Λ is the Jacobian variety of C.
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We define a hyperelliptic integral uP,P0 =

∫ P

P0

µ ∈ C2, and uP = uP,∞. Let uP,P0

i

denote the i-th coordinate of uP,P0 , (i = 1, 2). The integral uP,P0 is determined up to
Λ. For any divisor b =

∑
P

mPP , we denote the corresponding integral
∑
P

mPu
P by zb.

For any vector z ∈ C2, we denote by z̃ its image in J = C2/Λ.

The map (P1, P2) 7→ uP1 + uP2 becomes a surjection from the symmetric 2-product
of C S2(C) to J . The image of {(P,∞) ∈ S2(C)} under this map is the theta divisor
of J . Put Θ̃ = (C2 → J)∗Θ, that is the pullback of Θ in C2.

Next let ζ1, ζ2 be the differentials of the second kind on C defined by

ζ1 =
( 3x3 + 2 a1 x

2 + a2 x) dx

2 y
, ζ2 =

x2 dx

2 y
,

and define their periods η = (ηij), η
′ = (η′ij) by

ηij =

∫
γj

ζi, η′ij =

∫
γ′
j

ζi, (i, j = 1, 2).

We define an R-linear map η̃ : C2 → C2 by

η̃(u) = η r + η′ r′, where u = ω r + ω′ r′, r, r′ ∈ R2 .

Between the periods, the following relation holds

η′ = η τ + 2 π i tω −1 .(1.2)

Furthermore, we have

η ω−1 is symmetric,which is equivalent to η tη′ = η′ tη .(1.3)

1.3. σ-function. As in [18],Chapter 2, for τ ∈ h2, we define a theta function on C2

by

θ(z, τ) =
∑
n∈Z2

exp
[
π i tn τn+ 2πi tn z

]
,

and for a, b ∈ Q2,

θ

[
a

b

]
(z, τ) = exp(πita τa+ 2πita (z + b))θ(z + τa+ b)

=
∑
n∈Z2

exp
[
πit(n+ a) τ(n+ a) + 2πit(n+ a) (z + b)

]
.
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For m, n ∈ Z2, the factor of automorphy is given by

θ

[
a

b

]
(z + τm+ n, τ) = exp

(
2πi (ta n− tbm− tmz)− πi tmτm

)
θ

[
a

b

]
(z, τ) .

For the theta characteristic δ =

(
δ′

δ′′

)
, with δ′ =

( 1
2
1
2

)
and δ′′ =

(
1
1
2

)
, the function

θ [δ] (z, τ) has a simple zero only at Θ̃.

Now we define the hyperelliptic σ-function.

Definition 1.2. For u ∈ C2,

σ (u) = exp

(
− 1

2
tu η ω−1u

)
θ [δ]

(
ω−1u

)
.

Here we shall list some fundamental properties of the σ-function.

Lemma 1.3. For p, p′ ∈ Z2 and l = ω′ p′ + ω p, let αl(u) be the automorphy factor of
σ(u), that is σ(u+ l) = αl(u)σ(u), then we have αl(u) = exp(Ll u+ Cl), where

Ll = −tl η ω−1 − 2 π i tp′ ω−1,

Cl = − 1

2
tl η ω−1l − π i tp′ τ p′ + 2 π i tδ′ p− 2π i tδ′′ p′.

Let c =
∂

∂u1
σ(u)

∣∣∣
u=0

. Then c ̸= 0 and σ(u) has, at u = 0, the Taylor expansion

σ(u) = c

(
u1 +

a3
6
u31 −

1

3
u32 + (terms of degree ≥ 5)

)
.

Define a polynomial of two variable F by

F (x1, x2) = x21 x
2
2 (x1 + x2) + 2 a1 x

2
1 x

2
2 + a2 x1 x2 (x1 + x2)

+ 2 a3 x1 x2 + a4 (x1 + x2) + 2 a5,
(1.4)

and define a double integral

RP,P0

Q,Q0
=

∫ P

P0

∫ Q

Q0

F (x, z) + 2 y s

4 (x− z)2
dx

y

dz

s
,

with s2 = f(z). Then the following proposition holds:

Proposition 1.4 ([1],p35). We put u′ = uP1,A1 + uP2,A2, u′′ = uQ1,A1 + uQ2,A2, with
Ai ∈ B. For P,Q ∈ C, A ∈ B, we have

RP,Q
P1,Q1

+RP,Q
P2,Q2

= log
σ(uP,A − u′)

σ(uP,A − u′′)

/ σ(uQ,A − u′)

σ(uQ,A − u′′)
.
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Now we define hyperelliptic p-functions.

Definition 1.5. For i, j, . . . , k = 1, 2 and u ∈ C2, we define

ζi(u) =
∂

∂ui
log σ(u) and pij..k (u) = − ∂

∂ui

∂

∂uj
· · · ∂

∂uk
log σ (u) .

We define p(u) = p11(u) p22(u)− p212(u).

Define a polynomial ψ by

(1.5) ψ(x1, x2) = x31 x2 (3x1 + x2) + 4 a1 x
3
1 x2 + a2 x

2
1 (x1 + 3 x2)

+ 2 a3 x1 (x1 + x2) + a4 (3x1 + x2) + 4 a5,

and let F be one as (1.4). Let P1(x1, y1) and P2(x2, y2) be points on the curve C and
we put u = uP1 + uP2 . Then we have

Proposition 1.6. (i) ([1],[12]) When P1 ̸= P2 and P1 ̸= P ι
2,

p11(u) =
F (x1, x2)− 2 y1 y2

(x1 − x2)2
, p12(u) = −x1 x2, p22(u) = x1 + x2,

p111(u) = 2
y2 ψ(x1, x2)− y1 ψ(x2, x1)

(x1 − x2)3
, p112(u) = 2

x22 y1 − x21 y2
x1 − x2

,(1.6)

p122(u) = −2
x2 y1 − x1 y2
x1 − x2

, p222(u) = 2
y1 − y2
x1 − x2

.

(ii) When P1 = P2 = (x, y) ̸∈ B (equivalently y ̸= 0 ),

p11(u) = 4 x3 + 2 a1 x
2 + a2 x+

f ′2(x)− 2 f(x) f ′′(x)

4 y2

p12(u) = −x2, p22(u) = 2x,

p111(u) = −(14x2 + 8a1x+ 2a2)y −
(2x3 − f ′′(x))f ′(x)

2 y
− f ′3(x)

4 y3
,

p112(u) =
x2 f ′(x)− 4x f(x)

y
, p122(u) = −x f

′(x)− 2 f(x)

y
, p222(u) =

f ′(x)

y
.

(1.7)

Proof. As for (i), see Baker [1]. The formulae (1.7) can be deduced from (1.6) by
L’hôpital’s rule.

Immediately, by the proposition above, we have
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Corollary 1.7. If u = uP1 + uP2, then

x1 + x2 = p22(u) , x1 x2 = −p12(u),

y1 + y2 = p122(u) +
1

2
p22(u) p222(u),(1.8)

y1 y2 =
1

4
(p2122(u)− p112(u) p222(u)) .

For u, v ∈ C2 − Θ̃, define

q(u, v) = −c2σ(u+ v)σ(u− v)

σ2(u)σ2(v)
.(1.9)

Then the following formula holds [1],p.100:

q(u, v) = p11(u)− p11(v) + p12(u) p22(v)− p12(v) p22(u) .(1.10)

Using the fact that, at ∞ of the curve, the coordinate functions x and y has a pole
of order 2 and 5 respectively, we have:

Lemma 1.8. Let P (x, y) and u = uP . Then we have

(p11/p12)(u) = (p12/p22)(u) = −x,
(p111/p112)(u) = (p112/p122)(u) = (p122/p222)(u) = −x,(1.11)

(p/p222)(u) = −y.

Let σi(u) =
∂σ

∂ui
(u) for i = 1, 2. From this lemma, since

p12
p22

(u) =
σ1(u)

σ2(u)
= − 1

u22
+· · ·

for u ∈ Θ̃, we know that σ2(u) is not 0 along Θ̃ except for ∞. For u ∈ C2 − Θ̃ and
v ∈ Θ̃, we define

Q(u, v) = −c2σ(u+ v) σ(u− v)

σ2(u)σ2
2(v)

.(1.12)

Proposition 1.9 (cf. [13],p.124). Let P (x, y) and v = uP , then

Q(u, v) = −x2 + p12(u) + p22(u)x.

Hence if Pi = (xi, yi) and u = uP1 + uP2, then

Q(u, v) = −(x− x1)(x− x2)(1.13)

Proof. First note that (p12/p22)(u
P ) = σ1(u

P )/σ2(u
P ) = −x by (1.11). Multiplying

(1.10) by σ(v)2/σ2
2(v) and taking the limit v to uP , then we obtain the formulae

above.
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The following proposition is the heart of the duplication theorem and the definition
of the canonical local height.

Proposition 1.10. For u ∈ C2,

−c3 σ(2u)
σ4(u)

= p111(u)− p12(u) p122(u) + p22(u) p112(u) .

We denote the right-hand side by ϕ(u) .

Proof. By the definition of q(u, v),
q(u, v)

σ(u− v)
= −c2 σ(u+ v)

σ2(u)σ2(v)
. Using the Taylor

expansion of σ(u) at u = 0, we get
∂

∂ v1
σ(u− v)

∣∣
v=u

= −c. Thus, by L’hôpital’s rule,

lim
v→u

q(u, v)

σ(u− v)
= −1

c

∂

∂v1
q(u, v)

∣∣∣
u=v

. By differentiating the right-hand side of (1.10)

with respect to v1 and substituting v = u into the result, we conclude the assertion.

Corollary 1.11. Put ϕij···k(u) =
∂

∂ui

∂

∂uj
· · · ∂

∂uk
ϕ(u). Then we have the duplication

formulae:

pij(2u) = pij(u)−
ϕij(u)

4ϕ(u)
+
ϕi(u)ϕj(u)

4ϕ(u)2
,

pijk(2u) =
1

2
pijk(u)−

ϕijk(u)

8ϕ(u)
+

ϕij(u)ϕk(u) + ϕjk(u)ϕi(u) + ϕki(u)ϕj(u)

8ϕ2(u)
− ϕi(u)ϕj(u)ϕk(u)

4ϕ3(u)
.

1.4. Defining equations and arithmetic. We review defining equations for the
affine model using p-functions([12]). We define coordinate functions Xij, Xijk, and X
as follows.

Xij = pij, Xijk =
1

2
pijk, and X =

1

2
(p+ a2 p12 − a4).

We write Xh
0 , X

h
ij, X

h
ijk, X

h for homogeneous coordinates of a points of P8 with

Xij = Xh
ij/X

h
0 , Xijk = Xh

ijk/X
h
0 , and X = Xh/Xh

0 . We write [Xh
0 : Xh

11 : Xh
12 : Xh

22 :

Xh
111 : X

h
112 : X

h
122 : X

h
222 : X

h] for a set of coordinates. Then we have

Theorem 1.12 ([12]). Let Ei, (i = 1, . . . , 14), be the equations fi in [12],pp.103–107.
The ideal I(J −Θ) is generated by E2, . . . , E7.

Remark 1.13. There is a misprint in [12],p.106. The equation f10 should be read

f10 = X2
112 −X111X122 + · · · .
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Theorem 1.14 ([12]). Let Eh
i be the homogenization of Ei, (i = 1, . . . , 14). Then

their Jacobian matrix is of full rank at every point of J and the equations give a
non-singular model in P8.

The theta divisor on J ⊂ P8 is given by Xh
0 = 0. Substituting Xh

0 = 0 into the
equations Eh

i , we have

Θ ⊂
{
[0 : 0 : 0 : 0 : Xh

111 : X
h
112 : X

h
122 : X

h
222 : X

h]
}
.

The following proposition follows from Lemma 1.11:

Proposition 1.15. For P (x, y) ∈ C, the coordinates of D(P ) ∈ Θ ⊂ P8 is given by

[0 : 0 : 0 : 0 : −x3 : x2 : −x : 1 : −y] .
Especially, the zero element OJ of J has the coordinates

[0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0].

The additive formulae are described in Grant [12] and we do not reproduce here.
We can obtain the formulae of the addition of points one of which is on the Theta
divisor and the other of which is not on the Theta divisor using Cantor’s algorithm [6]
or taking the limit of the additive formulae. As for the duplication theorem, see
Corollary 1.11. Also see [5] for the computation on Kummer surfaces.

2. Archimedean local heights

2.1. Canonical local heights. In this section we review on the Néron-Tate local
heights (the canonical local heights) on a Jacobian surface J . See [4],Section 2 for
more details.

Let Ψ2 : J → J be the multiplication by 2 map. The theta divisor Θ satisfies

Ψ∗
2Θ ∼ 4Θ .

Now we define the canonical local height λ̂v : J −Θ → R for v ∈ ΣK as follows:

Definition 2.1. (1) λ̂v is a Weil local height function corresponding the divisor Θ.
(2) Let ϕ be a function such that Ψ∗

2 Θ = 4Θ + div(ϕ), then

λ̂v(2 z) = 4 λ̂v(z) + v(ϕ(z)) .

Remark 2.2. As in [4], p.171, λ̂v is uniquely determined if we fix ϕ, since we assume
the equation of the second condition holds with v(ϕ(z)) in spite of v(aϕ(z)). After
this, we shall fix ϕ as in Proposition 2.3 below.
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Proposition 2.3. Let ϕ be the function defined in Proposition 1.10 . Then Ψ∗
2 Θ =

4Θ + div(ϕ) .

Proof. Since σ(u) has zero at Θ̃ of order 1, we have Ψ∗
2Θ = 4Θ + div

(
σ ◦Ψ2

σ4

)
. By

Proposition 1.10 we have the assertion.

Now we define a modified σ-function k(u), which is a natural generalization of the
Klein function, by

k(u) = c−1 exp

(
1

2
tu η̃(u)

)
σ(u).(2.1)

Proposition 2.4. The function |k(u)| on C2 is periodic for Λ.

Proof. First note that tz η̃(w) = tη̃(w) z, since this is a scalar. Let exp(κl(u)) =
k(u + l)/k(u) for l = ω p + ω′ p′, p, p′ ∈ Z2 and u = ωr + ω′r′ with r, r′ ∈ R2. Then,
by Lemma 1.3,

κl(u) =
(
tp tp′

)
Mr

(
r

r′

)
+
(
tp tp′

)
Mp

(
p

p′

)
.

where

Mr =

(
1
2
(tη ω − tω η) 1

2
(tη ω′ + tω η′ − 2 tω η τ)

1
2
(tη′ ω − tω′ η) 1

2
(tη′ ω′ + tω′ η′ − 2 tω′ η τ)

)
− 2 π i

(
0 0
1 τ

)
,

and

Mp =

(
0 1

2
(tω η′ − tω η τ)

0 1
2
(tω′ η′ − tω′ η τ − 2π i τ)

)
.

By (1.3), η ω−1 = t(η ω−1) = tω−1 tη , thus, tη ω = tω η. That is (Mr)11 = 0 . By
(1.2), tη′ ω = t(η τ+2 π i tω −1) ω = τ tη ω+2π i12 and

tω′ η = t(tη ω′) = t(tη ω τ) =
τ t(tη ω ) = τ tω η . As above, tη ω = tω η, so (Mr)21 = −π i12. Similarly, (Mr)12 =
π i12 . Finally, since τ

tη ω′ = τ t(η ω−1 ω) ω′ = tω′ η τ, using (1.2), we get (Mr)22 = 0.

Also by (1.2), we conclude that Mp =

(
0 π i12

0 0

)
.

Since any of p, p′, r, r′ belongs to R2, exp(κl(u)) is of the form exp(i · ‘real number’)
and |exp(κl(u))| = 1.

Corollary 2.5. For v ∈ Σ∞
K and u ∈ C2 − Θ̃, if we take ϕ as in Proposition 1.10,

then

λ̂v(ũ) = − log |k(u)|v .(2.2)
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Proof. By the proposition above, the right-hand side of (2.2) is well defined and clearly
it is a Weil function for Θ. Furthermore

k(2u)

k4(u)
= c3

σ(2u)

σ4(u)
= −ϕ(u),

thus the right-hand side of (2.2) satisfies the property (2) in the definition of λ̂v. By
the uniqueness, the assertion follows.

2.2. Green’s Function. A meromorphic differential ϱ on the Riemann surface C(C)
is said to be of the third kind if ordx(ϱ) ≥ −1 for all x ∈ C(C). For such ϱ, we define
the divisor Res(ϱ) by

∑
x∈C(C)

resx(ϱ) x, which belongs to Div0(C). Conversely, by the

Riemann-Roch theorem, for any a ∈ Div0(C), there exists a differential of the third
kind ϱ such that Res(ϱ) = a, and it is determined up to an addition of a differential
of the first kind. We write ωa for this ϱ.

Lemma 2.6. We can choose ϱ uniquely with pure imaginary periods.

Proof. For any differential of the third kind ϱ̃, we define

r = −2

(
Re

(∫
γ1

ϱ̃

)
,Re

(∫
γ2

ϱ̃

)
,Re

(∫
γ′
1

ϱ̃

)
,Re

(∫
γ′
2

ϱ̃

))
.

Then we can define complex numbers c1, c2 by

(c1, c2, c1, c2) = rΩ̃−1,

where Ω̃ =

(
ω ω′

ω ω′

)
. Then ϱ = ϱ̃+ c1 µ1 + c2 µ2 has pure imaginary periods.

Lemma 2.7. If a = D(P1) with P1(x1, y1) ∈ C, then ωa is explicitly given by

ωa =
y + y1

2 y (x− x1)
dx+ ωh,

where ωh is any differential of the first kind.

Proof. Noting that div(dx) =
∑
Bi−3∞ and div(y) =

∑
Bi−5∞, it is obvious that

ωa has simple poles at only P1 and ∞. The function x−x1 is an uniformizer at P1 and
resP1(ωa) = 1. By the residue theorem, res∞ (ωa) = −1 and Res(ωa) = P1−∞ = a.

Definition 2.8. For any v ∈ Σ∞
K and for each a ∈ Div0(C), Green’s function on

C(C)− |a| attached to a is a real valued harmonic function ga such that

(1) ga −mx log |z|v is harmonic near x, where z is a local parameter at x and mx

is the order of x in a.
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(2) ga is a solution of a differential equation ∂∂̄ga = −2 π iδa, where δa is (1,1)-
current which represents the evaluation of (0,0)-forms at a.

For a ∈ Div0(C), choose ωa so that it has pure imaginary periods (which exists by
Lemma 2.6), then the differential equation ωa + ω̄a = d g has a solution g and we can
take g as ga [14].

Now we have an explicit formula of Green’s function.

Proposition 2.9. (1) When a = P1 −∞,

ga(P ) ≡
1

2
log

∣∣∣∣ k(2uP − uP1)

k(2uP )

∣∣∣∣
v

.

(2) When a = P1 + P2 − 2∞,

ga(P ) ≡ 1

2
log

∣∣∣∣ k(2uP − uP1)

k(2uP + uP2)
(x− x2)

2

∣∣∣∣
v

≡ 1

2
log

∣∣∣∣ k(2uP − uP2)

k(2uP + uP1)
(x− x1)

2

∣∣∣∣
v

≡ 1

2
log

∣∣∣∣ k(2uP − uP1) k(2uP − uP2)

k(2uP )2

∣∣∣∣
v

.

In the both cases, the symbol ≡ means equality up to a constant.

Proof. (1) We shall prove that the function ||θ(z)|| in Bost [2] is coincide with |k(z)|
up to a constant multiple which depends only τ . Put z = ωr + ω′r′, r, r′ ∈ R2. Using
(1.2), we have

|k(z)| = |c−1 exp(πi(tr r′ + tr′ τr′))| |θ[δ](ω−1z)|
= |c−1| exp(−πtr′ Im(τ)tr′ )|θ[δ](ω−1z)|.

If we put z0 = ω−1z = r + τr′ = x0 + iy0 and Y = Im(τ), then

y0 = Im(z0) = Im(τr′) = Im(τ)r′ = Y r′.

That is r′ = Y −1y0 and
tr′ Im(τ)r′ = ty0 Y

−1y0. On the other hand, for D a divisor of
degree 1, we can deduce that ||θ||(D) = det(Y )1/4 exp(−πty0 Y

−1y0) |θ[δ](z0)|, where
[z] ∈ C2/Λ is the point corresponding toD −∞ and z0, y0 are as above (Note that ∆ =
δ′ + τδ′′ is a 2-torsion). Thus |k(z)| and ||θ|| coincide up to the factor |c−1| det(Y )1/4.
By virtue of Bost’s result [2], which is proved in the appendix of [3] we conclude the
formula.

(2) The third expression of the right hand side is obvious by (1). We can also
deduce the first and second ones from Bost’s result [2].
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Remark 2.10. We can give another proof of the proposition above by directly check-
ing the differential equation ωa + ωa = dga (cf. Lemma 2.7).

Remark 2.11. In the formula (2), using the equation(cf. (1.13))

σ(2uP − uP1)σ(2uP + uP1)

σ2(2uP )
=M(x− x1)

2, where M =
σ2
2(u

P1)

c2
,

we see that the first and the third expressions are equal up to a constant.

2.3. Néron’s local pairing. We review Néron’s local pairing following [14]. For any
v ∈ ΣK , let Div0(C)/Kv be the Kv-rational subgroup of Div0(C) and let Z0(C)/Kv

be the point-wise Kv-rational subgroup. Two divisors a, b ∈ Div0(C) are called rel-
atively prime if they have disjoint support, that is supp(a) ∩ supp(b) = ∅. For any
rational function f on C and a divisor a =

∑
x

axx ∈ Div(C), write f(a) =
∏
x

f(x)ax

if supp(div(f)) ∩ supp(a) = ∅. We define a modified value of f at x as follows: Fix a

tangent vector
∂

∂t
at x on C and take an uniformizer z around x with

∂z

∂t
= 1. Then

we define the modified value f [x] of f at x by f [x] =
f

zm

∣∣∣
z=0

, where m is the order of

f at x. For any divisor a =
∑
axx, we define f [a] =

∏
f [x]ax .

Proposition 2.12 ([14],p.328). There is a unique pairing ⟨a, b⟩v on relatively prime
divisors a ∈ Z0(C)/Kv , b ∈ Div0(C)/Kv with values in R which satisfies the following
properties:

(i) ⟨a, b⟩v + ⟨a, c⟩v = ⟨a, b+ c⟩v .
(ii) ⟨a, b⟩v = ⟨b, a⟩v for any b ∈ Z0(C)/Kv .
(iii) ⟨a, div(g)⟩v = log |g(a)|v for any g ∈ K(C)∗.
(iv) For fixed b and x0 ∈ C(Kv)− supp(b), C(Kv)− supp(b) ∋ x 7→ ⟨x− x0, b⟩v ∈ R

is continuous.

This pairing is called Néron’s local pairing. This pairing satisfies functoriality. That
is, let C ′ be an another curve and Φ ∈ C × C ′ be a correspondence rational over Kv,
then we have ⟨a,Φ∗b⟩C = ⟨Φ∗a, b⟩C′ for a ∈ Div0(C), b ∈ Div0(C

′) when the both sides
are defined. If Lw be an extension of Kv,

⟨a, b⟩w = [Lw : Kv] ⟨a, b⟩v .(2.3)

If supp(a) ∩ supp(b) ̸= ∅, we modify the pairing by

⟨a, b⟩v = log |g[a]|v + ⟨a, b′⟩v ,(2.4)

where b = b′ + div(g) such that supp(a) ∩ supp(b′) = ∅ .
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For a ∈ Z0(C)/Kv and b ∈ Div0(C)/Kv with supp(a) ∩ supp(b) = ∅, the pairing is
explicitly defined as follows.

For the archimedean place v, the pairing is explicitly given by

⟨a, b⟩v = ga(b),(2.5)

where ga is Green’s function attached to a (§ 2.2).

Remark 2.13. In Proposition 1.4, substituting P1, P2, P3, P3, P5, P5 for P , Q, P1,
P2, Q1, Q2 respectively, we have

2RP1,P2

P3,P5
= log

σ(u1 − 2u3)

σ(u1 − 2u5)

/σ(u2 − 2u3)

σ(u2 − 2u5)
.

Using (1.6), we get
d

dx

d

dz
log σ(uP−uQ) = p11(u

P − uQ)

4 y s
where P = (x, y), Q = (z, s).

Hence we have

RP1,P2

P3,P5
=

∫ P1

P2

∫ P3

P5

d

dx

d

dz
log σ(uP − uQ)dxdz .

Thus we get

log
σ(u1 − 2u3)

σ(u1 − 2u5)

/σ(u2 − 2u3)

σ(u2 − 2u5)
= 2 log

σ(u1 − u3)

σ(u1 − u5)

/σ(u2 − u3)

σ(u2 − u5)
,

and this implies the symmetry of the pairing.

For the non-archimedean place v, the pairing is explicitly given by

⟨a, b⟩v = −(A · B) log qv,

where A · B is the intersection number of A and B (See [11],Chapter 7,20 or [26],
Chapter IV, Section 7 for the definition of the intersection number). Here rational
divisors A,B ∈ Div(C)⊗Q are extensions of divisors a, b in a regular model C of C
over Ov that satisfy (A · F) = (B · F) = 0 for any fibral irreducible divisor F of C/Ov.

The following lemma is useful to compute the “correction term” (cf. [7]).

Lemma 2.14. Let C/Ov be a regular arithmetic surface. Let
n∑

i=0

miCi be the special

fiber, where Ci is an irreducible divisor, and σ be a horizontal divisor of degree 0. We
assume that m0 = 1. Let M be a matrix given by Mij = (Ci · Cj), for 1 ≤ i, j ≤ n.
Define rational numbers ai (i = 1, . . . , n) by

(a1, . . . , an) = −((σ · C1), . . . , (σ · Cn))M
−1.

Then we have (σ +
n∑

i=1

aiCi · Cj) = 0 for any j = 0, . . . , n.
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Finally Néron’s formula is
⟨
a, b
⟩
=

∑
v∈ΣK

⟨a, b⟩v ; see Néron [21],pp.295–296. Here⟨
a, b
⟩
is the height pairing on J × J satisfying⟨

a, b
⟩
= ĥ(a+ b)− ĥ(a)− ĥ(b),

where ĥ is the canonical height ĥΘ attached to Θ(see Introduction). (We identify J

and Ĵ by J → Ĵ , a 7→ (class of (Θ− a)−Θ)). If L is a finite extension of K, we have

⟨α, β⟩L = [L : K] ⟨α, β⟩K .

2.4. The canonical local height and Néron’s local pairing. Let P1, P2 be K-
rational points on C. Take P3, P4, P5, P6 which satisfy P1 + P3 + P4 ∼ P2 + P5 + P6 .
Define polynomials G1 = VP1,P3,P4 and G2 = VP2,P5,P6 (see § 1.1). For simplicity, we
write u∗ for uP∗ .

Let D(P1, P3, P4) = D(P2, P5, P6) = D(P11, P12), P1j = (x1j, y1j) . Then G1 is
characterized by G1(x1) = y1, G1(x11) = −y11, G1(x12) = −y12 and G2 is characterized
in the similar way.

First we can prove the following lemma by direct computation.

Lemma 2.15. Let G1, G2 as above. Then we have the following relation.

q(u1 − u2, u11 + u12) =
(y2 +G1(x2))(y1 +G2(x1))

(x1 − x2)2

Remark 2.16. As the referee notes, the following formula holds:

q(u1 + u2, u3 + u4) =

det


y1 x21 x1 1
y2 x22 x2 1
y3 x23 x3 1
y4 x24 x4 1

 det


y1 x21 x1 1
y2 x22 x2 1
−y3 x23 x3 1
−y4 x24 x4 1


(x1 − x2)2(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)2

.

We can prove this formula by considering of zeros and poles, or by direct computation.
On the other hand, by Cramer’s rule, we have

y −G1(x) =

det


x21 x1 1 y1
x211 x11 1 −y11
x212 x12 1 −y12
x2 x 1 y


(x1 − x11)(x1 − x12)(x11 − x12)

.

The lemma above is immediately deduced from these equations.
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Proposition 2.17. Let P3, P4, P5, P6 and G1, G2 as above. Then we have

q(u1 − u2, u3 + u4 − u2)(= q(u1 − u2, u5 + u6 − u1))

=
(x1 − x3)(x1 − x4)(x2 − x5)(x2 − x6)(y2 +G1(x2))(y1 +G2(x1))

(x2 − x3)(x2 − x4)(x1 − x5)(x1 − x6)(x1 − x2)2
.

Proof. As the referee notes, we have the following equation:

q(u1 − u2, u3 + u4 − u2) = q(u1 − u2, u11 + u12)
Q(u3 + u4, u1)Q(u5 + u6, u2)

Q(u3 + u4, u2)Q(u5 + u6, u1)
.

This is checked by the definition of q(u, v) and Q(u, v) ((1.9) and (1.12)). Putting
(1.13) and Lemma 2.15 together, the assertion follows.

Theorem 2.18. For Pi(xi, yi) ∈ C(K), i = 1, 2, let b = P1 − P2 with b̄ ̸∈ Θ, and

zb = u1 − u2 ∈ C2. As the base of tangent space at Pi, we take 2 yi
∂

∂x
= f ′(xi)

∂

∂y
.

Then we can take
x− xi
2 yi

if Pi ̸∈ B and
y − yi
f ′(xi)

if Pi ∈ B as an uniformizer at Pi.

In both cases, for an archimedean place v, if we take the uniformizer as above, the
relation

⟨b, b⟩v = 2 λ̂v(z̃b)(2.6)

between Néron’s local pairing and the canonical local height holds.

Proof. For any divisor b′ ∈ Div0(C) which is linearly equivalent to b, let G = Gb,b′ be
a rational function such that b = b′ + div(Gb,b′). Then we have

⟨b, b⟩v = ⟨b, b′⟩v + log |G[b]|v , ⟨b, b′⟩v = gb(b
′),

where G[b] means the modified value of G at b (see (2.4)). As in the proof of Propo-
sition 2.17, we can take b′ in the form b′ = P5 + P6 − P3 − P4 and P1 + P3 + P4 ∼
P11 + P12 +∞ .

If we define

G̃1(P ) =
y +G1(x)

(x− x1) (x− x3) (x− x4)
,

G̃2(P ) =
y +G2(x)

(x− x2) (x− x5) (x− x6)
,

then,

div(G̃1) = P11 + P12 +∞− P1 − P3 − P4,

div(G̃2) = P11 + P12 +∞− P2 − P5 − P6 .

Thus if we define G = G̃2/G̃1, then div(G) = b− b′, that is we can take G as Gb,b′ .
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When both Pi, (i = 1, 2) are not Weierstrass points, we may take the local parameter
at Pi as mentioned in the theorem, and we have

G[b] =
(x1 − x3)(x1 − x4)(x2 − x5)(x2 − x6)(y2 +G1(x2))(y1 +G2(x1))

−(x2 − x3) (x2 − x4) (x1 − x5) (x1 − x6) (x1 − x2)2
.

By Proposition 2.9, we have

⟨b, b′⟩v = gb(P5) + gb(P6)− gb(P3)− gb(P4)

=
1

2
log

∣∣∣∣ k(2u5 − u1) k(2u6 − u1) k(2u3 − u2) k(2u4 − u2)

k(2u5 − u2) k(2u6 − u2) k(2u3 − u1) k(2u4 − u1)

∣∣∣∣
v

.

Now we may assume

u1 + u3 + u4 = u2 + u5 + u6.(2.7)

Put Vi,j =
tu iη̃(uj). Then the formula in the log | | is of the form exp(E) Σ, where

E = −(V1,5 − V2,5 + V1,6 − V2,6) + (V1,3 + V1,4 − V2,3 − V2,3)
− (V5,1 + V6,1 − V5,2 − V6,2) + (V3,1 + V4,1 − V3,2 − V4,2),

and

Σ =
σ(2u5 − u1) σ(2u6 − u1) σ(2u3 − u2)σ(2u4 − u2)

σ(2u5 − u2) σ(2u6 − u2) σ(2u3 − u1)σ(2u4 − u1)
.

By the assumption (2.7), we have

E = −2 tzb η̃(zb).

On the other hand, by (1.10), we have

Σ = Σ1 × σ2(u5 + u6 − u1) σ2(u3 + u4 − u2)

σ2(u5 + u6 − u2)σ2(u3 + u4 − u1)
,

where

Σ1 =
q(u5 + u6 − u1, u5 − u6) q(u3 + u4 − u2, u3 − u4)

q(u5 + u6 − u2, u5 − u6) q(u3 + u4 − u1, u3 − u4)
.

Using (1.10) again, we have

σ2(u5 + u6 − u2)σ2(u3 + u4 − u1)

=
1

c4
q2(u3 + u4 − u2, u1 − u2)σ4(u3 + u4 − u2)σ4(zb),

and by the assumption (2.7), we get Σ = Σ1 Σ2 (c
−1σ(zb))

−4, where

Σ2 =
1

q2(u3 + u4 − u2, u1 − u2)
.

Here we prove the following lemma.
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Lemma 2.19. Let Σ1 be as above, then Σ1 = 1 .

Proof. Let i, j, k ∈ {1, . . . , 6} be distinct indices. We put v+ = ui + uj, v− = ui − uj,
and u = v+ − uk. By (1.10), q(u, v+) = 0 and, by (1.6), p12(v

−) = p12(v
+) and

p22(v
−) = p22(v

+). Hence we have

q(u, v−) = p11(u)− p11(v
−) + p12(u) p22(v

−)− p12(v
−) p22(u)− q(u, v+)

= p11(v
+)− p11(v

−) =
−4 yi yj
(xi − xj)2

,

and this does not depend on the index k, thereby completing the proof.

Finally, by Proposition 2.17, we have

⟨b, b⟩v =
1

2
log
∣∣Σ2 k

−4(zb)
∣∣
v
+

1

2
log |G[b]|2v = −2 log |k(zb)|v .

As for the case where Pi ∈ B, we can prove the equation similarly, noticing that

lim
P→Pi

x− xi
y − yi

=
2 yi
f ′(xi)

.

In any case, by Corollary 2.5, we have ⟨b, b⟩v = 2 λ̂v(z̃b). This completes the proof.

By Proposition 2.17 and the proof of Theorem 2.18, we have

Corollary 2.20. Let b = P1 − P2 ∈ Z0(C)Kv , b
′ = P5 + P6 − P3 − P4 ∈ Div0(C)Kv

and ui be as above. Then we have

⟨b, b⟩v = ⟨b, b′⟩v + log |q(u1 − u2, u3 + u4 − u2)|v.

3. Tate’s series

In this section, we shall give concrete expression of Tate’s series for the canonical
local height.

3.1. Generalities. We review Tate’s series [4]. In general let V be a non-singular
projective variety, Ψ be a morphism V → V , and Θ be a divisor Θ ∈ Div(V )⊗R,
with Ψ∗ Θ = αΘ+div(ϕ), for some real number α > 1 and a function ϕ. Let t1, . . . , tr,
ti ∈ K(V )∗ ⊗R be functions with div(ti) = Θ −Di satisfying

∩
i

supp(Di) = ∅. For

each i = 1, . . . , r, we define functions wi = ϕ · tαi , zi =
ϕ · tαi
ti ◦Ψ

, and for i, j = 1, . . . , r,

we define sij =
zj wi

wj

. For any ample divisor D, we define a distance function λD as

in [4],pp.191–192. Then we have
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Theorem 3.1 ([4]). Let P ∈ V (Kv)− supp(Θ) be given. Define a sequence of indices
i0, i1, . . . , in, . . . , by

λsupp(Din )
(Ψn P ) = min

1≤i≤r
λsupp(Di)(Ψ

n P ) .

Define a sequence of real numbers cn as

cn = −v(sin in+1(Ψ
n P )), n = 0, 1, 2, . . . ,

which is bounded independently of n and P . Then

λ̂Θ(P ) = v(ti0(P )) +
N−1∑
n=0

α−n−1 cn +O(α−N),

where the constant of O(α−N) is independent of both P and N .

3.2. The case of Jacobian surfaces. Now we apply the above to the case of Jaco-
bian surfaces. That is V = J , Θ is the theta divisor, Ψ = Ψ2, that is the multiplication
by 2 map, and α = 4.

For P ∈ J , we denote by TP the translation map J → J , D 7→ D + P .

Proposition 3.2. Let D1 = T ∗
B1

Θ, D2 = T ∗
B2

Θ, and D3 = T ∗
B13

Θ . Then Di is

irreducible and
∩
Di = ∅.

Proof. The first assertion is obvious since Θ is irreducible. Any point in D1 can be
written D(P,B1) . If this point belongs to D2, then, for some Q ∈ C, P+B1 ∼ Q+B2 .
If P ̸= B1(= Bι

1) and P ̸= ∞, by the uniqueness, P = B2 and Q = B1, hence the point

is D(P,B1) = B12. If P = B1, then Q = B2 and D(P,B1) = OJ . The case P = ∞
does not occur. Thus D1∩D2 =

{
OJ , B12

}
, hence we have to prove that both OJ and

B12 do not belong to D3. If OJ ∈ D3, that is for some P ∈ C, B1 + B3 ∼ P + ∞.
Since B13 ̸∈ Θ, this case does not occur. If B12 ∈ D3, then B2 ∼ B3, which leads to
contradiction.

Proposition 3.3. Let ti be the elements of K(J)∗⊗R corresponding to the divisors
Di of Proposition 3.2 (see § 3.1). We can take ti as follows :

t1 =
(
p12 + β1 p22 − β2

1

)−1/2
,

t2 =
(
p12 + β2 p22 − β2

2

)−1/2
,

t3 = (p11 + (β1 + β3) p12 + β1 β3 p22 + A13)
−1/2 ,

where A13 = (β1 + β3) (β
2
1 + β1 β3 + β2

3) + a1 (β1 + β3)
2 + a2 (β1 + β3) + a3.
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Proof. First, as for t1, t2, we can show that the function p12(u)+βi p22(u)−β2
i vanishes

only when u = uBi + uP , since if we put u = uP1 + uP2 , then this function is equal to
(x1−βi) (x2−βi) . The function has poles at Θ of order 2, thus div(t2i ) = 2T ∗

Bi
Θ−2Θ,

that is, div(ti) = Di −Θ.

To prove the formula for t3, we use the following lemma.

Lemma 3.4. We fix v0 = uP1 + uP2 ̸∈ Θ̃, P1, P2 ∈ C. For u ∈ C2 − Θ̃, define a
rational function q

P1,P2
on J by

q
P1,P2

(ũ) = p11(u) + p22(v0) p12(u)− p12(v0) p22(u) − p11(v0) .

Then

div(q
P1,P2

) = T ∗
P1,P2

Θ+ T ∗
P ι
1 ,P

ι
2
Θ− 2Θ.

Proof. By (1.10), the function q
P1,P2

vanishes at T ∗
P1,P2

Θ and T ∗
P ι
1 ,P

ι
2
Θ, has poles at Θ

of order 2 and has no poles at elsewhere. Thus the lemma follows.

Proof of Proposition 3.3. By Lemma 3.4, we can take q1/2
B1,B3

as t3. Using the fact

that f(βi) = 0, we have F (β1, β3) + A13 (β1 − β3)
2 = 0, and from (1.6), the assertion

follows.

Finally, for u ∈ C2 and ũ ∈ J , as a function measuring the distance of ũ and Θ, we
take

λΘ(ũ) = max (log |pij(u)| , log |pijk(u)| , log |p(u)|) .
If pI(u) = 0 for some index I, we regard the value log |pI(u)| as −∞ and may ignore
it.

4. Examples

In this section, we give some examples. Throughout this section, we denote by
NT the number of terms of the summation of Tate’s series of Theorem 3.1. For the
archimedean place v = v∞ of Q, we write λ̂∞ for λ̂v. For the symbols Ia−b−c, I

∗
a−b−c

etc., see [17], also [20].

Example 4.1. Let C : y2 = f(x) = x5−x+ 1

4
. The curve C has the model over Z, C:

y2+y = x5−x. This arithmetic surface has singular fiber at p = 139(= p1), 449(= p2),
but it is regular at any point on the surface. In fact, we can prove the singular fibers
Cp1 and Cp2 are both of genus 1 with one normal singularity and they are of type I1−0−0.
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Let Cη be the generic fiber of C and α : C → Cη be an isomorphism (x, y) 7→
(x, y − 1

2
) . Take points P1(1,

1
2
) and P2(−1, 1

2
) on C and put b = P1 − P2. Then for

NT ≥ 50,

λ̂∞(zb) = 0.347955759656624049028090018047 . . . .

Take points P3(0,
1
2
) and P4(−1,− 1

2
) on C. Let P5, P6, with α(P5) = (x5, y5) and

α(P6) = (x6, y6) be the points which satisfy b ∼ b′ for b′ = P5 + P6 − P3 − P4. Then,
by the addition theorem,

x5 + x6 = 93/112, x5 x6 = −68/112,

y5 + y6 = 3 · 61 · 1031/115, y5 y6 = 22 · 32 · 17 · 73/115.

We write P̃ for the section corresponding to the point α(P ) ∈ Cη. Then P̃i and P̃j do

not intersect for i = 1, 2 and j = 3, 4. Also P̃1 intersects neither P̃5 nor P̃6. One of P̃5

and P̃6 intersects P̃2 with multiplicity 1 on the fiber C73. Thus we have ⟨b, b′⟩v = log 73
if pv = 73 and ⟨b, b′⟩v = 0 for other finite places v. Since q(u1−u2, u3+u4−u2) = −73/4,
by Corollary 2.20, we have⟨

b, b
⟩
= 2 λ̂∞(zb) + 2 log 2
= 2.0822058804331387168906442790105599508865 . . . .

Remark 4.1. In the example above, if we take P3 = (2,
11

2
), P4 = (−1,−1

2
), then

G̃[b] = −31/4. For the place v with pv = 31, ⟨b, b′⟩v = log 31, and for the other places

v, ⟨b, b′⟩v = 0 . Hence we obtain the same result for
⟨
b, b
⟩
and the global height is

surely independent of P3, P4. In this way, we can check the computation of Néron’s
symbol.

Example 4.2. Let N = 23 and X0(N) be the modular curve. It has the canonical
model [10],p.416:

y2 = f(x) = x6 − 14x5 + 57x4 − 106x3 + 90x2 − 16x− 19.

Let χ be the quadratic character corresponding to the quadratic field Q(
√
−7), let

X0(N)χ be the twisted modular curve which is given by

−7 y2 = f(x) = x6 − 14x5 + 57 x4 − 106x3 + 90x2 − 16x− 19,(4.1)

and denote this by C. Let J be the Jacobian variety of C. We want to verify the
Birch-Swinnerton-Dyer Conjecture for J .

Now we recall the Birch-Swinnerton-Dyer Conjecture. Let A be an abelian variety
defined over Q, let A′ be the dual abelian variety of A, let V∞ be the volume of real
periods Vol(A(R)), let S be the finite set of bad primes, let VS be Vol(

∏
p∈S

A(Qp)),
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let X be the Tate-Shafarevich group of A, let A(Q)tors be the torsion part of the
Mordell-Weil group of A, and let r be the Mordell-Weil rank of A, which conjecturally
equals the order of the Hasse-Weil zeta function L(s, A) at s = 1 . Let αi, 1 ≤ i ≤ r
be a system of generators of A(Q)⊗Q and R = det(⟨αi, αj⟩)1≤i,j≤r be the regulator
of A . Then the conjecture is as follows [15],p.51,Conjecture 2.8.2:

lim
s→1

(s− 1)−r L(s, A) =
RV∞ VS #X

#A(Q)tors#A′(Q)tors
.(4.2)

Since we do not have methods to compute the order of X, we want to check

lim
s→1

(s− 1)−r L(s, A)#A(Q)tors#A
′(Q)tors

RV∞ VS
∈ Q.(4.3)

Let S2(N) be the space of cusp forms of weight 2 with respect to Γ0(N). The space
S2(23) is 2-dimensional. Let g ∈ S2(23) be the one of the eigen cusp forms which

has the Fourier expansion g(q) = a1 + a2q + · · · , with a1 = 1, a2 =
−1 +

√
5

2
(cf.

[9]). It is well known that the coefficients an belong to K = Q(
√
5) and g, gσ are

basis of S2(23) where σ is the generator of Gal(K/Q). Let gχ be a cusp form given
by
∑
n≥1

χ(n)an q
n, which belongs to S2(23 · 72). Then the Hasse-Weil ζ-function L(s, J)

equals L(s, gχ)L(s, g
σ
χ). Since the signs of the functional equations are −1, both of

L(s, gχ) and L(s, g
σ
χ) have odd analytic rank(analytic rank means the order at s = 1).

In fact, they are of analytic rank 1, that is the first derivatives of them do not vanish
at s = 1. We check this by computing the special value of the derivatives of the
L-functions using the following proposition.

Proposition 4.2 ([8],p.31, Prop.2.13.1). For g =
∞∑
n=1

anq
n ∈ S2(N) ,

L′(g, 1) = 2
∞∑
n=1

an
n
G1

(
2πn√
N

)
where G1(x) =

∫ ∞

1

e−xy dy

y
.

By this method, we have

L′(gχ, 1) = 3.3236701591276114211249090245717594419417

548256170127399799836304033108 · · · ,
L′(gσχ, 1) = 1.2235733780550577014994167260813838530875

469109100787909011075184313338 · · · .
Thus, by the conjecture, the Mordell-Weil rank of J should be 2 . On the other

hand, we have four rational points of C; P1(1, 1), P2(3, 5), and their images of the
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hyperelliptic involution: P ι
1, P

ι
2. We define b1 = P1−P2, b2 = P1−P ι

2, and b3 = P1−P ι
1,

bi ∈ Z0(C)Q. Put αi = bi ∈ J(Q), (i = 1, 2, 3), then we have α3 = α1 + α2. If

R′ := det
(
⟨αi, αj⟩1≤i,j≤2

)
is not 0, then α1, α2 are independent and R

′ is the regulator

up to a multiple of an integer.

Next we compute the archimedean local height. We have the factorization

f(x) = (x3 − 3x2 + 2 x+ 1) (x3 − 11x2 + 22x− 19).

Take the real root x0 of x3 − 3 x2 + 2 x+ 1, then we have an isomorphism over Q(x0)

(x, y) 7→
(
f ′(x0)

x− x0
,
f ′(x0)

2 y

(x− x0)3

)
,

the image of which is the curve given by y2 = x5+ · · · ∈ Q(x0)[x]. Using this equation,
we compute the Tate’s series, and the results are as follows(NT ≥ 150):

λ̂∞(α1) = 8.7417108302483296767154557179790709120077

0880444567048579023157642390338444909942 . . . ,

λ̂∞(α2) = 8.5824393360065566735121235093036839525837

4396997136609666242902462638802297360634 . . . ,

λ̂∞(α3) = 8.7561543364583716258929769839951270330761

3410174036934238900919308262429139876024 . . . .

Take points P3(5−
√
13, 10− 3

√
13), P4(5 +

√
13, 10+ 3

√
13) on C. Then we obtain

points Pj, (j = 5, . . . , 10) on C such that bi is linearly equivalent to b′i = P2 i+3 +
P2 i+4 − P3 − P4. Let Gi = Gbi,b′i

be functions satisfying div(Gi) = bi − b′i. We have,
by the addition theorem,

P5 =
(
3
√
−1, 2 + 21

√
−1
)
,

P6 =
(
−3

√
−1, 2− 21

√
−1
)
,

P7 =

(
1015 + 3

√
32009

256
,
−70569557− 419001

√
32009

4194304

)
,

P8 =

(
1015− 3

√
32009

256
,
−70569557 + 419001

√
32009

4194304

)
,

P9 =

(
437 +

√
147206

107
,
27721445 + 67635

√
147206

1225043

)
,
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P10 =

(
437−

√
147206

107
,
27721445− 67635

√
147206

1225043

)
.

All of these points are not same as P1 and P2 . Thus we compute the real archimedean
Néron’s local pairing ri := ⟨bi, b′i⟩∞ = 2λ̂∞(αi)− log |Gi[bi]|. We have

r1 = −0.3779682038474793239566516214064928511906

5187702973806955564168003000827460539180 . . . ,

r2 = −0.1995352620720013629776611485766647308863

6166002662262541504391361101778520199515 . . . ,

r3 = −2.3135175421748408234366903964991804162103

7008163231687118098438209046679595805722 . . . .

Next we consider Néron’s local pairings at non-archimedean places. At p = 2, the
model (4.1) over Z is not normal, thus we must blow up by y = (x3 + x2 + 1) + 2Y .
Then we have

⟨b1, b′1⟩2 = − log 2, ⟨b2, b′2⟩2 = 0, ⟨b3, b′3⟩2 = − log 2.

Let k = ki be a biquadratic field which is generated by the coordinates of the points
of the support of b′i. Following [17], we have: At p = 7, the fiber of the minimal regular
model is of type I∗0−0−0, and if p = 7 is ramified in k, C × Ok has good fiber over the
primes lying over 7; at p = 23, if p is unramified in the field k, then the fiber of the
minimal regular model is of type I1−2−3, and if ramified, ramification index is 2 and
the type is I2−4−6. In our case, both of primes 7 and 23 are unramified in k. We figure
the fibres at each prime:

2C6

C0 C1 C2 C3 C4 C5

p = 7

�
�
�
�
�
�
�
�
�
�

C3 L
L
L
L
L
L
L
L
L
L

C4

C0

aaaaaa

C1 !!!!!!

C2

p = 23

The fibres Ci are (−2)-curves, except for C6 at p = 7 and C3, C4 at p = 23, all of
which are (−3)-curves. At p = 7, we can decide which fiber the section hits by looking
up the x coordinates. At p = 23, the sections corresponding to the Pi do not hit
C0, C1, C2, and we can decide which fiber they hit, by checking whether (x + 2)(x +
5)(x+ 9) equals 4y mod 23 or −4y mod 23.
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Remark 4.3. At P|23, if the reduction of x-coordinate is −2, then the section hits

C0. If the reduction is −5, putting ξ =
x+ 5

y
mod P, and η =

23

y
mod P, then; if

11ξ− 5η = 4, hit C1, else hit C2, when C3 is the fiber (x+2)(x+5)(x+9) = 4y. This

can be proved by chasing the procedures of blowing-ups.

Thus, using Lemma 2.14, we have

⟨b1, b′1⟩7 = ⟨b2, b′2⟩7 = ⟨b3, b′3⟩7 = 0

⟨b1, b′1⟩23 = − 6

11
log 23, ⟨b2, b′2⟩23 = 0, ⟨b3, b′3⟩23 = − 6

11
log 23.

It is easy to compute the intersection numbers at other primes. Summing up over
all finite places, we have∑

v∈Σ0
Q

⟨b1, b′1⟩v = − log 2 + 3 log 3− 6

11
log 23,

∑
v∈Σ0

Q

⟨b2, b′2⟩v = −3 log 3 + log 887,

∑
v∈Σ0

Q

⟨b3, b′3⟩v = − log 2 + log 3 + log 179− 6

11
log 23.

Put hi = ⟨αi, αi⟩ for i = 1, 2, 3. Summing up the above with the archimedean part,
we have

h1 = 0.5144519092719137003718049687337098118895

6676307438099043759656003472103072539585 . . . ,

h2 = 3.2924728542332490532396517934684869119793

9026185015676151351622678083750406914366 . . . ,

h3 = 1.5690637994490878142790801498173730131778

0086100745083786934319002486632428241500 . . . .

Since ⟨α1, α2⟩ = (h3−h1−h2)/2, we have the regulator up to a multiple of an integer

R′ = 0.4418135224747459009837796585512486028911

9027232784016701161394069098323593670992 . . . .

Next we compute the real periods using the method in Cremona [8]. We compute
imaginary periods of Γ0(23), and multiply it by

√
−7 to get the real period of J up to

a multiple of a rational number.
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Let (c : d) be the M-symbol [8],p.8. Let γ−1 =
1

2
(3 : 1) − 1

2
(−3 : 1), and γ−2 =

1

2
(2 : 1) −1

2
(3 : 1) + (4 : 1) − 1

2
(−3 : 1), then these are basis of the anti-holomorphic

homology space H−(N). Define V ′
∞ be

√
7
2 ⟨
γ−1 , g

⟩ ⟨
γ−1 , g

σ
⟩
. Then this is the real

period of J up to a multiple of a rational number. Computing by direct method(see
[8],p.25,Prop.2.10.1),

V ′
∞ = 10.2506719848116009699526519174413057653616

5631926561357938968846741216424637142414 . . . .

The number of connected components of Néron model of J/Z7 is 16 and that of
J/Z23 is 11(cf. [17]). Hence we have VS = 11 · 16. Let J̃p be the reduction of J at a

prime p. By the formula [5], p.80, (8.2.5), we have #J̃3(F3) = 21 and #J̃11(F11) = 221.
Since C and J has good reduction at p = 3 and 11, and J(Q)tors is injectively mapped
to J̃3(F3) and J̃11(F11). Thus we have #J(Q)tors = 1. If we put

T :=
1
2
L′(gχ, 1)L

′(gσχ, 1)#J(Q)2tors
R′ V ′

∞ VS
,

then

392 · T = 0.9999999999 · · · (’9’ repeats at least 50 times).

Thus we can guess T =
1

392
and is a rational number as desired.
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