

学術情報リポジトリ

Plasma insulin-like peptide 3 concentrations are acutely regulated by luteinizing hormone in pubertal Japanese Black beef bulls

メタデータ	言語: eng
	出版者:
	公開日: 2016-07-13
	キーワード (Ja):
	キーワード (En):
	作成者: Hannan, Minhaj A., Fukami, Yuri, Kawate,
	Noritoshi, Sakase, Mitsuhiro, Fukushima, Moriyuki,
	Pathirana, Indunil N., Büllesbach, Erika E, Inaba,
	Toshio, Tamada, Hiromichi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/15010

1	Acute regulation of insulin-like peptide 3 secretion in peripheral blood
2	by LH in pubertal Japanese Black beef bulls
3	
4	Minhaj A. Hannan ^a , Yuri Fukami ^a , Noritoshi Kawate ^{a,*} , Mitsuhiro Sakase ^b ,
5	Moriyuki Fukushima ^b , Indunil N. Pathirana ^c , Erika E. Büllesbach ^d ,
6	Toshio Inaba ^a , and Hiromichi Tamada ^a
7	
8	^a Department of Advanced Pathobiology, Graduate School of Life and Environmental
9	Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
10 11	^b Northern Center of Agricultural Technology, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Wadayama, Hyogo, Japan
12	^c Department of Animal Science, Faculty of Agriculture, University of Ruhuna,
13	Kamburupitiya, Sri Lanka
14	^d Department of Biochemistry and Molecular Biology, Medical University of South
15	Carolina, Charleston, South Carolina, USA
16	
17	*Corresponding author: N. Kawate, Department of Advanced Pathobiology, Graduate
18	School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano,
19	Osaka 598-8531, Japan. Tel.: +81-72-463-5354; Fax: +81-72-463-5354.
20	E-mail address: nkawate@vet.osakafu-u.ac.jp

21 Abstract

Insulin-like peptide 3 (INSL3) is a major secretory product of testicular Leydig cells. 22The mechanism of acute regulation of INSL3 secretion is still unknown. The present 2324study was undertaken in pubertal beef bulls to: (1) determine the temporal relationship of pulsatile secretion among LH, INSL3 and testosterone; and (2) monitor acute 25regulation of INSL3 secretion by LH using GnRH analogue and hCG. Blood samples 2627were collected from Japanese Black beef bulls (n=6) at 15-min intervals for 8 h. Moreover, blood samples were collected after GnRH (-0.5 h, 0 h, 1 h, 2 h, 3 h, 4 h, 5 h, 2829and 6 h) and after hCG (-0.5 h, 0 h, 2 h, 4 h, 8 h, day 1, day 2, day 4, day 8 and day 12) treatments. Concentrations of LH, INSL3 and testosterone determined by enzyme-30 immunoassays (EIA) indicated that secretion in the general circulation was pulsatile. 31The frequency of LH, INSL3 and testosterone pulses was 4.7 ± 0.9 , 3.8 ± 0.2 and $1.0 \pm$ 320.0, respectively, during the 8 h period. Seventy percent of these INSL3 pulses peaked 33 34within 1 h after a peak of an LH pulse had occurred. The mean increasing rate (peak/basal concentration) of testosterone pulses was higher (P<0.001) than those of 35INSL3 pulses. After GnRH treatment, LH concentrations increased (P<0.01) 36 37dramatically 1 h post-treatment and remained high (P<0.01) until 5 h, while an elevated (P<0.05) INSL3 concentration was observed at 1 h, 2 h and 6 h after treatment. 38

39	Testosterone concentrations increased (P<0.01) 1 h after the treatment and remained
40	high till the end of sampling. After hCG treatment, an increase of INSL3 concentration
41	was observed at 2 h, 4 h, day 2, day 4 and day 8 of treatment (P<0.05), whereas in case
42	of testosterone, concentrations remained significantly (P<0.01) high till 8 day after
43	treatment. The increasing rate (maximum/pre-treatment concentration) of testosterone
44	concentrations after injecting GnRH or hCG was much higher (P<0.001) than that of
45	INSL3. Our results demonstrate that the secretory pattern of INSL3 in the peripheral
46	blood is pulsatile in bull and that endogenous and exogenous LH can stimulate INSL3
47	secretion soon after the treatment. This suggests an acute regulation of INSL3 by LH in
48	beef bulls. Moreover, the increasing rate of INSL3 pulses are much smaller than those
49	of testosterone pulses, and therefore INSL3 can be used as a less-fluctuating marker
50	than testosterone to evaluate functions of testicular Leydig cells in the pubertal beef
51	bulls.

Keywords: INSL3; LH; Testosterone; GnRH; HCG; Beef bull

 $\mathbf{2}$

1. Introduction

54	Insulin-like peptide 3 (INSL3) is a major secretory product of testicular Leydig
55	cells in all mammalian species examined so far [1–2]. The two main known functions of
56	INSL3 in the male are the endocrine regulatory effect involved in completing the
57	trans-abdominal phase of testicular descent in mice [3, 4] and a paracrine function
58	exhibiting an anti-apoptotic effect to protect male germ cells in rats [5]. According to
59	studies on human, secretion of INSL3 is related to the differentiation status of testicular
60	Leydig cells and is stimulated by the long-term trophic effects of LH [1, 6–9]. However,
61	the process of acute regulation of INSL3 secretion is mostly unknown. Detection of
62	INSL3 in the peripheral blood of humans [7, 10, 11], dogs [12], and cattle [13] indicate
63	that INSL3 may have additional endocrine effects in mammalian male species.
64	According to recent studies in our laboratory, dynamics of secretory patterns of INSL3
65	and testosterone in peripheral plasma are different during sexual development in male
66	dogs [12] and beef bulls [13], although both hormones are secreted from the unique
67	source of testicular Leydig cells. It is well documented that in many species including
68	bull [14, 15] secretion of LH occurred in a pulsatile manner stimulating testicular
69	Leydig cells to produce pulsatile secretion of testosterone. However, under
70	physiological conditions the pulsatile secretory pattern of INSL3 and its relation with

T1 LH has not been elucidated.

72	Endogenous LH increased by gonadotropin releasing hormone (GnRH) or human
73	chorionic gonadotropin (hCG), which possesses LH activity, caused a significant
74	increase of testosterone in the general circulation of bulls [16–19], male goats [20], and
75	rams [21]. In men testosterone concentrations in peripheral blood taken daily for 8 days
76	increased after hCG treatment while INSL3 concentrations did not change [22]. It
77	remains unknown whether endogenous and exogenous LH can acutely regulate the
78	secretion of INSL3 in domestic animals.
79	The objectives of this paper are: (1) to determine the temporal relationship of
80	pulsatile secretion among LH, INSL3 and testosterone; and (2) to monitor acute
81	regulation of INSL3 secretion by LH using GnRH analogue and hCG in pubertal beef
82	bulls.
83	
84	2. Materials and methods
85	2.1. Animals
86	Japanese Black beef bulls (n=6, aged 10–19 mo) raised in an experimental beef
87	cattle station in the Northern Center of Agriculture Technology of Hyogo Prefecture in
88	Japan were used for the present study. The selected beef bulls had no apparent

89	abnormalities of the reproductive status and testicular presence was checked manually
90	to confirm the presence of both testes inside the scrotum. These bulls remained normal
91	in appearance and health during all experiments. Bulls were kept under natural light in
92	an open shelter covered by a roof and were maintained by ad libitum hey and
93	concentrate to meet or exceed Japanese Feeding Standard recommendations for the beef
94	bulls.
95	
96	2.2. Experiment 1
97	Experiment 1 was done to determine the temporal relationship among INSL3, LH
98	and testosterone at 15-min intervals sampling for an 8 h session in beef bulls (aged,
99	10–11 mo; n=6). Blood sampling for all bulls was started at 10:00 AM and ended at

100 6:00 PM. An indwelling jugular venous catheter (ArgyleTM Covidien Ltd., Dublin,

101 Ireland) was inserted about 1 h before the beginning of sampling. No sedation was

102 performed before inserting the intravenous catheter and during sampling. Head restraint

103 by either a stanchion or a halter was not used, except during insertion of the intravenous

104 catheter. The bulls were given access to water and hay at every 2 to 3 h during

- 105 collection of the samples. Blood samples were collected into heparinized tubes and
- 106 immediately placed in ice before centrifuging ($1700 \times g$ for 15 min at 4°C). The plasma

 $\mathbf{5}$

107 was decanted and stored (-30° C) until assay.

109	2.3. Experiment 2
110	A single injection of GnRH analogue (fertirelin acetate; Conceral ^R , Intervet,
111	Tokyo) was given im at a dose of 0.5 μ g/kg (n=6). The same beef bulls that were used in
112	experiment 1 were used for experiment 2, which took place at least 1 wk after
113	completion of experiment 1. The blood samples for assaying INSL3, LH and
114	testosterone were collected at -0.5 h, 0 h, 1 h, 2 h, 3 h, 4 h, 5 h, and 6 h after treatment.
115	The treatment was given immediate after the 0 h sample was drawn. Thus, blood
116	sampling taken at -0.5 h and 0 h are pre-treatment samples. Blood samples were
117	collected into heparinized vacutainers by jugular venipuncture and processed as above
118	mentioned in experiment 1.
119	
120	2.4. Experiment 3
121	Six beef bulls that were used for experiments 1 and 2 were also used for
122	experiment 3. This experiment was conducted about 6 mo after completion of
123	experiment 2. A single dose of hCG (5 IU/kg, im; Veterinary Puberogen ^R , Novartis
124	Animal Health, Tokyo) was administered. Two pre-treatment blood samples were taken

125	at -0.5 h and immediate before the hCG treatment (0 h). The sampling was then
126	continued at 2 h, 4 h, 8 h, day 1, day 2, day 4, day 8 and day 12 of the post-treatment.
127	Blood collection and processing of plasma were done as mentioned above in experiment
128	2.
129	
130	2.5. Hormone assays
131	2.5.1. INSL3 and testosterone
132	Plasma concentrations of INSL3 were measured using an
133	enzyme-immunoassay (EIA). A homologous bovine plasma EIA developed and
134	validated in our laboratory [13] was used with a minor variation using a biotinylated
135	canine INSL3 instead of biotinylated bovine INSL3. An anti-bovine INSL3 mouse
136	monoclonal antibody (2-8F) and synthetic bovine INSL3 [23] were used. The minimum
137	detection limit of the INSL3 EIA was 0.31 ng/mL, and the detection was reliable in the
138	range from 0.31 to 20 ng/mL. The intra- and inter-assay CVs were 7.5% and 13.7%,
139	respectively. Plasma testosterone concentrations were determined by an EIA using the
140	procedure previously described by us [13]. An anti-testosterone rabbit polyclonal
141	antibody and horseradish peroxidase (HRP) -labeled testosterone (Cosmo Bio Co., Ltd.,
142	Tokyo) were used. The minimum detection limit was 0.07 ng/mL, and the reliable

detection range for testosterone EIA was 0.07 to 20 ng/mL. The intra- and inter-assay
CVs were 6.6% and 11.3%, respectively.

145

146 2.5.2. LH

An EIA procedure described below was used to measure LH concentrations in 147the bovine plasma. Eight-well strips (Corning Inc. Life Sciences, Lowell, MA, USA) 148 were coated with 100 µL per well of anti-rabbit IgG mouse polyclonal antibody (MP 149 Biochemicals, Solon, OH, USA; 5 µg/mL in 0.05 M sodium bicarbonate, pH 9.7) for 2 150151h at room temperature. The wells were then drained and washed three times with 300 µL of 0.15 M sodium chloride. Next, 200 µL of assay buffer (0.01M PBS, pH 7.4) 152supplemented with 2% bovine serum albumin (BSA; Cohn Fraction V, Sigma-Aldrich, 153St. Louis, MO), and 0.02% ProClin 950 (Sigma-Aldrich) was added and kept overnight 154at 4°C to block areas of the well that were not coated with antibody. Various 155156concentrations of bovine LH standards (AFP11743B, NIDDK, USA; 0.31 to 40 ng/mL) were diluted with assay buffer. The plasma was centrifuged at $15,000 \times g$ for 5 min at 1574°C to sediment fibrin and other particles and then supernatant was collected and 158159diluted 2- times with assay buffer. Immediately before the assay, the wells were drained, and 50 μ L of standards or plasma samples followed by 50 μ L of the anti-bovine LH 160

161	antibody (Immunodiagnostik AG, Bensheim, Germany; 1: 50,000 dilution in assay
162	buffer) were added and incubated for 2 h while shaking (180 rpm). Thereafter, 50 μL of
163	the biotinylated bovine LH was added (1: 50,000 dilution in assay buffer) and incubated
164	for 1 h. The LH (AFP11743B) was biotinylated with EZ-Link NHS-PEG4-Biotin
165	(Thermo Fisher Scientific, Waltham, MA USA). After the reaction, the wells were
166	drained and washed three times with 300 μL of washing buffer (0.15 M sodium chloride
167	containing 0.05% Tween 20). Then, 100 μ L of the HRP-labeled streptavidin (KPL,
168	Gaithersburg, MD; 100 ng/mL in assay buffer) was added to the wells and incubated for
169	30 min. The wells were then again washed three times with saline containing 0.05%
170	Tween 20 and incubated for another 30 min at room temperature with 100 μL substrate
171	solution containing 3,3`,5,5`-tetramethylbenzidine (TMB; St. Louis, MO, USA). The
172	reaction was stopped by adding 100 μL of 2 M sulfuric acid, and the optical density was
173	measured at 450 nm using an xMark microplate absorbance spectrophotometer
174	(Bio-Rad Laboratories). The assay detection range was from 0.31 to 40 ng/mL. The
175	intra- and inter-assay coefficients of variation were 4.0% and 10.7%, respectively.
176	
177	2.6. Data analyses

178 Pulses of LH, INSL3 and testosterone concentrations in plasma samples at

179	15-min intervals during 8 h were detected with Pulse XP software kindly provided by
180	Prof. Michael L. Johnson, University of Virginia [24]. Basal concentrations of INSL3
181	and testosterone pulses were also determined with the Pulse XP software. Pre-treatment
182	values at time 0 h were included in the data analysis while data of -0.5 h were excluded
183	The increasing rate (peak/basal concentration) of INSL3 and testosterone pulses was
184	calculated from 15-min interval sampling. In addition, the increasing rate
185	(maximum/pre-treatment concentration) of INSL3 and testosterone concentrations after
186	administration of GnRH and hCG was calculated. Evaluation of LH, INSL3 and
187	testosterone data were performed by a two-way analysis of variance (ANOVA) using
188	the Generalized Estimating Equations (GEE) procedure of SPSS version 22 software
189	(IBM, Somers, NY) to assess the effects of GnRH and hCG treatments. Differences in
190	hormone concentrations were compared using pairwise comparisons of the GEE
191	procedure by the least significant difference (LSD) post hoc test. Data are expressed as
192	mean \pm SEM. Differences were considered significant at P<0.05.
193	

3. Results

3.1. Pulsatile interrelationships among plasma concentrations of INSL3, LH and

196 testosterone at 15-min interval for 8 hours

197	We studied the secretory pattern of INSL3 and compared its secretion with LH
198	and testosterone. Sampling was spaced in 15-min intervals over an 8 h session. Data
199	analysis using the Pulse XP software showed that apart from the known pulsatile
200	secretion of LH and testosterone, the secretion of INSL3 in the general circulation of
201	beef bulls was also pulsatile. Fig. 1 shows the hormone profiles and detected LH,
202	INSL3 and testosterone pulses for two representative beef bulls. In six beef bulls, during
203	the 8 h period, a total of 28, 23 and 6 pulses occurred for LH, INSL3 and testosterone,
204	respectively. Of the 23 INSL3 pulses, 16 (69.6%) pulses peaked within 1 h period after
205	a peak of an LH pulse. Five bulls showed that testosterone levels started increasing
206	within 30 min from a peak of an LH pulse. In case of the remaining bull (Fig. 1B), we
207	were unable to detect the beginning of the testosterone pulse. In this case the
208	testosterone pulse might have started before sampling and therefore we were unable to
209	detect the LH pulse that induced the testosterone pulse. The frequency of LH, INSL3
210	and testosterone pulses during an 8 h period was 4.7 \pm 0.9, 3.8 \pm 0.2 and 1.0 \pm 0.0,
211	respectively. The mean increasing rate (peak/basal concentration) of testosterone pulses
212	(12.9 \pm 2.0 fold, n=6) was significantly higher (P<0.001) than those of INSL3 pulses
213	$(1.5 \pm 0.1 \text{ fold}, n=23).$

215 3.2. Effect of GnRH treatment on LH, INSL3 and testosterone secretion

216	A single dose of a GnRH analogue was administered to stimulate LH secretion to
217	determine how increased plasma LH concentration facilitated the secretion of INSL3
218	from the testicular Leydig cells. Mean plasma LH concentrations increased (P<0.01)
219	dramatically 1 h after treatment and reached a maximum concentration at 2 h (Fig. 2A).
220	Thereafter, the concentration slowly decreased but remained significantly high (P<0.01)
221	up to 5 h post GnRH treatment but approached basal LH levels at 6 h.
222	Mean plasma INSL3 concentrations increased (P<0.01) 1 h after the treatment
223	and remained significantly high until 2 h (P<0.05) (Fig. 2B). From 3 h to 5 h INSL3
224	concentrations did not differ significantly when compared with the pre-treatment value.
225	However, a significant increase (P<0.05) of INSL3 concentrations was again observed
226	at 6 h.
227	Mean plasma testosterone concentrations were increased (P<0.01) at all time
228	points when compared with the pre-treatment value. Testosterone levels rose at 1 h post
229	treatment and remained significantly high until the end of sampling at 6 h (Fig. 2C). The
230	mean increasing rate (maximum/pre-treatment concentration) of testosterone
231	concentrations (7.6 \pm 2.2-fold, n=6) after administration of GnRH analogue was higher
232	(P<0.01) than that of INSL3 (1.6 ± 0.2 -fold, n=6).

234 3.3. Effect of hCG treatment on INSL3 and testosterone secretion

235	A single injection of hCG was administered to determine the effect of sustained
236	levels of LH on INSL3 secretion. Mean plasma INSL3 and testosterone concentrations
237	after administration of hCG are presented in Fig. 3. Plasma INSL3 concentrations
238	increased (P<0.01) 2 h after treatment and remained significantly high (P<0.05) till the
239	next sampling at 4 h. When compared to control no significant changes were observed
240	at 8 h and 1 day after treatment. However, INSL3 concentrations again increased
241	significantly on days 2 through 8 (day 2, P<0.01; day 4, P<0.01; day 8, P<0.05),
242	approaching pre-treatment level on day 12 (Fig. 3A).
243	A dramatic increase (P<0.01) of mean plasma testosterone concentrations after
244	treatment was observed from 2 h and continued till day 4. Thereafter, concentrations
245	started to decrease but remained significantly elevated (P<0.01) until day 8, reaching
246	basal level on day 12 post-treatment (Fig. 3B). After administration of hCG, the mean
247	increasing rate (maximum/pre-treatment concentration) of testosterone concentrations
248	(10.4 \pm 2.2-fold) was higher (P<0.001) than that of INSL3 (1.8 \pm 0.2-fold).
249	

4. Discussion

251	For many species including bulls [14, 15] the pulsatile release of LH from the
252	anterior pituitary stimulates immediate pulsatile secretion of testosterone from the
253	testicular Leydig cells. Conversely, it has been reported that secretion of INSL3 is not
254	acutely regulated by LH [22], but is stimulated by the long-term trophic effects of LH in
255	men [1, 6–9]. However, the short-term secretory pattern of INSL3 and its relationship
256	with LH with frequent blood sampling has not been reported. To the best of our
257	knowledge, this is the first study to evaluate circulating INSL3 levels at 15-min
258	intervals. We found that the nature of releasing INSL3 from the testicular Leydig cells
259	into the general circulation of beef bulls is pulsatile, and a temporal relationship
260	between LH and INSL3 secretion exists.
261	The secretion of INSL3 in the general circulation of beef bulls is pulsatile with an
262	average pulse frequency of about 4 in an 8 h sampling session. The mean increasing rate
263	of INSL3 pulses are much smaller than those of testosterone pulses, suggesting that
264	INSL3 can act as a less-fluctuating marker than testosterone to evaluate the testicular
265	Leydig cells status in bulls.
266	The frequency of testosterone pulses in the present study is in accordance with
267	the previous reports [14, 15] in bulls. It has been reported that LH pulses precede
268	testosterone pulses in bulls [14], which has been the case not only for testosterone

269	pulses but also for INSL3 pulses as shown in our present study. We noticed that 70% of
270	INSL3 pulses peak within 1 h period from the peak of an LH pulse, indicating that in
271	most cases INSL3 pulses are associated with LH pulses. The fewer number of
272	testosterone pulses compared with LH pulses in an 8 h sampling session demonstrate
273	that not all LH pulses are capable of generating a testosterone pulse, and therefore, there
274	might be a minimum threshold value for an LH pulse to initiate a testosterone pulse
275	whereas in case of INSL3 pulses, it seems that compared with testosterone pulses a
276	comparatively lower minimum threshold value of LH pulses is required.
277	Upon treatment with GnRH, we noticed that similar to LH and testosterone,
278	INSL3 concentrations also increased significantly within 1 h. The increasing rate
279	(maximum/pre-treatment concentration) by GnRH stimulation is much lower for INSL3
280	than for testosterone. A similar lower increasing rate of INSL3 pulses than testosterone
281	pulses was observed under physiological condition in experiment 1 with 15-min
282	intervals sampling. These results show that LH pulses precede INSL3 pulses in most
283	cases. The significant increase of INSL3 concentrations within 1 h period of GnRH
284	treatment in experiment 2 suggests that the INSL3 secretion is acutely regulated by LH.
285	Administration of hCG, which has LH-activity, provides additional evidence regarding
286	this issue. After hCG treatment, a significant increase of both testosterone and INSL3

287	levels was observed that sustained over a longer period of time. For both hormones, the
288	concentrations increased shortly after treatment, remained high till day 8, but again the
289	increasing rate is much smaller for INSL3 than for testosterone. Maintaining a
290	significant higher concentration of INSL3 and testosterone for a longer period of time
291	by hCG than GnRH treatment is probably due to the sustained longer activity of hCG
292	[25]. Previously, a significant increase of testosterone in the general circulation of bulls
293	has been shown after GnRH and hCG treatments [16–19]. In the present study, the
294	simultaneous increase of INSL3 and testosterone concentrations within 1 to 2 h after
295	those treatments, provide another new information that LH acutely regulates the
296	secretion of INSL3 in bull plasma. This acute regulation of INSL3 by LH in bulls is the
297	novel finding of our present study and is in difference to previous studies in men. One
298	study showed that when men were treated with hCG and peripheral blood was taken
299	daily for 8 days, testosterone concentrations increased after hCG treatment, but INSL3
300	did not change [22] whereas other studies showed that hCG can increase INSL3
301	concentrations in blood after 4 or 10 days of treatment when endogenous LH secretion
302	was inhibited by androgen analogues or GnRH antagonist [26, 27].
303	In conclusion, the secretion of INSL3 in the general circulation of beef bulls
304	occurs in a pulsatile manner. Endogenous and exogenous LH can stimulate INSL3

305	secretion soon after the treatment, suggesting the acute regulation of INSL3 by LH in
306	bulls. Moreover, the increasing rate of INSL3 pulses is much smaller than those of
307	testosterone pulses, and therefore we suggest that INSL3 can be used as a
308	less-fluctuating marker than testosterone when testing the functions of testicular Leydig
309	cells in bulls.
310	
311	Acknowledgements
312	The authors thank NIDDK, NIH, USA and Dr. A. F. Parlow, National Hormone &
313	Pituitary Program, Harbor, UCLA Medical Center, for providing the bovine LH
314	(AFP11743B).
315	
316	References
317	[1] Ivell R, Balvers M, Domagalski R, Ungefroren H, Hunt N, Schulze W. Relaxin-like
318	factor: a highly specific and constitutive new marker for Leydig cells in the human
319	testis. Mol Hum Reprod 1997;3:459–66.
320	[2] Adham IM, Burkhardt E, Benahmed M, Engel W. Cloning of a cDNA for a novel
321	insulin-like peptide of the testicular Leydig cells. J Biol Chem 1993;268:26668-72.
322	[3] Nef S, Parada LF. Cryptorchidism in mice mutant for Insl3. Nat Genet 1999;22:295

323 9.

324	4	Zimmermann S	5.	Steding	G.	Emmen JM.	Brinkmann	AO	. Na	vernia K	. Holstein A	۱F.
<u> </u>				~~~~~	\sim ,				,		,	,

- et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol
- 326 Endocrinol 1999;13:681–91.
- [5] Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, et al. Paracrine
- regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl
- 329 Acad Sci U S A 2004;101:7323–8.
- [6] Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, Garolla A, et al.
- 331 Insulin-like factor 3: a novel circulating hormone of testis origin in humans. J Clin
- 332 Endocrinol Metab 2004;89:5952–8.
- [7] Bay K, Hartung S, Ivell R, Schumacher M, Jürgensen D, Jorgensen N, et al.
- Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular
- disorders: relationship to the luteinizing hormone-testosterone axis. J Clin
- 336 Endocrinol Metab 2005;90:3410–8.
- [8] Ferlin A, Garolla A, Rigon F, Rasi CL, Lenzi A, Foresta C. Changes in serum insulin
- like factor 3 during normal male puberty. J Clin Endocrinol Metab
- 339 2006;91:3426–31.
- 340 [9] Wikstrom AM, Bay K, Hero M, Andersson A-M, Dunkel L. Serum insulin-like

- factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J
- 342 Clin Endocrinol Metab 2006;91:4705–8.
- [10] Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, Wittert G, et al.
- 344 Peripheral INSL3 concentrations decline with age in a large population of
- Australian men. Int J Androl 2006;29:618–26.
- [11] Büllesbach EE, Rhodes R, Rembiesa B, Schwabe C. The relaxin-like factor is a
- 347 hormone. Endocrine 1999;10:167–9.
- 348 [12] Pathirana IN, Yamasaki H, Kawate N, Tsuji M, Büllesbach EE, Takahashi M, et al.
- 349 Plasma insulin-like peptide 3 and testosterone concentrations in male dogs:
- changes with age and effects of cryptorchidism. Theriogenology 2012;77:550–7.
- [13] Kawate N, Ohnari A, Pathirana IN, Sakase M, Büllesbach EE, Takahashi M, et al.
- 352 Changes of plasma concentrations of insulin-like peptide 3 and testosterone from
- birth to pubertal age in beef bulls. Theriogenology 2011;76:1632–8.
- [14] Stumpf TT, Wolfe MW, Roberson MS, Kittok RJ, Kinder JE. Season of the year
- influences concentration and pattern of gonadotropins and testosterone in
- circulation of the bovine male. Biol Reprod 1993;49:1089–95.
- 357 [15] Finnerty M, Enright WJ, Roche JF. Testosterone, LH and FSH episodic secretory
- 358 patterns in GnRH-immunized bulls. J Reprod Fertil 1998;114:85–94.

359	[16] D'Occhio MJ, Aspden WJ. Characteristics of luteinizing hormone LH and
360	testosterone secretion, pituitary responses to LH-releasing hormone LHRH and
361	reproductive function in young bulls receiving the LHRH agonist deslorelin: effect
362	of castration on LH responses to LHRH. Biol Reprod 1996;54:45-52.
363	[17] Mongkonpunya K, Hafs HD, Convey EM, Tucker HA, Oxender WD. Serum
364	luteinizing hormone, testosterone and androstenedione in pubertal and prepubertal
365	bulls after gonadotropin releasing hormone. J Anim Sci 1975;40:682-6.
366	[18] Sundby A, Tollman R, Velle W. Long-term effect of hCG on plasma testosterone in
367	bulls. J Reprod Fert 1975;45:249–54.
368	[19] Murase T, Okuda K, Sato K. Assessment of bull fertility using a mucus penetration
369	test and a human chorionic gonadotrophin stimulation test. Theriogenology
370	1990;34:801–12.
371	[20] Saito H, Sawada T, Yaegashi T, Goto Y, Jin J, Sawai K, et al. Kisspeptin-10
372	stimulates the release of luteinizing hormone and testosterone in pre- and
373	post-pubertal male goats. Anim Sci J 2012;83:487–92.
374	[21] Falvo RE, Buhl AE, Reimers TJ, Foxcroft GR, Dunn MH, Dziuk PJ. Diurnal
375	fluctuations of testosterone and LH in the ram: effect of hCG and
376	gonadotrophin-releasing hormone. J Reprod Fert 1975;42:503–10.

377	[22] Bay K, Andersson AM. Human testicular insulin-like factor 3: in relation to
378	development, reproductive hormones and andrological disorders. Int J Androl
379	2011;34:97–109.
380	[23] Büllesbach EE, Schwabe C. The primary structure and the disulfide links of the
381	bovine relaxin-like factor (RLF). Biochemistry 2002;41:274-81.
382	[24] Johnson ML, Pipes L, Veldhuis PP, Farhy LS, Boyd DG, Evans WS. AutoDecon, a
383	deconvolution algorithm for identification and characterization of luteinizing
384	hormone secretory bursts: description and validation using synthetic data. Anal
385	Biochem 2008;381:8–17.
386	[25] Boime I, Ben-Menahem D. Glycoprotein hormone structure-function and analog
387	design. Recent Prog Horm Res 1999;54:271-88.
388	[26] Bay K, Matthiesson KL, McLachlan RI, Andersson A-M. The effects of
389	gonadotropin suppression and selective replacement on insulin-like factor 3
390	secretion in normal adult men. J Clin Endocrinol Metab 2006;91:1108-11.
391	[27] Roth MY, Lin K, Bay K, Amory JK, Anawalt BD, Matsumoto AM, et al. Serum
392	INSL3 is highly correlated with intratesticular testosterone in normal men with
393	acute, experimental gonadotropin deficiency stimulated with low-dose hCG: a
394	randomized-controlled trial. Fertil Steril 2013;99:132–9.

000

396	Figure legends
396	Figure legends

398	Fig. 1. Changes of plasma LH, INSL3 and testosterone concentrations in blood samples
399	taken from two individual representative beef bulls (A: #1, B: #2). Blood samples were
400	taken at 15-min intervals for 8 h. The peaks for INSL3 (\rightarrow), LH (\rightarrow), and testosterone
401	(O) pulses were determined by the Pulse XP software.
402	
403	Fig. 2. Plasma LH (A), INSL3 (B), and testosterone (C) concentrations in response to
404	GnRH treatment (0.5 μ g/kg) in beef bulls. Data are expressed as mean ± SEM (n=6). *P
405	<0.05, **P <0.01 compared with the pre-treatment value of the corresponding hormone
406	at 0 h.
407	
408	Fig. 3. Plasma INSL3 (A), and testosterone (B) concentrations in response to hCG
409	treatment (5 IU/kg) in beef bulls. Data are expressed as mean \pm SEM (n=6). *P <0.05,
410	** $P < 0.01$ compared with the pre-treatment value of the corresponding hormone at 0 h.

Hours of sampling

Fig. 1

Hours after GnRH treatment

Fig. 2

Days after hCG treatment

Fig. 3