

学術情報リポジトリ

Expression analyses of insulin-like peptide 3, RXFP2, LH receptor and 3β -HSD in testes of normal and cryptorchid dogs

メタデータ	言語: eng
	出版者:
	公開日: 2016-07-13
	キーワード (Ja):
	キーワード (En):
	作成者: Hannan, Minhaj A., Kawate, Noritoshi, Kubo,
	Yoshiaki, Pathirana, Indunil N., Büllesbach, Erika E.,
	Hatoya, Shingo, Inaba, Toshio, Takahashi, Masahiro,
	Tamada, Hiromichi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/15012

1	Re-revised
2	Expression analyses of insulin-like peptide 3, RXFP2, LH receptor and
3	3β-HSD in testes of normal and cryptorchid dogs
4	
5	Minhaj A. Hannan ^{a,1} , Noritoshi Kawate ^{a,1,*} , Yoshiaki Kubo ^a , Indunil N. Pathirana ^b ,
6	Erika E. Büllesbach ^c , Shingo Hatoya ^a , Toshio Inaba ^a , Masahiro Takahashi ^a and
7	Hiromichi Tamada ^a
8	
9	^a Department of Advanced Pathobiology, Graduate School of Life and Environmental
10	Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
11	^b Department of Animal Science, Faculty of Agriculture, University of Ruhuna,
12	Kamburupitiya, Sri Lanka
13	^c Department of Biochemistry and Molecular Biology, Medical University of South
14	Carolina, Charleston, South Carolina, USA
15	¹ These authors contributed equally.
16	*Corresponding author: N. Kawate, Department of Advanced Pathobiology, Graduate
17	School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano,
18	Osaka 598-8531, Japan. Tel.: +81-72-463-5354; Fax: +81-72-463-5354.

19 E-mail address: nkawate@vet.osakafu-u.ac.jp

20 Abstract

Insulin-like peptide 3 (INSL3) plays a key role in testicular descent in rodents, whereas 2122in domestic animals, many aspects of the roles of INSL3 in reproductive organs after 23puberty are still unknown. This study was undertaken to: (1) determine the quantitative changes of gene expression of testicular INSL3, its receptor (RXFP2), LH receptor and 2425 3β -HSD during and after puberty in normal male dogs; (2) compare the expressions of these substances in normal and cryptorchid dogs; and (3) localize the cells expressing 2627INSL3 in normal and retained canine testes. Testes were obtained from small-breed 28normal male dogs (n=56) and cryptorchid dogs (n=22). Normal scrotal testes from the normal dogs (normal testes) and retained testes from both the unilateral and bilateral 29cryptorchid dogs (retained testes) and scrotal testes of the unilateral cryptorchid dogs 30 31(cryptorchid scrotal testes) were used. We measured the concentrations of these testicular mRNAs by quantitative real-time RT-PCR, and an enzyme immunoassay was 32used for measuring INSL3 peptide. Immunohistochemistry for INSL3 peptide was done 33 in paraformaldehyde-fixed frozen testicular tissue. In the normal dogs, total amount of 34INSL3 mRNA per testis tended to decrease (P=0.05) from pubertal (6-12 mo) to post-3536 pubertal (1–5 y) and decreased (P<0.01) to middle age (5–10 y), but total amount of INSL3 peptide per testis did not change among age groups. Concentrations of INSL3 37

38	mRNA were higher (P< 0.01) in retained testes than those in the normal testes and
39	cryptorchid scrotal testes, and similar differences were observed for INSL3 peptide.
40	Reversely, total amounts of INSL3 mRNA and peptide per retained testis were lower
41	(P<0.01) than those per normal testis, due to smaller weight of retained testes.
42	Concentrations and total amount of RXFP2 mRNA in the retained testes were almost
43	nil, and lower (P<0.01) than those in the normal testes and in the cryptorchid scrotal
44	testes. Total amount of LH receptor mRNA per retained testis was lower (P<0.01) than
45	that per normal testis. The immunohistochemical analysis revealed that INSL3 was
46	expressed only in Leydig cells of both the normal and retained canine testes. These
47	results suggest that INSL3 in retained testes of cryptorchid dogs is substantially
48	expressed per unit-weight basis, but may be produced with lower amount as a whole
49	testis. Also this study provides findings that RXFP2 gene is expressed scarcely in the
50	retained testes, but normally in cryptorchid scrotal testes.

Keywords: INSL3; RXFP2; Leydig cell; Cryptorchid; Testis; Dog

 $\mathbf{2}$

1. Introduction

53	Insulin-like peptide 3 (INSL3), also known as relaxin-like factor, is a relatively
54	newly identified peptide hormone produced by testicular Leydig cells [1–3]. Its mRNA
55	is constitutively expressed in a differentiation-dependent manner related to the postnatal
56	development of Leydig cell function [1, 4]. During the fetal period, INSL3 plays an
57	important role in the trans-abdominal phase of testicular descent in mice [5, 6] and the
58	survival of germ cells as an anti-apoptotic factor in adult humans [7] and rats [8].
59	INSL3 has also been suggested to have an important endocrine role in the males of
60	many mammalian species and can readily be measured in the peripheral plasma of
61	humans [9-11], rodents [12, 13], cattle [14] and dogs [15].
62	In male dogs, plasma INSL3 concentrations increased significantly from pre-
63	pubertal to pubertal age and then declined from pubertal to post-pubertal age [15].
64	Lower INSL3 concentrations have been detected in bilateral cryptorchid dogs compared
65	to normal and unilateral cryptorchid dogs, suggesting the diagnostic value of this
66	hormone in anticipating bilaterally retained testes [15]. However, the dynamics of the
67	expression of INSL3 at the mRNA and peptide levels associated with the development
68	of reproductive stages remain to be elucidated.
69	Relaxin family peptide receptor 2 (RXFP2; formerly known as LGR8) is the

70	specific receptor of INSL3 [16]. RXFP2 knockout mice showed intra-abdominal
71	cryptorchidism and male infertility due to the arrest of spermatogenesis [17, 18]. The
72	expression of RXFP2 in adult testes was demonstrated to be localized in germ cells in
73	seminiferous tubules and interstitial Leydig cells in humans [7], rats [7, 19] and mice [7,
74	20] by reverse transcription-polymerase chain reaction (RT-PCR) and
75	immunohistochemistry. In dogs, INSL3 and RXFP2 expression were revealed by
76	immunohistochemistry in testicular Leydig cells of both normal and cryptorchid testes,
77	with a lack of RXFP2 expression in the genital tracts of cryptorchid testes [21]. The
78	quantitative changes of this receptor during sexual development in canine testes have
79	not yet been determined.
80	Cryptorchidism, a failure of one or both testes to descend normally into the
81	scrotum, affects 2%–9% of newborn boys [22], 2%–8% of male horses [23] and 1.2%–
82	10.7% of male dogs [24, 25], with a higher risk in small breeds than in larger breeds
83	dogs [26]. INSL3/ RXFP2 signaling plays a crucial role in the process of testicular
84	descent in mice, but differences in the testicular expressions of INSL3 and RXFP2
85	between normal and cryptorchid animals have not been analyzed quantitatively in any
86	species including dog, to the best of our knowledge.
87	LH receptor and 3β-hydroxysteroid dehydrogenase (3β-HSD; a steroidogenic

88	enzyme) have also been used as a marker of testicular Leydig cells and have been
89	identified in horses [27], rats [28] and dogs [29]. These markers were used for
90	identifying normal and tumorous Leydig cells in dogs [29]. In equine testes, the
91	immuno-labeling of 3β -HSD was very weak or absent in immature Leydig cells of pre-
92	pubertal testes and increased in post-pubertal and adult testes [30]. Steroidogenesis
93	occurs primarily in Leydig cells [31], and reduced testosterone production has been
94	observed in cryptorchid mice, stallions and dogs [32–34]. To the best of our knowledge,
95	there have been no studies comparing the LH receptor and 3β -HSD gene expressions
96	among normal, scrotal and retained testes in dogs.
97	The objectives of the present study were to: (1) determine the quantitative
98	changes of the gene expressions of testicular INSL3, RXFP2, LH receptor and 3β -HSD
99	during and after puberty in normal male dogs; (2) compare the expressions of these
100	substances in retained and scrotal testes of cryptorchid dogs with those of normal testes
101	of normal dogs; and (3) localize cells expressing INSL3 in normal and cryptorchid
102	canine testes.
103	

2. Materials and methods 104

2.1. Animals and sampling 105

 $\mathbf{5}$

106	A total of 78 male dogs were used in the present study. The dogs were presented
107	to a private animal clinic close to our university for ordinary contraception or treatment
108	of cryptorchidism. All of the dogs were privately owned, and the owners' consent was
109	obtained before the collection of samples. The study was conducted according to the
110	regulations of the local Institutional Animal Care and Use Committee. Before surgery,
111	testicular presence was checked manually and diagnosed as normal (n=56) if both testes
112	were palpable inside the scrotum. Cryptorchidism was diagnosed (n=22) when one
113	(unilateral, n=16) or both (bilateral, n=6) testes were missing in the scrotum after 6
114	months of age [35, 36]. All dogs belonged to small breeds, and nearly 80% were Toy
115	Poodles, Chihuahuas, Miniature Dachshunds, Pomeranian and Shih Tzus. The ages of
116	the dogs ranged from 6 mo to 10 y. The range of body weights was 1.4 to 8.6 kg (4.4 \pm
117	0.2 kg; mean \pm SEM). Testes samples were collected after castration or
118	cryptorchidectomy and then immediately dispatched to the laboratory on ice. The testes
119	were separated from the epididymides. The weight of both testes was recorded from all
120	normal and cryptorchid dogs.
121	
122	2.2. Tissue processing

123 Different testes samples were used for (1) a quantitative RT-PCR and enzyme

124	immunoassay (EIA) and (2) immunohistochemistry. Normal testes (either the right or
125	left testis) of the normal dogs were used for the RT-PCR and EIA (n=46) and for
126	immunohistochemistry (n=10). Retained testes of the unilateral and bilateral cryptorchid
127	dogs were used for the RT-PCR and EIA (n=19) and for immunohistochemistry (n=5).
128	Scrotal testes of the unilateral cryptorchid dogs (cryptorchid scrotal testes) were used
129	only for the RT-PCR and EIA (n=11). For the quantitative RT-PCR and EIA, testicular
130	tissue was cut into small pieces (approx. 1 cm ³) and saved at -80°C until RNA and
131	peptide extractions.
132	For the immunohistochemistry, testicular tissues were fixed overnight in 4%
133	paraformaldehyde, followed by incubating in sucrose solutions (10%, 20% and 30%)
134	for an additional 24 h at 4°C. The tissue pieces were then embedded in OCT compound
135	(Tissue-Tek, Sakura Finetek Japan, Tokyo) and maintained at -80°C until sectioning.
136	
137	2.3. RNA extraction, cDNA synthesis and real-time PCR
138	Total RNA was isolated from a small amount of frozen testicular tissue (approx.
139	20 mg) using the RNeasy Mini Kit (QIAGEN, Hilden, Germany), according to the
140	manufacturer's instructions. RNA quantity and quality were evaluated using a
141	spectrophotometer (U-2000, Hitachi, Tokyo) at 260 nm. The isolated total RNA was

142 stored at -80° C until RT-PCR.

143	Table 1 lists the pairs of primers used to quantitate mRNAs for canine INSL3,
144	RXFP2, LH receptor, 3 β -HSD and 18S rRNA in testicular tissue and the expected sizes
145	of their base pairs. The primers other than18S rRNA were designed based on the canine
146	nucleotide sequence registered in GenBank. The 18S rRNA primers were used as an
147	internal standard as reported [37].
148	The mRNAs were measured by reverse transcription and quantitative real-time
149	PCR with calibration curves. For the calibration of cDNA for each targeted mRNA from
150	the total RNA, an ordinary RT-PCR was performed with a Takara RNA PCR Kit (AMV)
151	Ver. 2 (Takara, Ohtsu, Japan) according to the manufacturer's instructions. The PCR
152	products were stored at -20 °C until these analyses. A portion of the PCR products was
153	electrophoresed through a 2.0% agarose gel containing 0.5 mg/mL ethidium bromide.
154	The band was dissected out on an UV transilluminator, and DNA was extracted from the
155	agarose gel, using a QIAEX II Extraction Kit (QIAGEN, Hilden, Germany). Purified
156	PCR products were sequenced directly using a sequencer (3730xl DNA Analyzer,
157	Applied Biosystems, Carlsbad, CA) by outsourcing (Bio Matrix Research, Chiba,
158	Japan).
159	The cDNA sequence data were compared with the registered sequences in

GenBank using sequence analysis software (Sequence Scanner, Applied Biosystems). 160 All five targeted cDNA sequences were identical at 100% with the registered sequences 161 in GenBank. The registered cDNA sequences in GenBank for INSL3, RXFP2, LH 162receptor, 3β-HSD and 18S rRNA are NM 001002962, NM 001005870, XM 538486, 163 NM 001010954 and NR 046237, respectively. 164The total RNA (0.5 µg) from canine testes was reverse-transcribed into cDNA 165166 using the iScriptTM Select cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA) 167 according to the manufacturer's instructions. The reverse transcription was reacted in a 168 Real-Time PCR System (Bio-Rad Laboratories). The subsequent real-time PCR reaction was performed using SsofastTM EvaGreen[®] Supermix (Bio-Rad Laboratories) per the 169manufacturer's instructions. The numbers of cycle for the PCR reactions of INSL3, 170 171RXFP2, LH receptor, 3β-HSD and 18S rRNA were 40, 40, 34, 34 and 20, respectively. The concentrations of mRNA were calculated as the threshold cycle numbers of targeted 172173mRNA for each sample divided by those of 18S rRNA. Total amount of targeted mRNA per testis was calculated from the data of mRNA concentration and testicular weight. 174The standards were checked for linearity in every assay with serial 10-fold diluted 175176 calibration cDNA for each targeted mRNA. The regression coefficient (R^2) value was more than 0.996 in all assays. 177

179 2.4. Extraction of INSL3 from testicular tissue

180	The extraction of INSL3 from testicular tissue was carried out according to the
181	procedure described earlier for bovine plasma in our laboratory [14]. First, approx. 100
182	mg of frozen testicular tissue was placed into a tube containing 500 μ L of 0.1%
183	trifluoroacetic acid (TFA). Homogenization was then performed for 1 min (20 s \times 3) on
184	ice using a Polytron homogenizer (Kinematica, Littau, Switzerland). Another tube with
185	300 μ L of acetonitrile was kept ready in advance, into which 500 μ L of the
186	homogenized mixture was transferred immediately after homogenization. This was then
187	kept at 4°C for overnight after mixing by vortexing. Next, the mixture was centrifuged
188	at 15,000 \times g for 10 min at 4°C. The resulting supernatant was then transferred into
189	another tube and concentrated by a vacuum centrifugation (Centrifugal Concentrator
190	CC-105; Tomy Seiko, Tokyo) for approx. 3 h (final volume, approx. 60 μ L). Finally,
191	450 μL of 0.05 M phosphate buffer (pH 7.5) was added to the concentrated supernatant,
192	which was stored at -30° C until the assay.
193	

194 2.6. INSL3 assay

195 The concentrations of INSL3 peptide were determined using an EIA. The

10

196	immunoassay procedure was basically similar to the previously described time-resolved
197	fluorescence immunoassay (TRFIA) [15], except that biotinylated canine INSL3 was
198	used for the EIA instead of europium-labeled human INSL3. Briefly, eight-well strips
199	were coated with 100 μL of anti-mouse IgG antibody (MP Biochemicals, Solon, OH; 5
200	μ g/mL in 0.05M sodium bicarbonate; pH 9.7), and nonspecific binding sites were
201	blocked overnight with assay buffer containing 2% bovine serum albumin (BSA; Cohn
202	Fraction V, Sigma-Aldrich, St. Louis, MO), and 0.02% ProClin 950 (Sigma-Aldrich) in
203	0.01M PBS, pH 7.4.
204	Next, 50 μ L of canine INSL3 standard [15] or sample medium and 50 μ L of anti-
205	bovine INSL3 mouse monoclonal antibody (2-8F [14, 15]; 1:1,000,000 dilution in assay
206	buffer) were dispensed and incubated for 2 h at room temperature. After that, 50 μL of
207	biotinylated canine INSL3 (2 ng/mL in assay buffer) was added and incubated for a
208	further 1 h. The biotinylated canine INSL3 was synthesized by the same procedure used
209	for the biotinylated bovine INSL3 [14]. The wells were then washed three times with
210	saline containing 0.05% Tween 20 and incubated for 30 min with horseradish
211	peroxidase-labeled streptavidin (KPL, Gaithersburg, MD; 100 ng/mL in assay buffer).
212	The wells were then again washed three times with saline containing 0.05% Tween 20
213	and incubated for another 30 min at room temperature with 100 μ L substrate solution

214	containing 3,3,5,5,-tetramethylbenzidine (TMB). The reaction was stopped by adding
215	50 μL of 2 M sulfuric acid, and the optical density was measured at 450 nm using an
216	xMark microplate absorbance spectrophotometer (Bio-Rad Laboratories). The assay
217	detection range was from 0.05 to 10 ng/mL. The intra- and inter-assay coefficients of
218	variation were 14.7% and 16.2%, respectively. The hormonal specificity of the anti-
219	bovine INSL3 antibody (2-8F) was validated previously [14]. The INSL3 peptide
220	concentrations for each sample were normalized by protein amount in the homogenate.
221	The protein amount was measured by BCA Protein Assay Reagent Kit (Thermo
222	Scientific, Rockford, IL). Total amount of INSL3 peptide per testis was calculated from
223	the data of INSL3 concentration and testicular weight.
224	
225	2.6. Immunohistochemistry
226	Testicular tissues were examined by immunohistochemistry to check the
227	expression of INSL3 peptide. Briefly, sections were cut from OCT-embedded tissue
228	using a Cryostat (Leica CM1510S, Leica Microsystems, Wetzlar, Germany) at 7 μm and
229	attached on glass slides (Platinum, Matsunami Glass, Osaka, Japan) treated with an anti-
230	stripping reagent. The slide glasses were then immersed in a bottle containing PBS for
231	washing, and the washing was repeated by transferring the slides into second and third

232 washing bottles.

233	ImmPRESS TM Reagent Kit Peroxidase Anti-Mouse Ig and the Peroxidase
234	Substrate Kit DAB (Vector Laboratories, Burlingame, CA) were used for the
235	immunohistochemistry. Each slide was then blocked with 250 μL of 2.5% normal horse
236	serum and incubated for 20 min. After the blocking solution was discarded, the sections
237	were incubated overnight with the primary antibody (Anti-bovine INSL3 antibody [2-
238	8F]; 1: 1000 dilutions). After incubation with the primary antibody, the slides were
239	incubated in 0.3% H ₂ O ₂ for 30 min for quenching endogenous peroxidases. Thereafter,
240	350 μ L secondary antibody (Anti-mouse Ig) was applied on slides and left to stand for
241	30 min. Finally, 380 μ L of DAB solution was applied on the slides and the reaction was
242	stopped after approx. 5–10 min. All incubations were carried out at room temperature in
243	a humidified chamber except for those with primary antibody (4°C).
244	Following the incubation with primary or secondary antibody or 0.3 $\%$ H ₂ O ₂ , the
245	sections were washed (3×5 min) in 0.01 M PBS solution (pH 7.4). Staining with
246	Hematoxylin was done for the same testes specimens used for immunohistochemistry in
247	a different slide to check the cellular structures of the normal and retained testes
248	including the presence/absence of sperm. The specificity of the staining with anti-
249	bovine INSL3 antibody was confirmed in parallel sections by using assay buffer instead

of primary antibody, which was considered the negative control for the specificity of theINSL3 immunostaining.

253 2.2	'. Data	analyses
---------	---------	----------

254	To evaluate the mRNA and peptide changes with the age, we categorized the
255	normal dogs (6 mo–10 y; n=46) into pubertal (6 mo–1 y; n=19), post-pubertal (1–5 y;
256	n=17) and middle age (5–10 y; n=10). Samples obtained from pubertal and post-
257	pubertal ages (n=36) were used (samples from the middle age were excluded) for the
258	comparison among the normal, retained and cryptorchid scrotal testes groups, because
259	all of the cryptorchid dogs were within the age range from pubertal to post-pubertal age.
260	Immunohistochemistry was done in pubertal (n=3), post-pubertal (n=4) and middle-age
261	(n=3) normal dogs and cryptorchid dogs (n=5).
262	We also categorized the normal dogs' breeds into four groups: (1) Toy Poodles
263	(n=12), (2) Miniature Dachshunds (n=10), (3) Chihuahuas (n=7), and (4) others (n=17),
264	to compare breed differences by using the total testicular weight per body weight as a
265	parameter. The normal dogs that were used to monitor age-related quantitative changes
266	of mRNAs and the INSL3 peptide were analyzed, not the dogs used for the
267	immunohistochemistry. We used the Chi-square test to identify any differences in the

268	breed distribution	between the normal	(n=56) and	cryptorchid	(n=22) dogs.
-----	--------------------	--------------------	------------	-------------	--------------

269	The evaluations of INSL3, RXFP2, LH receptor, 3β-HSD mRNAs and INSL3
270	peptide were performed by a two-way analysis of variance (ANOVA) using generalized
271	linear (GENLIN) models of SPSS version 22 software (IBM, Somers, NY) to assess the
272	effects of age and the testicular status of the animal (normal, retained testes or
273	cryptorchid scrotal testes). Differences in mRNAs and peptides among the various age
274	groups were compared using pairwise comparisons of the GENLIN procedure by the
275	least significant difference (LSD) post hoc test. Data are expressed as mean \pm SEM.
276	Differences were considered significant at P<0.05.
277	
278	3. Results
279	The mean testicular weight increased significantly (P<0.05) from the pubertal
280	$(2.40 \pm 0.40 \text{ g})$ to the post-pubertal age $(3.46 \pm 0.29 \text{ g})$, and did not change from the
281	post-pubertal to the middle-age $(3.72 \pm 0.47 \text{ g})$ dogs. The testicular weight of the
282	retained testes of the cryptorchid dogs (0.56 ± 0.06 g) was much lower (P<0.01) than
283	the scrotal testes (2.02 \pm 0.41 g) of the unilateral cryptorchid dogs and the normal testes
284	$(2.90 \pm 0.26 \text{ g})$ of the normal dogs. The testicular weight of the scrotal testes tended to
285	be lower (P=0.07) than that of the normal testes. There was no significant difference in

the testicular weight per body weight values among the various breeds (Toy Poodles, 286 287 1.09 ± 0.11 ; Miniature Dachshunds 1.48 ± 0.19 ; Chihuahuas 1.06 ± 0.21 ; others $1.20 \pm$ 0.08) of normal dogs used for the analyses of age-related changes of mRNAs and 288289INSL3 peptide concentrations. The distributions of breeds were also the same between the normal and cryptorchid dogs (data not shown). 290291The INSL3 mRNA concentrations decreased (P<0.05) from pubertal to post-292pubertal and from post-pubertal to middle age (Fig 1A), whereas the INSL3 peptide 293concentrations did not differ significantly among the age groups (Fig. 1B). Total amount 294of INSL3 mRNA per testis tended to decrease (P=0.05) from pubertal to post-pubertal age and decreased (P<0.05) from pubertal to middle age (Fig. 1E). However, total 295296 amount of INSL3 peptide per testis did not differ significantly among the age groups 297 (Fig. 1F). The RXFP2 mRNA concentrations increased significantly (P<0.01) from pubertal to post-pubertal age, but there was no difference between post-pubertal and 298299middle age (Fig. 1C). Total amount of RXFP2 mRNA per testis did not change among 300 the age groups (data not shown). 301 The LH receptor mRNA concentrations did not differ between pubertal and post-302 pubertal age in the normal dogs, but they decreased significantly (P<0.01) from pubertal to middle age (Fig. 1D). The concentrations of 3β-HSD mRNA did not differ 303

304 significantly among age groups in normal dogs (data not shown). Total amount of LH 305 receptor and 3β -HSD mRNAs per testis did not change among the age groups (data not 306 shown).

307	The INSL3 mRNA concentrations were significantly higher (P<0.01) in the
308	retained testes of the cryptorchid dogs compared to the normal testes of the normal dogs
309	and the scrotal testes of the unilateral cryptorchid dogs (Fig. 2A). A very similar INSL3
310	mRNA concentration was observed between the normal testes of normal dogs and the
311	scrotal testes of unilateral cryptorchid dogs (Fig. 2A). The total amount of INSL3
312	mRNA per retained testis was significantly lower (P<0.01) than that per normal testis
313	and did not differ significantly from that per cryptorchid scrotal testis (Fig. 2E). The
314	INSL3 peptide concentrations in the retained testes were significantly higher (P<0.05)
315	than those in the cryptorchid scrotal testes and tended to be higher (P=0.08) than those
316	in the normal testes (Fig. 2B). The INSL3 peptide concentrations for the scrotal testes of
317	the unilateral cryptorchid dogs did not differ from the normal testes of the normal dogs
318	(Fig. 2B). The total amount of INSL3 peptide per retained testis was significantly lower
319	(P<0.01) than that per normal testis, but did not differ significantly from that per
320	cryptorchid scrotal testis (Fig. 2F). The total amount of INSL3 peptide per cryptorchid
321	scrotal testis tended to be lower (P=0.06) than that per normal testis (Fig. 2F).

322	The RXFP2 mRNA concentrations were almost negligible in the retained testes,
323	and were much lower (P<0.001) than those in the normal testes (Fig. 2C). A similar
324	concentration of RXFP2 mRNA was observed between the normal testes of the normal
325	dogs and the scrotal testes of the unilateral cryptorchid dogs (Fig. 2C). The total amount
326	of RXFP2 mRNA per retained testis was almost nil and much lower than that per
327	normal testis (P<0.001) and cryptorchid scrotal testis (P<0.05; Fig. 2G). The total
328	amount of RXFP2 mRNA per cryptorchid scrotal testis tended to be lower (P=0.08)
329	than that per normal testis (Fig. 2G).
330	The LH receptor mRNA concentrations did not differ between the normal and
331	cryptorchid dogs (data not shown). Total amount of LH receptor mRNA per retained
332	testis was lower ($P < 0.01$) than that per normal testis, and tended to be lower ($P=0.14$)
333	than that per cryptorchid scrotal testis (Fig. 2H). Significantly higher (P<0.01)
334	concentrations of 3β -HSD mRNA were observed in the retained and scrotal testes of the
335	cryptorchid dogs compared to the normal testes of the normal dogs (Fig. 2D). Total
336	amount of 3β -HSD mRNA per retained testis did not differ significantly among normal,
337	retained and cryptorchid scrotal testes (data not shown).
338	We performed immunohistochemistry to examine the specific cell type(s) that
339	shows INSL3 peptide expression in various age groups of normal testes of normal dogs

340	and retained testes of cryptorchid dogs. Only Leydig cells of both the normal (pubertal,
341	post-pubertal and middle age) and retained testes were immune-reactive to INSL3
342	antibody (shown in supplemental Fig. 1). The size of the seminiferous tubules per
343	testicular area seemed to increase from pubertal to post-pubertal and middle age.
344	The intensity of staining for INSL3 was clearly stronger in the Leydig cells of the
345	retained testes compared to those of the normal testes in all age categories. No other
346	testicular cell showed any immune reaction for INSL3 antibody (shown in supplemental
347	Fig. 1). When the primary antibody was omitted, no immunostaining was observed
348	(shown in supplemental Fig. 1). The Hematoxylin staining revealed the presence of
349	sperm inside seminiferous tubules in the testes of the normal dogs (pubertal, post-
350	pubertal and middle age) but the absence of sperm in the retained testes of the
351	cryptorchid dogs (data not shown).
352	
353	4. Discussion
354	It was reported that in rodents, INSL3 has pivotal roles in testicular descent in the
355	fetal period [5, 6]. A role of INSL3 in the reproductive organs of domestic animals after
356	puberty has rarely been reported. The changes of testicular INSL3 and its receptor,
357	RXFP2, in pubertal and post-pubertal normal male animals have not yet been

358	elucidated, and a quantitative comparison of the testicular INSL3-receptor system
359	between cryptorchid and normal animals has not been reported. In this study, we
360	examined the gene expressions of INSL3 and RXFP2 in testes during puberty, post-
361	puberty and middle age in normal dogs to elucidate the changing pattern of these genes'
362	expression with age and sexual maturity. We also compared the INSL3 and RXFP2 gene
363	expressions in retained and scrotal testes of cryptorchid dogs with those of normal testes
364	of normal dogs. This is apparently the first study regarding quantitative changes of
365	testicular INSL3 and RXFP2 gene expression with age and sexual maturity and the
366	comparison of these expressions between normal and cryptorchid dogs.
367	The present results revealed that total amount of INSL3 mRNA per testis
368	decreased by aging in normal dogs despite increase of testicular weight, although the
369	amount of INSL3 peptide per testis did not change significantly during the same ages.
370	These results may indicate that the transcriptional activity of the gene encoding INSL3
371	in canine testes is reduced by the aging, but such a change is not reflected in the peptide
372	content. It was suggested that INSL3 concentrations in peripheral blood are higher in
373	the pubertal age and decline in the post-pubertal age in male dogs [15]. The change of
374	INSL3 mRNA amount per testis from puberty to middle age observed in the present
375	study, but not of the peptide, is likely to correspond to those of INSL3 concentrations in

376	blood. The reasons for the inconsistency of changes between testicular INSL3 mRNA
377	and the peptide amount around canine puberty observed in our study are unknown. In
378	male rats, the INSL3 concentrations in plasma transiently increased during puberty and
379	decreased after puberty [13]. Testicular INSL3 mRNA concentrations in rats of
380	advanced age (22–24 mo) were reduced compared to post-pubertal age (3 mo) [38]. In
381	the present study, we did not examine histological changes of testicular cellular
382	components including Leydig cells and various stages of germ cells during aging in the
383	same samples which were measured for mRNAs and INSL3 peptide. Clearly, further
384	studies are required to elucidate changes of INSL3 expression level per Leydig cell
00 5	
385	basis during puberty and aging in dogs.
385 386	We found higher mRNA and slightly increased peptide concentrations of INSL3
385 386 387	We found higher mRNA and slightly increased peptide concentrations of INSL3 in the retained testes of the cryptorchid dogs compared to the normal testes of the
385 386 387 388	basis during puberty and aging in dogs. We found higher mRNA and slightly increased peptide concentrations of INSL3 in the retained testes of the cryptorchid dogs compared to the normal testes of the normal dogs in the present study. Our immunohistochemistry data also showed that the
385 386 387 388 388	basis during puberty and aging in dogs. We found higher mRNA and slightly increased peptide concentrations of INSL3 in the retained testes of the cryptorchid dogs compared to the normal testes of the normal dogs in the present study. Our immunohistochemistry data also showed that the areas occupied by INSL3-producing Leydig cells per a certain area of testicular tissue
385 386 387 388 389 390	basis during puberty and aging in dogs. We found higher mRNA and slightly increased peptide concentrations of INSL3 in the retained testes of the cryptorchid dogs compared to the normal testes of the normal dogs in the present study. Our immunohistochemistry data also showed that the areas occupied by INSL3-producing Leydig cells per a certain area of testicular tissue seem larger in the retained testes than in the normal testes, but we did not perform
385 386 387 388 389 390 391	basis during puberty and aging in dogs. We found higher mRNA and slightly increased peptide concentrations of INSL3 in the retained testes of the cryptorchid dogs compared to the normal testes of the normal dogs in the present study. Our immunohistochemistry data also showed that the areas occupied by INSL3-producing Leydig cells per a certain area of testicular tissue seem larger in the retained testes than in the normal testes, but we did not perform quantitative analyses of INSL3-producing Leydig cells in normal and retained testes in
 385 386 387 388 389 390 391 392 	basis during puberty and aging in dogs. We found higher mRNA and slightly increased peptide concentrations of INSL3 in the retained testes of the cryptorchid dogs compared to the normal testes of the normal dogs in the present study. Our immunohistochemistry data also showed that the areas occupied by INSL3-producing Leydig cells per a certain area of testicular tissue seem larger in the retained testes than in the normal testes, but we did not perform quantitative analyses of INSL3-producing Leydig cells in normal and retained testes in this study. However, total amounts of INSL3 mRNA and peptide per testis were reduced

394	suggesting that the canine retained testis may produce lower INSL3 as a whole testis. It
395	has been suggested that INSL3 secretion in bilateral cryptorchid dogs is reduced
396	compared to the normal and unilateral cryptorchid dogs [15]. The current study also
397	shows that concentrations and total amount of INSL3 mRNA and peptide are similar
398	between the scrotal testes of unilateral cryptorchid dogs and the normal testes of normal
399	dogs. These results may be accorded with the previous findings that plasma INSL3
400	concentrations are similar between normal and unilateral cryptorchid dogs [15].
401	The present study provides findings that the gene expression of RXFP2 is almost
402	disappeared in canine retained testes at both of per unit-weight basis and per whole-
403	testis basis, in marked contrast to the higher expression of the receptor in normal testes.
404	A previous histological examination also showed a lack of RXFP2 immunoreactivity in
405	the genital tracts of cryptorchid canine testes [21]. Thus, it is likely in cryptorchid dogs
406	that the substantial amount of INSL3 secreted in a retained testis cannot transduce its
407	signal to cells within the testis, although we did not measure protein levels of RXFP2
408	receptor.
409	We speculate that the drastic reduction of RXFP2 mRNA in the retained testes
410	may be caused mainly by the absence of advanced stages of germ cells that express
411	RXFP2, due to impaired spermatogenesis [7, 19, 20]. It is also plausible that the down-

412	regulation of RXFP2 in Leydig cells by an autocrine mechanism [39, 40] with high or
413	substantial concentrations of INSL3 could partly contribute to the loss of RXFP2 gene
414	expression since relatively plenty of Leydig cells exist in the retained testes. It remains
415	to be determined in future studies whether the down-regulation of RXFP2 occurs in
416	Leydig cells in canine retained testes. We observed that the scrotal testes of unilateral
417	cryptorchid dogs exhibit RXFP2 expression similar to that of the normal testes of
418	normal dogs, implying that the lack of the receptor gene expression in the retained testes
419	probably occurs as a consequence of — not as a cause of — the retention of the testes.
420	In addition to INSL3 and RXFP2, we analyzed the gene expression of LH
421	receptor and 3 β -HSD, which are also known as markers of Leydig cells [3, 27–29],
422	during the course of puberty in the testes of the normal and cryptorchid dogs. Our
423	findings revealed that mRNAs for both LH receptor and 3β -HSD showed differential
424	dynamics compared with INSL3 mRNA during puberty and in the testes of the
425	cryptorchid dogs. We speculate that the regulatory mechanisms for the gene expressions
426	of these three markers for Leydig cells differ. It is not clear why the concentrations of
427	3β -HSD mRNA were increased not only in the retained but also in the scrotal testes of
428	unilateral cryptorchid dogs in the present study. There could be a mechanism in
429	unilateral cryptorchid dogs in which a retained testis may affect the function of the other

430	scrotal testis through substances secreted from the retained testis [34]. The region of
431	canine LH receptor mRNA selected for the real-time PCR in this study is known to
432	encode the receptor protein, but the transcript may slightly include splicing variants
433	which encode non-functional LH receptors. Thus it should be noted that not all of the
434	mRNA would be expressed as the functional LH receptor.
435	In conclusion, higher INSL3 mRNA per unit-weight basis and clear staining of
436	Leydig cells for INSL3 peptide in the retained testes of cryptorchid dogs indicate the
437	substantial expression of INSL3 in Leydig cells of the retained testes. However, smaller
438	amount of INSL3 is likely to be produced per a whole retained testis due to its
439	diminutive size. Also the present study reveals that RXFP2 gene expression is lost in the
440	retained testes, but occurs normally in cryptorchid scrotal testes.
441	
442	Acknowledgements
443	We thank Dr. Y. Ishizuka, Dr. M. Tsuji and their colleagues of Ishizuka Animal Hospital
444	for their generous provision of canine testicular samples. This study was partly
445	supported by Grants-in-Aid for Scientific Research, Scientific Research (C), of the
446	Japanese Society for the Promotion of Science (Grant #25450448).
447	

448 **References**

- [1] Balvers M, Spiess AN, Domagalski R, Hunt N, Kilic E, Mukhopadhyay AK, et al.
- 450 Relaxin-like factor expression as a marker of differentiation in the mouse testis and
- 451 ovary. Endocrinology 1998;139:2960-70.
- 452 [2] Ivell R, Balvers M, Domagalski R, Ungefroren H, Hunt N, Schulze W. Relaxin-like
- 453 factor: a highly specific and constitutive new marker for Leydig cells in the human
- 454 testis. Mol Hum Reprod 1997;3:459–66.
- 455 [3] Klonisch T, Kauffold J, Steger K, Bergmann M, Leiser R, Fischer B, et al. Canine
- 456 relaxin-like factor: unique molecular structure and differential expression within
- 457 reproductive tissues of the dog. Biol Reprod 2001;64:442–50.
- 458 [4] Sadeghian H, Anand-Ivell R, Balvers M, Relan V, Ivell R. Constitutive regulation of
- the Insl3 gene in rat Leydig cells. Mol Cell Endocrinol 2005;241:10–20.
- 460 [5] Nef S, Parada LF. Cryptorchidism in mice mutant for Insl3. Nat Genet 1999;22:295–
- 461 9.
- 462 [6] Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF,
- 463 et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol
- 464 Endocrinol 1999;13:681–91.
- 465 [7] Anand-Ivell RJK, Relan V, Balvers M, Coiffec-Dorval I, Fritsch M, Bathgate RAD,

- 466 et al. Expression of the Insulin-like peptide 3 (INSL3) hormone-receptor (LGR8)
- system in the testis. Biol Reprod 2006;74:945–53.
- 468 [8] Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, et al. Paracrine
- regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl
- 470 Acad Sci U S A 2004;101:7323–8.
- 471 [9] Büllesbach EE, Rhodes R, Rembiesa B, Schwabe C. The relaxin-like factor is a
- 472 hormone. Endocrine 1999;10:167–9.
- 473 [10] Bay K, Hartung S, Ivell R, Schumacher M, Jürgensen D, Jorgensen N, et al.
- 474 Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular
- 475 disorders: relationship to the luteinizing hormone-testosterone axis. J Clin
- 476 Endocrinol Metab 2005;90:3410–8.
- 477 [11] Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, Wittert G, et
- 478 al. Peripheral INSL3 concentrations decline with age in a large population of
- 479 Australian men. Int J Androl 2006;29:618–26.
- 480 [12] Boockfor FR, Fullbright G, Büllesbach EE, Schwabe C. Relaxin-like factor (RLF)
- 481 serum concentrations and gubernaculum RLF receptor display in relation to pre-
- and neonatal development of rats. Reproduction. 2001;122:899–906.
- 483 [13] Anand-Ivell R, Heng K, Hafen B, Setchell B, Ivell R. Dynamics of INSL3 peptide

484	expression in the rodent testis. Biol Reprod 2009;81:480-7.
485	[14] Kawate N, Ohnari A, Pathirana IN, Sakase M, Büllesbach EE, Takahashi M, et al.
486	Changes of plasma concentrations of insulin-like peptide 3 and testosterone from
487	birth to pubertal age in beef bulls. Theriogenology 2011;76:1632-8.
488	[15] Pathirana IN, Yamasaki H, Kawate N, Tsuji M, Büllesbach EE, Takahashi M, et al.
489	Plasma insulin-like peptide 3 and testosterone concentrations in male dogs:
490	changes with age and effects of cryptorchidism. Theriogenology 2012;77:550-7.
491	[16] Kumagai J, Hsu SY, Matsumi H, Roe JS, Fu P, Wade JD, et al. INSL3/Leydig
492	Insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol
493	Chem 2002;277:31283–6.
494	[17] Gorlov IP, Kamat A, Bogatcheva NV, Jones E, Lamb DJ, Truong A, et al.
495	Mutations of the GREAT gene cause cryptorchidism. Hum Mol Genet
496	2002;11:2309–18.
497	[18] Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-
498	Tong HL, et al. A transgenic insertion causing cryptorchidism in mice. Genesis
499	2001;30:26–35.
500	[19] Filonzi M, Cardoso LC, Pimenta MT, Queiroz DB, Avellar MC, Porto CS, et al.
501	Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and

 $\mathbf{27}$

502	protein distribution in the reproductive tract of the male rat. Reprod Biol
503	Endocrinol 2007;5:29.
504	[20] Feng S, Bogatcheva NV, Truong A, Korchin B, Bishop CE, Klonisch T, et al.
505	Developmental expression and gene regulation of insulin-like 3 receptor RXFP2 in
506	mouse male reproductive organs. Biol Reprod 2007;77:671-80.
507	[21] Arrighi S, Bosi G, Groppetti D, Aralla M, Cremonesi F. An insight into testis and
508	gubernaculum dynamics of INSL3-RXFP2 signalling during testicular descent in
509	the dog. Reprod Fertil Dev 2010;22:751–60.
510	[22] Bay K, Main KM, Toppari J, Skakkebæk NE. Testicular descent: INSL3,
511	testosterone, genes and the intrauterine milieu. Nat Rev Urol 2011;8:187-96.
512	[23] Almeida J, Conley AJ, Ball BA. Expression of anti-Müllerian hormone, CDKN1B,
513	connexin 43, androgen receptor and steroidogenic enzymes in the equine
514	cryptorchid testis. Equine Vet J 2013;45:538–45.
515	[24] Kawakami E, Tsutsui T, Yamada Y, Yamauchi M. Cryptorchidism in the dog:
516	occurrence of cryptorchidism and semen quality in the cryptorchid dog. Jpn J Vet
517	Sci 1984;46:303–8.
518	[25] Yates D, Hayes G, Heffernan M, Beynon R. Incidence of cryptorchidism in dogs

519 and cats. Vet Rec 2003;152:502–4.

520	[26] Hayes HM Jr, Wilson GP, Pendergrass TW, Cox VS. Canine cryptorchism and
521	subsequent testicular neoplasia: case-control study with epidemiologic update.
522	Teratology 1985;32:51–6.
523	[27] Hejmej A, Bilińska B. The effects of cryptorchidism on the regulation of
524	steroidogenesis and gap junctional communication in equine testes. Endokrynol
525	Pol 2008;59:112–8.
526	[28] Teerds KJ, de Boer-Brouwer M, Dorrington JH, Balvers M, Ivell R. Identification
527	of markers for precursor and Leydig cell differentiation in the adult rat testis
528	following ethane dimethyl sulphonate administration. Biol Reprod 1999;60:1437-
529	45.
530	[29] Peters MA, Teerds KJ, van der Gaag I, de Rooij DG, van Sluijs FJ. Use of
531	antibodies against LH receptor, 3beta-hydroxysteroid dehydrogenase and vimentin
532	to characterize different types of testicular tumour in dogs. Reproduction
533	2001;121:287–96.
534	[30] Almeida J, Conley AJ, Mathewson L, Ball BA. Expression of steroidogenic
535	enzymes during equine testicular development. Reproduction 2011;141:841-8.
536	[31] Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from
537	cholesterol to active steroid hormones. Endocr Rev 2004;25:947-70.

538	[32] Bilińska B, Kotula-Balak M, Gancarczyk M, Sadowska J, Tabarowski Z, Wojtusiak
539	A. Androgen aromatization in cryptorchid mouse testis. Acta Histochem
540	2003;105:57–65.
541	[33] Illera JC, Silvan G, Munro CJ, Lorenzo PL, Illera MJ, Liu IK, et al. Amplified
542	androstenedione enzymeimmunoassay for the diagnosis of cryptorchidism in the
543	male horse: comparison with testosterone and estrone sulphate methods. J Steroid
544	Biochem Mol Biol 2003;84:377–82.
545	[34] Kawakami E, Hori T, Tsutsui T. Function of contralateral testis after artificial
546	unilateral cryptorchidism in dogs. J Vet Med Sci 1999;61:1107–11.
547	[35] Johnston SD, Root Kustritz MV, Olson PNS. Disorders of the canine testes and
548	epididymis. In: Johnston SD, Root Kustritz MV, Olson PNS, editors. Canine and
549	feline Theriogenology, Philadelphia: W B Saunders; 2001, p. 312–32.
550	[36] Pathirana IN, Tanaka K, Kawate N, Tsuji M, Kida K, Hatoya S, et al. Analysis of
551	single nucleotide polymorphisms in the 3° region of estrogen receptor 1 gene in
552	normal and cryptorchid Miniature Dachshunds and Chihuahuas. J Reprod Dev
553	2010;56:405–10.
554	[37] Hatoya S, Torii R, Kumagai D, Sugiura K, Kawate N, Tamada H, et al. Expression
555	of estrogen receptor alpha and beta genes in the mediobasal hypothalamus,

556	pituitary and ovary during the canine estrous cycle. Neurosci Lett 2003;347:131–5.
557	[38] Paust HJ, Wessels J, Ivell R, Mukhopadhyay AK. The expression of the
558	RLF/INSL3 gene is reduced in Leydig cells of the aging rat testis. Exp Gerontol
559	2002;37:1461–7.
560	[39] Pathirana IN, Kawate N, Büllesbach EE, Takahashi M, Hatoya S, Inaba T, Tamada
561	H. Insulin-like peptide 3 stimulates testosterone secretion in mouse Leydig cells
562	via cAMP pathway. Regul Pept 2012;178:102–6.
563	[40] Ivell R, Heng K, Anand-Ivell R. Insulin-like peptide 3 and the HPG axis in the
564	male. Front Endocrinol 2014;5:1–7.

Table 1. Oligonucleotide sequences of the primers used for real-time PCR, their

			Product
Primer	Primer sequence (5'–3')	Location	length
			(bp)
INSL3	F: GGGGGCCCGCGCTGGTCCTC	145–164	181
	R: CAGCTGCTCGCCGGTGGTGGTGATG	325-301	
RXFP2	F: CAACTCACGCTACATCCATCAAAAT	1292–1316	190
	R: AGGACGGACACTTCAGTAGACAGC	1481–1458	
LH receptor	F: TGTGGTGGCCTTCATCATCATTTG	1632–1655	346
	R: AAGTTCAGCCCGACGTTTACAGC	1977–1955	
3β-HSD	F: CAGAATGCCCACGAAGAAGAG	541–561	259
	R: AGACGGGGTTGACTATGGAGAA	799–778	
18S rRNA	F: TGGTTGATCCTGCCAGTAGCA	5–25	96
	R: ATGAGCCATTCGCAGTTTCACT	100–79	

567 location and the product sizes expected in canines

569 Figure legends

570

571	Fig. 1.	Changes in	testicular	concentrations	of INSL3	mRNA (A)), INSL3	peptide	(B),
-----	---------	------------	------------	----------------	----------	----------	----------	---------	------

- 572 RXFP2 mRNA (C), LH receptor mRNA (D), and total amount per testis of INSL3
- 573 mRNA (E) and INSL3 peptide (F) in various age groups of normal male dogs. Results
- are shown for pubertal (6–12 mo, n=19), post-pubertal (1–5 y, n=17) and middle age (5–
- 575 10 y, n=10). Data are mean \pm SEM. ^{a-c}Values without a common superscript differed
- significantly for A and E (P<0.05), and for C and D (P<0.01).
- 577
- 578 Fig. 2. Testicular concentrations of INSL3 mRNA (A), INSL3 peptide (B), RXFP2
- 579 mRNA (C), 3β-HSD mRNA (D), and total amount per testis of INSL3 mRNA (E),
- 580 INSL3 peptide (F), Rxfp2 mRNA (G) and LH receptor mRNA (H) in normal (n=36),
- retained (n=19) and scrotal testes (n=11). Data are mean \pm SEM. ^{a,b}Values without a
- common superscript differed significantly for B (P<0.05), for A, D, E, F and H (P<0.01)
- 583 and for C and G (P<0.001).

Fig. 1

Fig. 2

Supplemental data Fig. 1

Supplemental data

Fig. 1. Representative photomicrographs of the immunohistochemical staining of INSL3 peptide (brown staining) in canine normal (A, pubertal; C, post-pubertal; E, middle age) and retained (G) testes. In both the normal and retained testes, only testicular Leydig cells (black arrows) showed INSL3 immunolabeling. The staining intensity was stronger in the retained testes compared to the normal testes in all age groups. When the primary antibody was omitted, immunolabeling was not observed in the normal (B, pubertal; D, post-pubertal; F, middle age) or retained (H) testes.