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ABSTRACT 

By a theorem of Hurwitz， a compact Riemann surface of genus 8 ~ 2 cannot have more than 84(8 -1) automorphisms 

[H]. Tt is known that the bound is attained for infinitely many values of 8 [Mac 1]. Tn this short note， we show that the 

bound is often not sharp. 
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1. Introduction 
Let X be a compact Riemann surface of genus g ~ 2. 

We denote by Aut(X) the full automorphism group of X. 

By a theorem of Hurwitz， the order IAut(X)1 is finite and 

the fol1owing inequality holds [H]: 

IAut(X)1豆84(g-1). 

We call Aut(X) as Hurwitz group if the bound is attained. 

lt is known that the bound is attained for infinitely many 

values of g [Macl]. The pu叩oseof this short note is to 

show that the bound is often not sharp. We give our main 

theorem in the final section. Throughout this note， we often 

use the theory of branched coverings of complex manifolds 

[N]. 

2. Examples of Hurwitz groups 
In this section， we give a few examples of Hurwitz 

groups using the method of the theory of branched cov-

erigns of complex manifolds [N][M I ] [M2]. Let 

π，(P'(C) ¥ (O， 1，∞}，qo) 
= (γ0，γ"γ∞|γ∞γlγ0= 1) 

be the fundamental group of P' (C) ¥ {O， 1，∞} with some 

r巴ferencepoint qoεP'(C). Her巴γ'0，γ，and γ∞are loops 

once rounding counterclockwise direction around 0， 1 and 

∞， respectively. 

Example 1. Consider the p巴rmutatlOns:

A， = (15)(23) 
B， = (167)(245) 
A，B， = (1234567). 

They generate the simple group， say G" of order 168 and 

G， == PSL(2， 7). (For the computation， we use the "GAP".) 
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Let φ， : 1Tj(P'(C) ¥ (O， 1，∞}，xo)→G， be a sutj巴ctive
group homomorphism defined by: 

φ， (γo)=A7l，φ， (γ!) = Bi'，φ，(γ∞) =A，B，. 

Then there exists an unbranched Galois covering 

斤:X?→P'(C)¥ (0， 1，∞} 

corresponding to Keゆ， • This f( extends to a Galois 
branched covering 1， : X，→P' (C) of type (2，3，7). From 
the Riemann-Hurwitz formula， the genus of X， is 3 and 

the Hurwitz bound is auained. X， is known as the Klein's 
quartic curve [K]. 

Example 2. Consider the permutations: 

A2 = (18)(27)(46)(59) 

B2 = (1 82)(347)(596) 

A2B2 = (1234567). 

They generate the simple group， say G2， of order 504 and 

G2 == PSL(2， 8). (For th巴computation，we use again the 

"GAP".) Let φ2 : 1T，(P'(C) ¥ (0，1，∞}，xo)→ G2 be a 

surjective group homomorphism defined by: 

φ2(γ'0) = A2'，φ2(γ，) = B2'，φ2(γ∞) = A2B2・

Then there exists an unbranched Galois covering 

~ : ~ → P' (C) ¥ (0， 1，∞} 

corresponding to Kerφ2. This ~ extends to a Galois 

branched covering fz : X2→ P' (C) of type (2，3，7). From 
the Riemann-Hurwitz formula， the genus of X2 is 7 and the 

Hurwitz bound is attained. X2 is known as the Macbeath's 

curve [Mac2]. 
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Example 3. Consider the p巴rmutat1Ons:

A3 = (115)(27)(38)(413)(511)(69) 

B3 (1152)(397)(4148)(51213)(61011) 

A3B3 = (1234567)(8910 11121314). 

They generate the simple group， say G3， of order 

653837184000 and G3 == AI5・(Forthe computation， we 

use again the "GAP".) Letφ3 :π，(pl(C) ¥ {O， 1，∞}， XO)→ 
G3 be a sUljective group homomorphism defined by: 

φ3(γO)=A3'I，φ3(γ1) = B3'I， cT3(γ∞) = A3B3・

Then there exists an unbranch巴dGalois covering 

だ~→ pl(C)¥ (O， 1，∞} 

∞rresponding to Ke均 This.tf extends to a Galois 
branched covering h : X3→ pl(C) of type (2，3，7). 
From the Riemann-Hurwitz formula， the genus of X3 is 

7783776001 and the Hurwitz bound is attained. 

3. Macbeath's theorem 
In this s巴ction，we discuss Macbeath's theorem from a 

theoretic ponit of view of branched coverings of complex 

manifolds. Let X be a compact Riemann surface of genus 

gl ;;; 2 and let π:X→pl (C) be a Galois branched cover-

ing of type (2， 3，7). Then the degree ofπis 84(gl -1) and 

the following equality holds: 

IAut(X)1 = 84(gl -1). 

We may assume the number of branching poits ofπover 

0，1 and ∞are 42(g， -1)， 28(gl -1) and 12(g， -1)， re-
spectively. Let 1 = 82(glー1)be the total number of such 

branching points in X. Let Pj E X (j = 1，・・・， t) b巴the

branching points in X. Let 11~ =πI(X ¥ (PI，'" ，p/}，xo) 

be the fundamental group of X ¥ {PI，'" ，p，I. Let Oj 
be the loop in X once rounding counterclockwise direc-

tion around Pj (j = 1，・・・ ，1). Let J be the smallest 

normal sbugroup in 吋whichcontains {Ol，'" ，o/}. Let 
111 =π1 (X， XO) be the fundamental group of X. Th巴reex・

ists a natural i吋ectionL : X ¥ {P1，・・・ ，p，I → X and L in・
duces tl叫 rouphomomorphism L. : 11~ → 11 1 . From van 

Kampen theorem， we have a following exact sequence: 

l → J →昨~ 11，→l 

Le創tm川tbe a旬叩p卯ositive刊削附e引叩in附】lt飽巴g伊erand叫THI?り)y，~，
the BuωI川rnτ羽n】s釘idem判t-kernelgenerat旬edby mη1従thpower of all ele-

me側附soぱfl1吋?(肘印res叩p.0ぱfl1町町1ρ).1μM后瓜t[11可~，11可叫?りlい(οres叩p.[11，，11，]) be 

t白hec∞om附ml1口ml川nu削』
we take the product隠s 

NO = (11~)
川

[11~ ， 11~] c日?

and 

N = (口1)111[口"I1!]cl1ト

Oωb加bvi凶vioぬous均 NU an吋dNa紙r陀削echa削 e凶 ic subgroups of I1~ and 
of I1 1， respectively. There is a exact sequence: 

l→N→I11ムI11/N→1，

where T is a quotient mapping . It is known that I1， /N is 

isomorphic to the direct sum of 2g， copies of the cyclic 
group Z/ mZ of order m: 

I1，/Nさ Z/mZtD・・・tDZ/mZ.

The order IZ/ mZ tD・・・tDZ/ mZI is equal to m2g，. It is easy 

to see that ら:NO→N→ 1 is exact. Let KO be the kernel 

of the composition T 0 i. :口?→口，/N.Obviou均，KO is 
a smallest normal s山group，of rr~ ， wh凶 containsJ and 
NO. Through the inclusions， 

KO→H12与π，(P'(C)¥ {O， 1，∞}， qo)， 

KO can be considered as the subgroup of 1f1 (Pl (C) ¥ 

{O，I，∞}， qo). It is easy to see that the image of J is 

the smallest normal subgroup， of 1f 1 (P' (C) ¥ {O， 1，∞}， qO)， 

which contains {γ; ， γ? ， γ'~}. Furthermore， since NO is a 

cha削 eris山 s叫 roupof 11~ and 11~ is a normal subgroup 

of1T， (P' (C) ¥ (O， 1，∞)， qO)， The image of NO is also a nOI二

mal subgroup ofπ，(P'(C)¥{O，I，∞)， qo). Thus the image of 
KO is a normal subgroup ofπI(PI(C) ¥ (O， 1，∞}，qO). Then 

there exist Galois coverings yO :戸→ X¥{P，，'" ， p，I and 
μo : yO→P'(C¥{O，I，∞}， qO) corespoding to KO and we 

have the following commutative diagram (See Figure 1.): 

YO 

y 
X ¥ {PI，・・・，P/} ハ

υμ' 

入
pl(C)¥ {O，1，∞) 

Figure 1. 

yO and μo can be extended to Galois branched coverings 

y:Y→X andμ :Y→pl(C)，陀spectively.Since J c KO， 

y is unbranched. So μis a Galois branched covering of 
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typ巴(2，3，7)of P' (C). The order ofμis 84(g， -1 )m2g，. Let 
g be the genus of Y. From the Riemann-Hurwitz formula， 

g = (g，一l)m2g，+ 1 and we have IAut(Y)1 = 84(g-I). Since 
m is arbitrary positive inほger，thus this equality holds for 

infinitely many values of g [Mac 1 J. 

4. Sylow's theorem 
Let G be a自nitegroup and p be a prime. Any subgroup 

whose order is the highest power of p dividing the order 

IGI is called a p-Sylow subgroup of G. ln this section we 

recall several facts about p-Sylow subgroups， the Sylow 

theorems， which we will use to prove our main theorem in 

the next section. These theorems are well-known and the 

proofs are omitt巴d.

Theorem 1. Let G be afinite group and p be a prime such 

that〆isa divisor oflGI. Then， G contains a subgroup of 
order pk. 

Theorem 2. Let G be afinite group and p be a prune such 

that p is a divisor oflGI. Then， aLL p-Sylow subgroups are 

conjugate in G. 

Theorem 3. Let G be afinite grOl伊 andp be a prime. Let 

IGI = lm  with gcd(m， p) = 1 and let t be the number of p-

Sylow subgroups in G. Then， t is a divisor oflGI and t = 1 
(mod p). 

5. Main theorem 
In this section， we give our main theorem : 

Theorem 4. Let P1，' . . ，Ps be mutually distinct s prime 

numbers and let n1，・・・ ， ns be s positive integers which sat-

i砂 theconditions: 

(1) 84く PI，

(2)84pr--4ゴ<pj (j=2，"'，s) 
Then，ザXis a compact Riemann suポlce(4 genus g = 
p'~' . .. p~$ + 1， the order of Aut(X) is strictly less than 

84(g -1). 

To prove Theorem 4， we need to pr芯parethe following 

lemma: 

Lemma 1. Let X be a compact Riemann sttlfiαce ofgenus 

gx ;;; 2. Then X does not have αny automorphism whose 

order is a prime flumber αnd is greαter than 2gx + 1. 

Proof of Lemma 1. Suppose that X has an automorphism， 

sayσwhose order is a prime number， say p， with p > 

2gx + 1. Then σgenerates a cycJic subgroup H =く σ 〉
of order p in Aut(X). We now consider the quotient space 

Z = Xj H. The quotient mappingγ :X→ Z = XjH is a 
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cyclic branched covering over Z of degree p.γmay branch 

at several points. Let 1 be the number of the branching 

points of y in X and let gz be the genus of Z. From the 

Riemann-Hurwitz formula， we have 

2gx -2 = p(2gz -2) + l(p -1). 

If we reduce mod p -1， we have 

2gx -2三 2gz-2 (mod p -1). 

So as a result， the following congruence equality must 

hold: 

2(gx -gz)三o(mod p -1). 

But it is impossible， since 

。く 2(gx-gz)壬2gxく p-1. 

Then X cannot have any automorphism whose order is a 

prime p with p > 2gx + 1. 

Proof ofTheorem 4. To prove Theorem 4， we use a in-

duction with s. We白rstprove the case s = 1. So now 
we discuss about the case that PI is a prime number with 

84く P1and g = p'~' + 1. Suppose IAut(X)1 = 84(g -1)， 
then IAut(刈 =84p';'. There exist p，-Sylow subgroups 
in Aut(X) by thorem 1. From Theorem 3， the number of 

p，-Sylow subgroups is kp， + 1 for some non-negative in-
teger k and kpl + 1 is a divisor of 84p'~' . It is obvious that 

kpl + 1 and PI canonot have any common divisors except 

1. So kpl + 1 must divide 84. Because of the assumption 

84く p"we have k = O. So Aut(X) contains the uniq巴
p，-Sylow subgrol恥 sayP， of order p';' . From Theo印m2，
P is a characteristic normal subgroup in Aut(X). We now 

consider the quotient space Y = Xj P and the commutative 

diagram (See Figure 2.): 

X 

〆
Y= XjP π 

~ P'(C)= XjAut(X) 
Figure 2. 

The quotient mappingπ :X→ XjAut(X) = P'(C) is 
a Galois branched covering of pl (C) which branches at 

three points and is of type (2，3，7). The degree of πis 
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84p':'. Th巴quotientmapping v : X→ Xj P is a Galois 

branced covering whose degree is p';'. Since P is a nor-
mal subgroup in Aut(X)，μ:Y→ pl (C) is also a Galois 

branched covering. Since every ramification indices ofκ 

2，3 and 7， are prime numbers and from the fact that there 

exists no Galois covering of pl(C) which branches at one 

point nor at two points with di仔'erentramification indices， 

either v orμis an unbranch巴dcovering. Ifμis unbranched， 

μis a biholomorphic mapping since pl (C) is simply con-

nected. So， v is unbranched and μis a Galois branched 

covering of pl(C) which branches at three points and is 

of type (2，3，7) and the order of μis eqllal to 84 and the 

gunllS of Y is eqllal to 2 from the Riemann-Hurwitz for-

11l1l1a. Since IAut(Y)1 = IAlIt(μ)1 = 84， Y must have an 

automorphism of order 7. But， from Lel1lma 1， Y cannot 

have an automorphism of order 7. lt is a contradiction. So 

we have proved the case s = 1. 

Next we assume that Theorem 4 is true for s -1 prime 

nUl1lbers which satisfy the conditions. So if Y is a cOl1lpact 

Riemann surface of genus gy = P'I" .・p:ゴ+1， then the 
order of Aut(η is strictly less than 84(gy -1). 

Finally assume the conv巴rseof Theor巴m4 for s prime 

numbers， i.e. there exists a cOl1lpact Riemann surface X 

of genus g = p'f- -p:ゴ p~s + 1 such that IAut(X)1 = 

84(g -1) holds. Then the quotient mappingπ :X→ 

Xj Aut(X) = pl (C) is a Galois branched covering of pl (C) 

which branches at three points and is of type (2，3，7). 

The degree of πis 84p':' . . . p~:' . By Theorem 3， the 

number of Ps-Sylow subgroups in Aut(X) is kps + 1 for 

some non-negative integer k and kps + 1 is a divisor of 

84pit.-p;ごl'p~s . It is obvious that kps + 1 and Ps canonot 

have any common divisors except 1. So kp.s + 1 must divide 

84P7' .・p:ゴBecauseof the assumption 84p';'…p:ゴく
Pμwe have k = O. So Aut(X) contains the uniqe Ps-Sylow 
subgroup， say Q， of order /:'. From Theorem 2， Q is a 

charact巴1・isticnormal subgroup in Aut(X). Then we have 

the following diagram (See Figure 3.): 

X 

γ 
Y=XjQ π 

入
pl(C}= XjAut(X) 

Figure 3. 

Th巴quotientmapping A : X→Xj Q is a Galois covering 

whose degree is p':s and A is unbranched from the similar 

argul1lent in the case s = 1. So (j : Y→pl (C) is also a 

Galois branched covering of pl (C) which branches at three 

points and is of type (2，3，7). The degree of δis eqllal 

to 84p';' . .. P::~-I" Let gy be the genus of Y. Since (j is 

also of type (2，3，7)， we have IAut(Y)1 = 84(gy -1) and 

gy=pr -p:コ+1， which cont凶にtsour assumption for 
s -1 pril1le numbers. Then the proof is cOl1lpleted. 

Remark 1. The case s = 1 and n 1 = 1 of Theorem 4 is 

given in [M]. 

Remark 2. From the similar argument in the proof ofThe-

orel1l 4， if Aut(X) is a Hurwitz group and is not simple， i.e. 

Aut(X) has a nontrivial norl1lal subgroup， say N， then the 

automorphism group of the quotient Aut (Xj N) is also a 

Hurwitz group [M2]. 
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