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ABSTRACT

By a theorem of Hurwitz, a compact Riemann surface of genus g = 2 cannot have more than 84(g — 1) automorphisms

[H]. It is known that the bound is attained for infinitely many values of g [Macl]. In this short note, we show that the

bound is often not sharp.
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1. Introduction

Let X be a compact Riemann surface of genus g = 2.
We denote by Aut(X) the full automorphism group of X.
By a theorem of Hurwitz, the order |Aut(X)| is finite and
the following inequality holds [H]:

|[Aut(X)| < 84(g — 1).

We call Aut(X) as Hurwitz group if the bound is attained.
It is known that the bound is attained for infinitely many
values of g [Macl]. The purpose of this short note is to
show that the bound is often not sharp. We give our main
theorem in the final section. Throughout this note, we often
use the theory of branched coverings of complex manifolds
[N].

2. Examples of Hurwitz groups
In this section, we give a few examples of Hurwitz
groups using the method of the theory of branched cov-
erigns of complex manifolds [N][M1][M2]. Let
m(P(C)\ {0, 1,00}, qo)

= (Y0, Y15 Yoo | YoY1%0 = 1)
be the fundamental group of P'(C) \ {0, 1, co} with some

reference point gy € P'(C). Here yy,y; and vy, are loops
once rounding counterclockwise direction around 0, I and
oo, respectively.

Example 1. Consider the permutations:

Ay = (15)23)
Bl = (167)(245)
AiB, = (1234567).

They generate the simple group, say G, of order 168 and
G = PSL(2,7). (For the computation, we use the "GAP™.)
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Let @, : m(P'(C) \ {0, 1, 00}, xg) — G, be a surjective
group homomorphism defined by:

D1(y0) = A7 ®1(11) = By ®1(y0) = A By.
Then there exists an unbranched Galois covering
LX) > P(©)\{0,1,00)

corresponding to Ker®;. This fi“ extends to a Galois
branched covering f; : X; — P(CT) of type (2,3,7). From
the Riemann-Hurwitz formula, the genus of X, is 3 and
the Hurwitz bound is attained. X; is known as the Klein’s

quartic curve [K].

Example 2. Consider the permutations:

Ay = (18)27)(46)(59)
B, = (182)(347)(596)
ABy = (1234567).

They generate the simple group, say G, of order 504 and
G» = PSL(2,8). (For the computation, we use again the
"GAP”.) Let @, : m(PY(C)\ {0, 1,00}, x9) = G be a
surjective group homomorphism defined by:

Da(y0) = Ay, D2 (1) = By, Da(yes) = A2Bs.
Then there exists an unbranched Galois covering
X3 = PHO)\ (0,1, 00}

corresponding to Ker®,. This fg extends to a Galois
branched covering f : X» — PY(C) of type (2.3,7). From
the Riemann-Hurwitz formula, the genus of X5 is 7 and the
Hurwitz bound is attained. X> is known as the Macbeath’s
curve [Mac2].
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Example 3. Consider the permutations:

Ay = (11527384 13)(511)69)
By = (1152)397)4148)(51213)(61011)
AsBy = (1234567)891011121314).

They generate the simple group, say Gs;, of order
653837184000 and Gz = A)s. (For the computation, we
use again the "GAP™.) Let @5 : T (PHC)I\ {0, 1, 00}, xg) —
G35 be a surjective group homomorphism defined by:

D3(y0) = A3, D3(71) = By, D3(ye) = A3Bs.
Then there exists an unbranched Galois covering
f X3 - PO\ {0, 1, 00}

corresponding to Ker®;. This f) extends to a Galois
X; — PY©) of type (2,3,7).
From the Riemann-Hurwitz formula, the genus of X3 is
7783776001 and the Hurwitz bound is attained.

branched covering f5 :

3. Macbeath’s theorem

In this section, we discuss Macbeath’s theorem from a
theoretic ponit of view of branched coverings of complex
manifolds. Let X be a compact Riemann surface of genus
g1 22andlet 7 : X — P'(C) be a Galois branched cover-
ing of type (2,3, 7). Then the degree of mis 84(g, — 1) and
the following equality holds:

|Aut(X)| = 84(g, — 1).

We may assume the number of branching poits of m over
0,1 and co are 42(g; — 1), 28(g; — 1) and 12(g; — 1), re-
spectively. Let r = 82(g; — 1) be the total number of such
branching points in X. Let P; € X (j = 1,---,1) be the
branching points in X. Let 1'[? = m X\ {P1, -+ . P}, x0)
Let ¢;
be the loop in X once rounding counterclockwise direc-
Let J be the smallest

be the fundamental group of X \ {Py,---,P,}.

tion around P; (j = 1,---,0).
normal sbugroup in l'[‘l’ which contains {d§;,---,6,}. Let
[T, = m(X, xy) be the fundamental group of X. There ex-
X\{Py,---,P;} = X and ¢ in-
duces the group homomorphism ¢, : H‘]} — TI1;. From van

ists a natural injection ¢ :

Kampen theorem, we have a following exact sequence:
1 =T > TSI 1.

Let m be a positive integer and let (l'[‘lj)m (resp. (I1;)") be
the Burnside m-kernel generated by mth power of all ele-
ments of I} (resp. of IT;). Let II'I‘IJ. I'Iﬂ (resp. [IT,,T1;]) be

the commutator subgroup of I'[? (resp. of I1;). Furthermore
we take the products

N = ()" [, ] < 1
and
N = (IT)" [Ty, 1] € T04.

Obviously N” and N are characteristic subgroups of H? and

of I1;, respectively. There is a exact sequence:
I NI 5IL/N -1,

where 7 is a quotient mapping . It is known that IT; /N is
isomorphic to the direct sum of 2g; copies of the cyclic
group Z/mZ of order m:

[L/N=Z/mZ&---®ZL/m.

The order [Z/mZ & - - - ® Z/mZ| is equal to m*®'. It is easy
to see that ¢, : N - N — 1 is exact. Let KV be the kernel
of the composition 7 o i, : I — II; /N. Obviously, K" is
a smallest normal subgroup, of I'I‘l’, which contains J and
N°. Through the inclusions,

KO - 19 5 1 (PY(C) \ {0. 1, 00}, qo),

K can be considered as the subgroup of m(P'(C) \
{0, 1, e}, go).
the smallest normal subgroup, of m;(P'(C) \ {0, 1, oo}, go),

It is easy to see that the image of J is

which contains {y2,7],y%). Furthermore, since N” is a
characteristic subgroup of l'[? and H‘I’ is a normal subgroup
of m (P'(C) \ {0, 1, oo}, go), The image of N’ is also a nor-
mal subgroup of 7r; (P! (C)\{0, 1, 0}, go). Thus the image of
K" is a normal subgroup of ;(P'(C) \ {0, 1, o}, go). Then
there exist Galois coverings v : Y¥ — X\ {P,,--- , P,} and
w1 2 Y0 = PYC\ {0, 1, 00}, gp) corespoding to K” and we
have the following commutative diagram (See Figure 1.):

o

X\ {Py,--+, Py} i

AN

Y0

P'(C)\ {0, 1,0}
Figure 1.

v and 1 can be extended to Galois branched coverings
v:Y — Xandu: Y — PY(C), respectively. Since J C K°,
v is unbranched. So u is a Galois branched covering of
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type (2,3, 7) of P'(C). The order of y is 84(g; —1)m?¢'. Let
g be the genus of Y. From the Riemann-Hurwitz formula,
g = (g1—1m*® +1 and we have |Aut(Y)| = 84(g—1). Since
m is arbitrary positive integer, thus this equality holds for
infinitely many values of g [Macl].

4. Sylow’s theorem

Let G be a finite group and p be a prime. Any subgroup
whose order is the highest power of p dividing the order
|G| is called a p-Sylow subgroup of G. In this section we
recall several facts about p-Sylow subgroups, the Sylow
theorems, which we will use to prove our main theorem in
the next section. These theorems are well-known and the

proofs are omitted.

Theorem 1. Let G be a finite group and p be a prime such
that p* is a divisor of |G|. Then, G contains a subgroup of
order p*.

Theorem 2. Let G be a finite group and p be a prime such
that p is a divisor of |G|. Then, all p-Sylow subgroups are
conjugate in G.

Theorem 3. Let G be a finite group and p be a prime. Let
|G| = p*m with ged(m, p) = 1 and let t be the number of p-
Sylow subgroups in G. Then, t is a divisor of |G| and t = 1
(mod p).

5. Main theorem

In this section, we give our main theorem :

Theorem 4. Let py,--- , ps be mutually distinct s prime
numbers and let ny, - - , n, be s positive integers which sat-
isfy the conditions:

(1) 84 < py,

@) 84p)' Pl <pj (G=2.-.9).
Then, if X is a compact Riemann surface of genus g =
py Py + 1, the order of Aut(X) is strictly less than

84(g - 1).

To prove Theorem 4, we need to prepare the following
lemma:
Lemma 1. Ler X be a compact Riemann surface of genus
gx = 2. Then X does not have any automorphism whose

order is a prime number and is greater than 2gy + 1.

Proof of Lemma I. Suppose that X has an automorphism,
say o whose order is a prime number, say p, with p >
2gx + 1. Then o generates a cyclic subgroup H =< o >
of order p in Aut(X). We now consider the quotient space
Z = X/H. The quotient mapping y : X - Z = X/H isa
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cyclic branched covering over Z of degree p. v may branch
at several points. Let / be the number of the branching
points of ¥ in X and let gz be the genus of Z. From the
Riemann-Hurwitz formula, we have

2ex —2=pRgz-2)+l(p-1).
If we reduce mod p — 1, we have
2ex—-2=2g,—-2 (mod p-1).

So as a result, the following congruence equality must
hold:
2(gx—g2) =0 (mod p-1).

But it is impossible, since
0<2(gx-82)=28x<p-1.

Then X cannot have any automorphism whose order is a

prime p with p > 2gy + 1.

Proof of Theorem 4. To prove Theorem 4, we use a in-
duction with s. We first prove the case s = 1. So now
we discuss about the case that p; is a prime number with
84 < pjand g = pi' + 1. Suppose |[Aut(X)| = 84(g - 1),
then [Aut(X)| = 84p'.

in Aut(X) by thorem 1. From Theorem 3, the number of

There exist p;-Sylow subgroups

p1-Sylow subgroups is kp; + 1 for some non-negative in-
teger k and kp; + 1 is a divisor of 84p{'. It is obvious that
kp, + 1 and p; canonot have any common divisors except
1. So kp; + 1 must divide 84. Because of the assumption
84 < p;. we have k = 0. So Aut(X) contains the unige
pi-Sylow subgroup, say P, of order p}'. From Theorem 2,
P is a characteristic normal subgroup in Aut(X). We now
consider the quotient space ¥ = X/P and the commutative

diagram (See Figure 2.):

P(C)= X/Aut(X)
Figure 2.

The quotient mapping 7 : X — X/Aut(X) = P(C) is
a Galois branched covering of P'(C) which branches at
three points and is of type (2,3,7). The degree of « is
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84p'. X — X/P is a Galois
branced covering whose degree is p|'. Since P is a nor-

The quotient mapping v :

mal subgroup in Aut(X), u : ¥ — PY(C) is also a Galois
branched covering. Since every ramification indices of m,
2.3 and 7, are prime numbers and from the fact that there
exists no Galois covering of P!(C) which branches at one
point nor at two points with different ramification indices,
either v or g is an unbranched covering. If y is unbranched,
4t is a biholomorphic mapping since P'(C) is simply con-
nected. So, v is unbranched and u is a Galois branched
covering of P'(C) which branches at three points and is
of type (2,3,7) and the order of u is equal to 84 and the
gunus of Y is equal to 2 from the Riemann-Hurwitz for-
mula. Since |Aut(Y)| = |Aut(u)] = 84, Y must have an
automorphism of order 7. But, from Lemma 1, ¥ cannot
have an automorphism of order 7. It is a contradiction. So
we have proved the case s = 1.

Next we assume that Theorem 4 is true for s — | prime

numbers which satisfy the conditions. So if ¥ is a compact

Iy .
1

order of Aut(Y) is strictly less than 84(gy — 1).

Riemann surface of genus gy = pi'--- p?| + 1, then the

Finally assume the converse of Theorem 4 for s prime
numbers, i.e. there exists a compact Riemann surface X
P p + 1 such that [Au(X)| =
84(g — 1) holds. Then the quotient mapping & : X —
X/Aut(X) = P/(C) is a Galois branched covering of P'(C)
which branches at three points and is of type (2,3,7).
-+ py. By Theorem 3, the
number of p,-Sylow subgroups in Aut(X) is kp; + 1 for

of genus g = pi' -

n

The degree of 7 is 84p,

some non-negative integer k and kp; + 1 is a divisor of
84p|' -
have any common divisors except 1. So kp,+ | must divide
84p'---
Ps, we have k = 0. So Aut(X) contains the unige p,-Sylow

Ry dtg

p. ps'- Itis obvious that kp; + 1 and p, canonot

|

.. T : n
p,-| - Because of the assumption 84p,' --- p | <

subgroup, say Q, of order p}*. From Theorem 2, Q is a

characteristic normal subgroup in Aut(X). Then we have
the following diagram (See Figure 3.):

7

Y =X/Q m

N

X

P'(C)= X/Au(X)

Figure 3.

The quotient mapping A : X — X/ is a Galois covering
whose degree is p;* and A is unbranched from the similar
argument in the case s = 1. So 6 ;: ¥ — P!Y(C) is also a
Galois branched covering of P'(C) which branches at three
points and is of type (2,.3,7). The degree of § is equal
to 84p|' ---pi~]. Let gy be the genus of Y. Since 6 is
also of type (2,3,7), we have |Aut(Y)| = 84(gy — 1) and
1y My

gy = p)' ---p;| +1, which contradicts our assumption for
s — 1 prime numbers. Then the proof is completed.

Remark 1. The case s = 1 and n; = 1 of Theorem 4 is
given in [M].

Remark 2. From the similar argument in the proof of The-
orem 4, if Aut(X) is a Hurwitz group and is not simple, i.e.
Aut(X) has a nontrivial normal subgroup, say N, then the
automorphism group of the quotient Aut(X/N) is also a
Hurwitz group [M2].
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